organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1H-Benzimidazol-3-ium-2-carboxyl­ate dihydrate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, 252059 Liaocheng, Shandong, People's Republic of China, and bGuodian Liaocheng Power Co. Ltd, 252033 Liaocheng, Shandong, People's Republic of China
*Correspondence e-mail: y_xingjun01@163.com

(Received 29 April 2011; accepted 9 May 2011; online 14 May 2011)

The title compound, C8H6N2O2·2H2O, crystallized as a zwitterion with the carboxyl group deprotonated and the imidazole group protonated. The dihedral angle between the benzimidazole ring and the pendant –CO2 group is 0.62 (2)°. In the crystal, mol­ecules are linked into a three-dimensional network by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the crystal structure of related zwitterionic benzimidazole-2-carb­oxy­lic acid monohydrate, see: Krawczyk et al. (2005[Krawczyk, S., Gdaniec, M. & Sa˛czewski, F. (2005). Acta Cryst. E61, o4185-o4187.]). For the synthesis of the title compound, see: Thakurdesai et al. (2007[Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacology­online, 1, 314-329.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N2O2·2H2O

  • Mr = 198.18

  • Monoclinic, P 21 /c

  • a = 6.8503 (15) Å

  • b = 7.3679 (17) Å

  • c = 18.939 (4) Å

  • β = 109.728 (7)°

  • V = 899.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.42 × 0.38 × 0.35 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.960

  • 4496 measured reflections

  • 1760 independent reflections

  • 1342 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.03

  • 1760 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H6⋯O1 0.85 2.01 2.8608 (19) 174
N1—H1⋯O3i 0.86 1.86 2.7135 (18) 170
O4—H9⋯O3i 0.84 2.06 2.874 (2) 163
N2—H2A⋯O2ii 0.86 1.87 2.6708 (18) 155
O3—H7⋯O4iii 0.84 1.93 2.756 (2) 165
O4—H8⋯O1iv 0.85 2.53 3.142 (2) 130
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) x-1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the crystal structure of zwitterionic compound benzimidazole-2-carboxylic acid monohydrate (I) has been reported by Krawczyk et al. (2005). Herewith we present the crystal structure of its dihydrate form, the title compound (II).

In (II) (Fig. 1), the bond lengths and angles are normal and comparable with those observed in (I). The equal bond lengths of C7—N1 and C7—N2 of the imidazolium fragment, and C8—O1 and C8—O2 of the carboxylate group show both N atoms of the benzimidazole group are protonated and both O atoms of the carboxylate group are deprotonated. The dihedral angle between the benzimidazole and carboxylate groupe is 0.62 (2) °. The molecule is essentially planar, the r.m.s. deviation for all non-H atoms being 0.0249 Å. An extensive three-dimensional hydrogen-bonding network (Table 1) stabilize the crystal packing.

Related literature top

For the crystal structure of related zwitterionic benzimidazole-2-carboxylic acid monohydrate, see: Krawczyk et al. (2005). For the synthesis of the title compound, see: Thakurdesai et al. (2007).

Experimental top

The title compound was synthesized according to the method reported in the literature (Thakurdesai et al., 2007). Colourless single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution of the compound.

Refinement top

H atoms bonded to the water O atom were located in an electron density and refined with O—H distances constrained to 0.84-0.85 Å. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and N—H = 0.86 Å. For those bound to C and N, Uiso(H) = 1.2Ueq(C, N), while for those bound to O, Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atomic labeling and 30% probability displacement ellipsoids.
1H-Benzimidazol-3-ium-2-carboxylate dihydrate top
Crystal data top
C8H6N2O2·2H2OF(000) = 416
Mr = 198.18Dx = 1.463 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1540 reflections
a = 6.8503 (15) Åθ = 2.3–26.2°
b = 7.3679 (17) ŵ = 0.12 mm1
c = 18.939 (4) ÅT = 298 K
β = 109.728 (7)°Block, colorless
V = 899.8 (3) Å30.42 × 0.38 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1760 independent reflections
Radiation source: fine-focus sealed tube1342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 68
Tmin = 0.952, Tmax = 0.960k = 99
4496 measured reflectionsl = 2317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.041P)2 + 0.0001P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1760 reflectionsΔρmax = 0.18 e Å3
128 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.097 (8)
Crystal data top
C8H6N2O2·2H2OV = 899.8 (3) Å3
Mr = 198.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8503 (15) ŵ = 0.12 mm1
b = 7.3679 (17) ÅT = 298 K
c = 18.939 (4) Å0.42 × 0.38 × 0.35 mm
β = 109.728 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
1760 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1342 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.960Rint = 0.095
4496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
1760 reflectionsΔρmin = 0.16 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4666 (2)0.4099 (2)0.80063 (6)0.0549 (4)
O20.36643 (18)0.48692 (18)0.89664 (6)0.0503 (4)
N10.8395 (2)0.27481 (18)0.90210 (7)0.0352 (4)
H10.83550.25520.85690.042*
N20.74817 (19)0.35912 (18)0.99579 (7)0.0354 (4)
H2A0.67540.40291.02090.043*
C80.4882 (3)0.4223 (2)0.86784 (9)0.0378 (4)
C70.6902 (3)0.3506 (2)0.92144 (8)0.0346 (4)
C11.0037 (2)0.2319 (2)0.96623 (9)0.0338 (4)
C21.1954 (3)0.1538 (2)0.97674 (9)0.0392 (4)
H21.23510.11720.93660.047*
C31.3236 (3)0.1332 (2)1.04979 (10)0.0443 (5)
H31.45460.08301.05940.053*
C41.2623 (3)0.1857 (3)1.11020 (10)0.0451 (5)
H41.35320.16781.15880.054*
C51.0734 (3)0.2625 (2)1.10005 (9)0.0415 (5)
H51.03310.29701.14030.050*
C60.9443 (2)0.2864 (2)1.02604 (9)0.0344 (4)
O30.1521 (2)0.67445 (19)0.73470 (6)0.0542 (4)
H70.04030.62480.73380.081*
H60.24130.59420.75690.081*
O40.7592 (2)0.5359 (2)0.70601 (8)0.0747 (5)
H80.67470.59040.72280.112*
H90.76170.43210.72480.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0504 (8)0.0778 (10)0.0330 (7)0.0132 (7)0.0096 (6)0.0016 (6)
O20.0422 (7)0.0669 (9)0.0417 (8)0.0109 (7)0.0138 (6)0.0024 (6)
N10.0398 (8)0.0360 (8)0.0295 (7)0.0008 (6)0.0114 (6)0.0015 (6)
N20.0344 (8)0.0386 (9)0.0340 (8)0.0029 (6)0.0126 (6)0.0001 (6)
C80.0391 (10)0.0389 (10)0.0336 (9)0.0026 (8)0.0099 (7)0.0008 (7)
C70.0379 (9)0.0324 (9)0.0334 (9)0.0022 (7)0.0118 (7)0.0006 (7)
C10.0357 (9)0.0299 (9)0.0341 (9)0.0029 (7)0.0097 (7)0.0013 (7)
C20.0407 (10)0.0342 (9)0.0446 (10)0.0003 (8)0.0169 (8)0.0006 (7)
C30.0390 (10)0.0387 (11)0.0523 (11)0.0026 (8)0.0114 (8)0.0028 (8)
C40.0430 (11)0.0422 (11)0.0411 (10)0.0019 (8)0.0025 (8)0.0042 (8)
C50.0471 (11)0.0415 (10)0.0338 (9)0.0015 (8)0.0110 (7)0.0009 (7)
C60.0354 (9)0.0314 (9)0.0350 (9)0.0036 (7)0.0101 (7)0.0001 (7)
O30.0540 (8)0.0618 (9)0.0446 (8)0.0048 (7)0.0137 (6)0.0122 (6)
O40.0629 (10)0.0848 (12)0.0758 (11)0.0023 (8)0.0225 (8)0.0131 (8)
Geometric parameters (Å, º) top
O1—C81.234 (2)C2—H20.9300
O2—C81.236 (2)C3—C41.400 (3)
N1—C71.321 (2)C3—H30.9300
N1—C11.385 (2)C4—C51.366 (2)
N1—H10.8600C4—H40.9300
N2—C71.3291 (18)C5—C61.393 (2)
N2—C61.379 (2)C5—H50.9300
N2—H2A0.8601O3—H70.8435
C8—C71.508 (2)O3—H60.8525
C1—C21.385 (2)O4—H80.8496
C1—C61.386 (2)O4—H90.8415
C2—C31.374 (2)
C7—N1—C1109.21 (13)C3—C2—H2121.8
C7—N1—H1125.4C1—C2—H2121.8
C1—N1—H1125.4C2—C3—C4121.77 (17)
C7—N2—C6108.83 (13)C2—C3—H3119.1
C7—N2—H2A125.6C4—C3—H3119.1
C6—N2—H2A125.5C5—C4—C3122.08 (16)
O1—C8—O2128.31 (16)C5—C4—H4119.0
O1—C8—C7115.57 (15)C3—C4—H4119.0
O2—C8—C7116.11 (14)C4—C5—C6116.33 (16)
N1—C7—N2109.33 (13)C4—C5—H5121.8
N1—C7—C8125.56 (14)C6—C5—H5121.8
N2—C7—C8125.09 (14)N2—C6—C1106.67 (13)
N1—C1—C2132.13 (15)N2—C6—C5131.73 (15)
N1—C1—C6105.95 (14)C1—C6—C5121.59 (15)
C2—C1—C6121.92 (15)H7—O3—H6101.8
C3—C2—C1116.30 (16)H8—O4—H9100.9
C1—N1—C7—N20.27 (19)C1—C2—C3—C41.0 (3)
C1—N1—C7—C8177.85 (15)C2—C3—C4—C50.9 (3)
C6—N2—C7—N10.32 (18)C3—C4—C5—C60.1 (3)
C6—N2—C7—C8177.81 (16)C7—N2—C6—C10.25 (17)
O1—C8—C7—N11.3 (3)C7—N2—C6—C5179.71 (17)
O2—C8—C7—N1179.22 (16)N1—C1—C6—N20.09 (17)
O1—C8—C7—N2176.57 (16)C2—C1—C6—N2179.40 (15)
O2—C8—C7—N22.9 (3)N1—C1—C6—C5179.61 (15)
C7—N1—C1—C2179.11 (17)C2—C1—C6—C51.1 (2)
C7—N1—C1—C60.11 (18)C4—C5—C6—N2179.49 (17)
N1—C1—C2—C3179.09 (17)C4—C5—C6—C11.1 (2)
C6—C1—C2—C30.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O10.852.012.8608 (19)174
N1—H1···O3i0.861.862.7135 (18)170
O4—H9···O3i0.842.062.874 (2)163
N2—H2A···O2ii0.861.872.6708 (18)155
O3—H7···O4iii0.841.932.756 (2)165
O4—H8···O1iv0.852.533.142 (2)130
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x1, y, z; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H6N2O2·2H2O
Mr198.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.8503 (15), 7.3679 (17), 18.939 (4)
β (°) 109.728 (7)
V3)899.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.42 × 0.38 × 0.35
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.952, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
4496, 1760, 1342
Rint0.095
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.03
No. of reflections1760
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O10.852.012.8608 (19)174
N1—H1···O3i0.861.862.7135 (18)170
O4—H9···O3i0.842.062.874 (2)163
N2—H2A···O2ii0.861.872.6708 (18)155
O3—H7···O4iii0.841.932.756 (2)165
O4—H8···O1iv0.852.533.142 (2)130
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x1, y, z; (iv) x+1, y+1/2, z+3/2.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrawczyk, S., Gdaniec, M. & Sa˛czewski, F. (2005). Acta Cryst. E61, o4185–o4187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacology­online, 1, 314–329.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds