metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m742-m743

[η5-(Phenyl­ethyn­yl)cyclo­penta­dien­yl](η4-tetra­phenyl­cyclo­butadiene)cobalt(I)

aSchool of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 4 May 2011; accepted 4 May 2011; online 14 May 2011)

In the title compound, [Co(C13H9)(C28H20)], the Co atom is sandwiched between cyclo­penta­dienyl and cyclo­butadienyl rings that are inclined at a dihedral angle of 2.6 (3)°. The four phenyl rings are tilted with respect to the cyclo­butadienyl plane so that the C4Ph4 unit constitutes a four-bladed propeller. The phenyl ring of the phenyl-alkyne substituent is inclined to the cyclo­penta­dienyl ring at an angle of 34.92 (18)°. The crystal structure is stabilized solely by C—H⋯π inter­actions which generate a three-dimensional network.

Related literature

For the synthesis, see: Stephens & Castro (1963[Stephens, R. D. & Castro, C. E. (1963). J. Org. Chem. 28, 3313-3315.]). For related structures, see: Classen et al. (2002[Classen, J., Gleiter, R. & Rominger, F. (2002). Eur. J. Inorg. Chem. pp. 2040-2046.]); Cuffe et al. (2005[Cuffe, L., Hudson, R. D. A., Gallagher, J. F., Jennings, S., McAdam, C. J., Connelly, R. B. T., Manning, A. R., Robinson, B. H. & Simpson, J. (2005). Organometallics, 24, 2051-2060.]); Kjaergaard et al. (2008[Kjaergaard, H. G., McAdam, C. J., Manning, A. R., Mueller-Bunz, H., O'Donohue, P., Ortin, Y., Robinson, B. H. & Simpson, J. (2008). Inorg. Chim. Acta, 361, 1616-1623.]); Zora et al. (2006[Zora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327-m330.]). For recent applications of [Co(η4-C4Ph4)(η5-C5H4R)] compounds, see: O'Donohue et al. (2011a[O'Donohue, P., McAdam, C. J., Courtney, D., Ortin, Y., Müller-Bunz, H., Manning, A. R., McGlinchey, M. J. & Simpson, J. (2011a). J. Organomet. Chem. 696, 1496-1509.],b[O'Donohue, P., McAdam, C. J., Courtney, D., Ortin, Y., Müller-Bunz, H., Manning, A. R., McGlinchey, M. J. & Simpson, J. (2011b). J. Organomet. Chem. 696, 1510-1527.]); Nguyen et al. (2008[Nguyen, H. V., Yeamine, M. R., Amin, J., Motevalli, M. & Richards, C. J. (2008). J. Organomet. Chem. 693, 3668-3676.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C13H9)(C28H20)]

  • Mr = 580.57

  • Monoclinic, P 21 /c

  • a = 11.2685 (5) Å

  • b = 14.9167 (7) Å

  • c = 16.8122 (8) Å

  • β = 97.937 (3)°

  • V = 2798.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 91 K

  • 0.46 × 0.34 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.829, Tmax = 1.000

  • 25140 measured reflections

  • 3651 independent reflections

  • 3130 reflections with I > 2σ(I)

  • Rint = 0.050

  • θmax = 22.6°

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.06

  • 3651 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11–C16 and C17–C22 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯Cg1i 0.95 2.66 3.460 (4) 142
C14—H14⋯Cg2ii 0.95 2.86 3.674 (4) 144
C28—H28⋯Cg2iii 0.95 2.93 3.578 (4) 127
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recent interest in [Co(η4-C4Ph4)(η5-C5H4R] type compounds has focused on their applications in asymmetric synthesis and catalysis, and as components of molecular machines (Nguyen et al., 2008; O'Donohue et al., 2011a). Despite this attention, comparison with its isoelectronic ferrocene cousin reveals relatively few crystallographically characterized examples. Alkyne derivatives in particular are limited to five structures (Classen et al., 2002). We present here data for the archetypal derivative [Co(η4-C4Ph4)(η5-C5H4—C C-Aryl)], Aryl = phenyl.

Bond lengths and angles within the [Co(η4-C4Ph4)(η5-C5H4–} fragment are close to those reported in other examples (Classen et al., 2002; Kjaergaard et al., 2008; O'Donohue et al., 2011a,b). The distances between the cyclopentadienyl (Cp) and cyclobutadienyl (Cb) rings and the cobalt atom are 1.6759 (17) Å and 1.6990 (17) Å respectively and the angle between these planes is 2.6 (3)°. The four phenyl rings are tilted in an alternating 20.1/41.9/25.0/46.0° pattern with respect to the Cb plane so that the C4Ph4 unit constitutes a four-bladed propeller. The CC length of 1.207 (6) Å is similar to those observed for [Co(η4-C4Ph4)(η5-C5H4–] butadiynes (Classen et al., 2002) but is slightly longer than its ferrocenyl analogue Fc—C C-Ph, 1.192 (3) (Zora et al., 2006) and other simple ferrocenyl ethynylaryl compounds (Cuffe et al., 2005). The alkyne phenyl group is tilted 34.92 (18)° with respect to the Cp plane in marked contrast to the angle of 89.06 (13)° observed for Fc—CC-phenyl (Zora et al., 2006).

In the crystal structure C–H···π interactions (Table 1) involving contacts from the C29···C33 Cp ring to Cg1, the centroid of the C11···C16 ring, and the C11···C16 phenyl ring to Cg2, the centroid of the C17···C22 ring, link the molecules into chains along the c axis (Fig. 2). An additional C28–H28···Cg2 contact generates a three-dimensional network structure (Fig. 3).

Related literature top

For the synthesis, see: Stephens & Castro (1963). For related structures, see: Classen et al. (2002); Cuffe et al. (2005); Kjaergaard et al. (2008); Zora et al. (2006). For recent applications of [Co(η4-C4Ph4)(η5-C5H4R)] compounds, see: O'Donohue et al. (2011a,b); Nguyen et al. (2008).

Experimental top

The title compound was prepared by the Castro-Stephens coupling (Stephens & Castro, 1963) of [Co(η4-C4Ph4)(η5-C5H4–CC–H)] and an equimolar amount of iodobenzene by stirring with 2.5 mol% CuI in N2 degassed triethylamine for 16 hrs. Solvent was removed under vacuum and the residue chromatographed on silica with a CH2Cl2 eluent. X-ray quality crystals were grown from CH2Cl2 layered with hexane.

Refinement top

All H-atoms were geometrically positioned, and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of I showing the atom numbering with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. C–H···π interactions (dotted lines) in the structure of I.
[Figure 3] Fig. 3. Crystal packing for I viewed down the a axis.
[η5-(Phenylethynyl)cyclopentadienyl](η4-tetraphenylcyclobutadiene) cobalt(I) top
Crystal data top
[Co(C13H9)(C28H20)]F(000) = 1208
Mr = 580.57Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5542 reflections
a = 11.2685 (5) Åθ = 2.3–22.4°
b = 14.9167 (7) ŵ = 0.64 mm1
c = 16.8122 (8) ÅT = 91 K
β = 97.937 (3)°Irregular fragment, orange
V = 2798.9 (2) Å30.46 × 0.34 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3651 independent reflections
Radiation source: fine-focus sealed tube3130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 22.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1212
Tmin = 0.829, Tmax = 1.000k = 1616
25140 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0693P)2 + 4.4297P]
where P = (Fo2 + 2Fc2)/3
3651 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Co(C13H9)(C28H20)]V = 2798.9 (2) Å3
Mr = 580.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2685 (5) ŵ = 0.64 mm1
b = 14.9167 (7) ÅT = 91 K
c = 16.8122 (8) Å0.46 × 0.34 × 0.13 mm
β = 97.937 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3651 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3130 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 1.000Rint = 0.050
25140 measured reflectionsθmax = 22.6°
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.06Δρmax = 1.05 e Å3
3651 reflectionsΔρmin = 0.48 e Å3
379 parameters
Special details top

Experimental. IR ν/cm-1 ν(CC) 2214 (ATR). 1H NMR (CDCl3): δ 7.5 (8H, m, Cb-o-Ph), 7.42 (2H, m, C2-m-Ph), 7.27 (1H, m, C2-p-Ph), 7.2 (12H, m, Cb-m/p-Ph), 7.14 (2H, m, C2-o-Ph), 4.82 (2H, t, α-Cp), 4.65 (2H, t, β-Cp). 13C NMR (CDCl3): δ 135.6 (Cb-ipso-Ph), 131.4 (C2-o-Ph), 128.9 (C2-m-Ph & Cb-o-Ph), 128.1 (Cb-m-Ph), 127.6 (C2-p-Ph), 126.4 (Cb-p-Ph), 123.7 (C2-ipso-Ph), 87.8 (CCPh), 85.7 (α-Cp), 85.2 (CCPh), 84.9 (β-Cp), 79.2 (ipso-Cp), 76.2 (C4Ph4). UV-Vis, λmax/nm (ε/dm3mol-1cm-1) (CH2Cl2): 269 (44 000), 300 (sh, 30 000), 330 (sh, 24 000) 385 (sh, 4800).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6521 (3)0.2050 (2)1.0157 (2)0.0227 (8)
C20.5229 (3)0.2125 (2)1.0222 (2)0.0230 (8)
C30.4966 (3)0.1499 (2)0.9545 (2)0.0237 (8)
C40.6247 (3)0.1436 (2)0.9479 (2)0.0236 (8)
Co10.56188 (4)0.26618 (3)0.92077 (3)0.0238 (2)
C50.7628 (3)0.2358 (2)1.0628 (2)0.0255 (9)
C60.8710 (3)0.2326 (2)1.0314 (2)0.0300 (9)
H60.87190.21380.97750.036*
C70.9761 (4)0.2564 (3)1.0777 (3)0.0369 (10)
H71.04950.25221.05610.044*
C80.9763 (4)0.2865 (3)1.1556 (3)0.0394 (10)
H81.04960.30221.18750.047*
C90.8702 (3)0.2934 (3)1.1867 (2)0.0362 (10)
H90.86960.31641.23930.043*
C100.7642 (3)0.2669 (2)1.1414 (2)0.0300 (9)
H100.69150.27001.16390.036*
C110.4524 (3)0.2540 (2)1.0794 (2)0.0221 (8)
C120.4748 (3)0.3418 (2)1.1069 (2)0.0254 (8)
H120.53610.37591.08760.030*
C130.4084 (3)0.3795 (2)1.1618 (2)0.0281 (9)
H130.42540.43891.18050.034*
C140.3184 (3)0.3316 (3)1.1894 (2)0.0287 (9)
H140.27280.35771.22690.034*
C150.2945 (3)0.2448 (3)1.1621 (2)0.0269 (9)
H150.23180.21171.18070.032*
C160.3611 (3)0.2061 (2)1.1083 (2)0.0221 (8)
H160.34460.14631.09070.027*
C170.3896 (3)0.1023 (2)0.9165 (2)0.0232 (8)
C180.4002 (4)0.0193 (2)0.8804 (2)0.0311 (9)
H180.47710.00690.88100.037*
C190.2997 (4)0.0253 (3)0.8438 (2)0.0380 (10)
H190.30850.08120.81820.046*
C200.1878 (4)0.0102 (3)0.8439 (2)0.0387 (11)
H200.11920.02140.81930.046*
C210.1748 (3)0.0917 (3)0.8796 (2)0.0350 (10)
H210.09710.11650.87980.042*
C220.2753 (3)0.1382 (3)0.9157 (2)0.0295 (9)
H220.26590.19480.93990.035*
C230.6966 (3)0.0865 (2)0.9016 (2)0.0252 (8)
C240.6679 (3)0.0760 (3)0.8189 (2)0.0321 (9)
H240.60050.10660.79130.038*
C250.7359 (4)0.0216 (3)0.7764 (3)0.0392 (10)
H250.71500.01500.72000.047*
C260.8343 (4)0.0232 (3)0.8155 (3)0.0421 (11)
H260.88200.05970.78620.050*
C270.8628 (4)0.0144 (3)0.8978 (3)0.0387 (10)
H270.92960.04580.92520.046*
C280.7945 (3)0.0398 (2)0.9404 (2)0.0301 (9)
H280.81470.04520.99690.036*
C290.6216 (4)0.3951 (2)0.9078 (2)0.0335 (10)
C300.4945 (3)0.3952 (2)0.9017 (2)0.0298 (9)
H300.44840.42710.93560.036*
C310.4490 (3)0.3399 (3)0.8368 (2)0.0323 (9)
H310.36670.32810.81940.039*
C320.5459 (3)0.3053 (3)0.8023 (2)0.0298 (9)
H320.53990.26620.75730.036*
C330.6523 (3)0.3376 (2)0.8449 (2)0.0303 (9)
H330.73100.32410.83440.036*
C340.7017 (4)0.4436 (3)0.9644 (3)0.0388 (10)
C350.7710 (4)0.4866 (3)1.0105 (3)0.0410 (11)
C360.8551 (4)0.5366 (3)1.0640 (3)0.0411 (11)
C370.8290 (4)0.6205 (3)1.0890 (3)0.0480 (12)
H370.75420.64751.06980.058*
C380.9135 (4)0.6667 (3)1.1432 (3)0.0476 (12)
H380.89480.72451.16170.057*
C391.0170 (4)0.6311 (3)1.1682 (2)0.0413 (11)
H391.07270.66371.20480.050*
C401.0488 (4)0.5471 (3)1.1432 (3)0.0474 (12)
H401.12560.52271.16150.057*
C410.9665 (4)0.4998 (3)1.0913 (3)0.0438 (11)
H410.98610.44171.07400.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (2)0.0215 (19)0.0215 (19)0.0007 (15)0.0054 (15)0.0031 (15)
C20.0230 (19)0.0213 (19)0.025 (2)0.0014 (15)0.0043 (16)0.0013 (16)
C30.027 (2)0.0217 (19)0.0235 (19)0.0017 (16)0.0083 (16)0.0021 (16)
C40.028 (2)0.0210 (19)0.0219 (19)0.0008 (16)0.0028 (15)0.0031 (16)
Co10.0257 (3)0.0224 (3)0.0237 (3)0.0001 (2)0.0054 (2)0.0023 (2)
C50.025 (2)0.023 (2)0.029 (2)0.0011 (16)0.0044 (17)0.0046 (16)
C60.025 (2)0.035 (2)0.031 (2)0.0000 (17)0.0060 (18)0.0002 (17)
C70.022 (2)0.046 (3)0.042 (3)0.0044 (18)0.0057 (19)0.001 (2)
C80.024 (2)0.047 (3)0.044 (3)0.0002 (19)0.0071 (19)0.004 (2)
C90.035 (2)0.040 (2)0.032 (2)0.0029 (19)0.0012 (19)0.0007 (19)
C100.026 (2)0.030 (2)0.033 (2)0.0017 (17)0.0046 (18)0.0046 (17)
C110.0200 (19)0.027 (2)0.018 (2)0.0014 (15)0.0005 (15)0.0005 (15)
C120.026 (2)0.026 (2)0.023 (2)0.0035 (16)0.0019 (16)0.0022 (16)
C130.035 (2)0.024 (2)0.024 (2)0.0007 (17)0.0012 (17)0.0035 (16)
C140.029 (2)0.036 (2)0.021 (2)0.0077 (18)0.0047 (16)0.0025 (17)
C150.022 (2)0.037 (2)0.023 (2)0.0005 (16)0.0046 (16)0.0013 (17)
C160.0212 (19)0.0227 (19)0.0213 (19)0.0012 (15)0.0008 (15)0.0011 (15)
C170.030 (2)0.024 (2)0.0172 (18)0.0031 (16)0.0054 (15)0.0032 (16)
C180.037 (2)0.028 (2)0.030 (2)0.0048 (18)0.0114 (18)0.0021 (18)
C190.056 (3)0.029 (2)0.029 (2)0.019 (2)0.008 (2)0.0058 (18)
C200.040 (3)0.051 (3)0.025 (2)0.023 (2)0.0027 (18)0.0011 (19)
C210.024 (2)0.051 (3)0.028 (2)0.0068 (19)0.0016 (17)0.004 (2)
C220.034 (2)0.032 (2)0.022 (2)0.0005 (18)0.0035 (16)0.0023 (17)
C230.026 (2)0.0194 (19)0.032 (2)0.0026 (16)0.0102 (17)0.0023 (16)
C240.036 (2)0.033 (2)0.028 (2)0.0001 (18)0.0074 (18)0.0001 (18)
C250.053 (3)0.036 (2)0.032 (2)0.008 (2)0.017 (2)0.0084 (19)
C260.041 (3)0.030 (2)0.062 (3)0.009 (2)0.033 (2)0.013 (2)
C270.028 (2)0.028 (2)0.061 (3)0.0002 (18)0.012 (2)0.003 (2)
C280.032 (2)0.027 (2)0.032 (2)0.0004 (17)0.0075 (18)0.0010 (17)
C290.043 (2)0.021 (2)0.033 (2)0.0109 (18)0.0080 (19)0.0093 (18)
C300.033 (2)0.023 (2)0.033 (2)0.0036 (17)0.0048 (17)0.0052 (17)
C310.036 (2)0.030 (2)0.029 (2)0.0023 (18)0.0026 (18)0.0074 (17)
C320.039 (2)0.027 (2)0.023 (2)0.0005 (18)0.0045 (18)0.0047 (17)
C330.033 (2)0.032 (2)0.027 (2)0.0016 (18)0.0084 (17)0.0062 (17)
C340.046 (3)0.031 (2)0.040 (3)0.001 (2)0.007 (2)0.005 (2)
C350.043 (3)0.036 (2)0.043 (3)0.006 (2)0.003 (2)0.002 (2)
C360.045 (3)0.043 (3)0.037 (2)0.012 (2)0.013 (2)0.005 (2)
C370.046 (3)0.041 (3)0.058 (3)0.004 (2)0.010 (2)0.007 (2)
C380.057 (3)0.040 (3)0.046 (3)0.017 (2)0.011 (2)0.012 (2)
C390.045 (3)0.045 (3)0.036 (2)0.018 (2)0.014 (2)0.012 (2)
C400.045 (3)0.055 (3)0.040 (3)0.008 (2)0.001 (2)0.001 (2)
C410.051 (3)0.042 (3)0.037 (3)0.003 (2)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
C1—C51.456 (5)C18—H180.9500
C1—C41.462 (5)C19—C201.368 (6)
C1—C21.478 (5)C19—H190.9500
C1—Co11.991 (3)C20—C211.373 (6)
C2—C111.467 (5)C20—H200.9500
C2—C31.470 (5)C21—C221.393 (5)
C2—Co11.987 (3)C21—H210.9500
C3—C41.466 (5)C22—H220.9500
C3—C171.468 (5)C23—C281.389 (5)
C3—Co11.997 (3)C23—C241.392 (5)
C4—C231.471 (5)C24—C251.382 (6)
C4—Co11.991 (3)C24—H240.9500
Co1—C332.039 (4)C25—C261.382 (6)
Co1—C322.059 (4)C25—H250.9500
Co1—C292.059 (4)C26—C271.382 (6)
Co1—C302.078 (4)C26—H260.9500
Co1—C312.079 (4)C27—C281.383 (6)
C5—C61.395 (5)C27—H270.9500
C5—C101.398 (5)C28—H280.9500
C6—C71.371 (6)C29—C341.416 (6)
C6—H60.9500C29—C301.422 (6)
C7—C81.384 (6)C29—C331.439 (6)
C7—H70.9500C30—C311.407 (5)
C8—C91.374 (6)C30—H300.9500
C8—H80.9500C31—C321.404 (5)
C9—C101.382 (5)C31—H310.9500
C9—H90.9500C32—C331.396 (5)
C10—H100.9500C32—H320.9500
C11—C161.394 (5)C33—H330.9500
C11—C121.400 (5)C34—C351.207 (6)
C12—C131.386 (5)C35—C361.424 (6)
C12—H120.9500C36—C371.366 (6)
C13—C141.372 (5)C36—C411.388 (6)
C13—H130.9500C37—C381.404 (6)
C14—C151.388 (5)C37—H370.9500
C14—H140.9500C38—C391.297 (6)
C15—C161.380 (5)C38—H380.9500
C15—H150.9500C39—C401.383 (6)
C16—H160.9500C39—H390.9500
C17—C181.390 (5)C40—C411.377 (6)
C17—C221.393 (5)C40—H400.9500
C18—C191.382 (6)C41—H410.9500
C5—C1—C4133.9 (3)C16—C15—H15119.7
C5—C1—C2135.6 (3)C14—C15—H15119.7
C4—C1—C290.0 (3)C15—C16—C11120.5 (3)
C5—C1—Co1126.6 (2)C15—C16—H16119.7
C4—C1—Co168.44 (19)C11—C16—H16119.7
C2—C1—Co168.01 (19)C18—C17—C22118.2 (3)
C11—C2—C3134.9 (3)C18—C17—C3120.4 (3)
C11—C2—C1135.1 (3)C22—C17—C3121.4 (3)
C3—C2—C189.5 (3)C19—C18—C17120.6 (4)
C11—C2—Co1126.7 (2)C19—C18—H18119.7
C3—C2—Co168.71 (19)C17—C18—H18119.7
C1—C2—Co168.35 (19)C20—C19—C18120.8 (4)
C4—C3—C17134.0 (3)C20—C19—H19119.6
C4—C3—C290.2 (3)C18—C19—H19119.6
C17—C3—C2135.3 (3)C19—C20—C21119.8 (4)
C4—C3—Co168.21 (19)C19—C20—H20120.1
C17—C3—Co1127.5 (2)C21—C20—H20120.1
C2—C3—Co167.98 (19)C20—C21—C22120.1 (4)
C1—C4—C390.3 (3)C20—C21—H21120.0
C1—C4—C23134.7 (3)C22—C21—H21120.0
C3—C4—C23134.2 (3)C17—C22—C21120.5 (4)
C1—C4—Co168.49 (19)C17—C22—H22119.7
C3—C4—Co168.65 (19)C21—C22—H22119.7
C23—C4—Co1127.9 (2)C28—C23—C24118.2 (3)
C2—Co1—C463.05 (14)C28—C23—C4120.1 (3)
C2—Co1—C143.63 (14)C24—C23—C4121.7 (3)
C4—Co1—C143.07 (14)C25—C24—C23121.0 (4)
C2—Co1—C343.31 (14)C25—C24—H24119.5
C4—Co1—C343.14 (14)C23—C24—H24119.5
C1—Co1—C362.71 (14)C24—C25—C26120.2 (4)
C2—Co1—C33159.37 (15)C24—C25—H25119.9
C4—Co1—C33115.52 (15)C26—C25—H25119.9
C1—Co1—C33119.79 (15)C25—C26—C27119.4 (4)
C3—Co1—C33150.13 (15)C25—C26—H26120.3
C2—Co1—C32160.72 (15)C27—C26—H26120.3
C4—Co1—C32117.56 (15)C26—C27—C28120.3 (4)
C1—Co1—C32150.69 (15)C26—C27—H27119.9
C3—Co1—C32122.29 (15)C28—C27—H27119.9
C33—Co1—C3239.82 (15)C27—C28—C23120.9 (4)
C2—Co1—C29125.57 (15)C27—C28—H28119.6
C4—Co1—C29140.44 (15)C23—C28—H28119.6
C1—Co1—C29112.01 (15)C34—C29—C30126.1 (4)
C3—Co1—C29168.57 (15)C34—C29—C33127.0 (4)
C33—Co1—C2941.11 (16)C30—C29—C33106.9 (3)
C32—Co1—C2967.61 (15)C34—C29—Co1126.3 (3)
C2—Co1—C30112.71 (15)C30—C29—Co170.6 (2)
C4—Co1—C30175.54 (15)C33—C29—Co168.7 (2)
C1—Co1—C30133.08 (15)C31—C30—C29108.1 (3)
C3—Co1—C30135.03 (15)C31—C30—Co170.3 (2)
C33—Co1—C3067.86 (15)C29—C30—Co169.2 (2)
C32—Co1—C3066.89 (15)C31—C30—H30126.0
C29—Co1—C3040.20 (15)C29—C30—H30126.0
C2—Co1—C31127.49 (15)Co1—C30—H30126.1
C4—Co1—C31143.75 (15)C32—C31—C30108.4 (3)
C1—Co1—C31169.44 (15)C32—C31—Co169.4 (2)
C3—Co1—C31115.96 (15)C30—C31—Co170.2 (2)
C33—Co1—C3167.09 (15)C32—C31—H31125.8
C32—Co1—C3139.65 (15)C30—C31—H31125.8
C29—Co1—C3167.17 (15)Co1—C31—H31126.2
C30—Co1—C3139.56 (15)C33—C32—C31108.8 (3)
C6—C5—C10118.2 (3)C33—C32—Co169.3 (2)
C6—C5—C1120.7 (3)C31—C32—Co170.9 (2)
C10—C5—C1121.0 (3)C33—C32—H32125.6
C7—C6—C5120.5 (4)C31—C32—H32125.6
C7—C6—H6119.8Co1—C32—H32125.7
C5—C6—H6119.8C32—C33—C29107.9 (3)
C6—C7—C8120.7 (4)C32—C33—Co170.9 (2)
C6—C7—H7119.7C29—C33—Co170.2 (2)
C8—C7—H7119.7C32—C33—H33126.1
C9—C8—C7119.8 (4)C29—C33—H33126.1
C9—C8—H8120.1Co1—C33—H33124.5
C7—C8—H8120.1C35—C34—C29177.7 (4)
C8—C9—C10120.0 (4)C34—C35—C36178.6 (5)
C8—C9—H9120.0C37—C36—C41118.9 (4)
C10—C9—H9120.0C37—C36—C35121.4 (4)
C9—C10—C5120.8 (4)C41—C36—C35119.7 (4)
C9—C10—H10119.6C36—C37—C38119.6 (4)
C5—C10—H10119.6C36—C37—H37120.2
C16—C11—C12118.2 (3)C38—C37—H37120.2
C16—C11—C2120.3 (3)C39—C38—C37120.5 (4)
C12—C11—C2121.4 (3)C39—C38—H38119.7
C13—C12—C11120.7 (3)C37—C38—H38119.7
C13—C12—H12119.6C38—C39—C40122.1 (4)
C11—C12—H12119.6C38—C39—H39119.0
C14—C13—C12120.4 (3)C40—C39—H39119.0
C14—C13—H13119.8C41—C40—C39118.4 (4)
C12—C13—H13119.8C41—C40—H40120.8
C13—C14—C15119.5 (3)C39—C40—H40120.8
C13—C14—H14120.2C40—C41—C36120.4 (4)
C15—C14—H14120.2C40—C41—H41119.8
C16—C15—C14120.6 (3)C36—C41—H41119.8
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C17–C22 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C32—H32···Cg1i0.952.663.460 (4)142
C14—H14···Cg2ii0.952.863.674 (4)144
C28—H28···Cg2iii0.952.933.578 (4)127
Symmetry codes: (i) x, y1/2, z3/2; (ii) x, y1/2, z1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C13H9)(C28H20)]
Mr580.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)91
a, b, c (Å)11.2685 (5), 14.9167 (7), 16.8122 (8)
β (°) 97.937 (3)
V3)2798.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.46 × 0.34 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.829, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25140, 3651, 3130
Rint0.050
θmax (°)22.6
(sin θ/λ)max1)0.540
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.06
No. of reflections3651
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.48

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C17–C22 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C32—H32···Cg1i0.952.663.460 (4)142
C14—H14···Cg2ii0.952.863.674 (4)144
C28—H28···Cg2iii0.952.933.578 (4)127
Symmetry codes: (i) x, y1/2, z3/2; (ii) x, y1/2, z1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClassen, J., Gleiter, R. & Rominger, F. (2002). Eur. J. Inorg. Chem. pp. 2040–2046.  CrossRef Google Scholar
First citationCuffe, L., Hudson, R. D. A., Gallagher, J. F., Jennings, S., McAdam, C. J., Connelly, R. B. T., Manning, A. R., Robinson, B. H. & Simpson, J. (2005). Organometallics, 24, 2051–2060.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKjaergaard, H. G., McAdam, C. J., Manning, A. R., Mueller-Bunz, H., O'Donohue, P., Ortin, Y., Robinson, B. H. & Simpson, J. (2008). Inorg. Chim. Acta, 361, 1616–1623.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNguyen, H. V., Yeamine, M. R., Amin, J., Motevalli, M. & Richards, C. J. (2008). J. Organomet. Chem. 693, 3668–3676.  CrossRef CAS Google Scholar
First citationO'Donohue, P., McAdam, C. J., Courtney, D., Ortin, Y., Müller-Bunz, H., Manning, A. R., McGlinchey, M. J. & Simpson, J. (2011a). J. Organomet. Chem. 696, 1496–1509.  CAS Google Scholar
First citationO'Donohue, P., McAdam, C. J., Courtney, D., Ortin, Y., Müller-Bunz, H., Manning, A. R., McGlinchey, M. J. & Simpson, J. (2011b). J. Organomet. Chem. 696, 1510–1527.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephens, R. D. & Castro, C. E. (1963). J. Org. Chem. 28, 3313–3315.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327–m330.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m742-m743
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds