organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Nitro­benz­yl)-1H-pyrrole-2-carbaldehyde

aHenan University, Henan 475004, People's Republic of China, and bTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: liudk@tjipr.com

(Received 9 May 2011; accepted 16 May 2011; online 20 May 2011)

In the title compound, C12H10N2O3, the five- and six-membered rings form a dihedral angle of 83.96 (6)°. The nitro group is twisted by 5.92 (8)° from the plane of the attached benzene ring. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into columns in the [100] direction, with a short distance of 3.725 (3) Å between the centroids of benzene rings inside these columns.

Related literature

The title compound is an inter­mediate in the synthesis of lixivaptan (systematic name N-[3-chloro-4-(5H-pyrrolo-[2,1-c][1,4]benzodiazepin-10(11H)-ylcarbon­yl)phen­yl]-5-fluoro-2-methyl­benzamide), a vasopressin receptor antagonist with high V2 receptor affinity. For preliminary studies of lixivaptan, which is now undergoing Phase III clinical trials, see, for example, Ku et al. (2009[Ku, E., Nobakht, N. & Campese, V. M. (2009). Exp. Opin. Invest. Drugs, 18, 657-662.]). For the synthesis of the title compound, see: Albright et al. (1998[Albright, J. D., Reich, M. F., Delos Santos, E. G., Dusza, J. P., Sum, F. W., Venkatesan, A. M., Coupet, J., Chan, P. S., Ru, X., Mazandarani, H. & Bailey, T. (1998). J. Med. Chem. 41, 2442-2444.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O3

  • Mr = 230.22

  • Triclinic, [P \overline 1]

  • a = 7.2643 (8) Å

  • b = 8.3072 (10) Å

  • c = 9.2570 (12) Å

  • α = 104.10 (2)°

  • β = 96.463 (11)°

  • γ = 96.92 (2)°

  • V = 531.98 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.979, Tmax = 0.990

  • 6867 measured reflections

  • 2544 independent reflections

  • 1517 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 0.95

  • 2544 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.95 2.41 3.1919 (17) 139
C8—H8⋯O3ii 0.95 2.37 3.3107 (17) 170
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lixivaptan is a vasopressin receptor antagonist with high V2 receptor affinity and is now undergoing Phase III clinical trials. Studies so far have demonstrated that Lixivaptan is efficacious in the correction of hyponatremia in SIADH, heart failure and liver cirrhosis with ascites, and few adverse effects have been noted (Ku et al., 2009). Herewith we present the crystal structure of the title compound (I), is an intermediate used in the synthesis of Lixivaptan.

In (I), the pyrrole ring and the benzene ring form a dihedral angle of 83.96 (6)°. Nitro group is twisted from the plane of attached benzene ring with a dihedral angle of 5.92 (8)°. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) further assemble these molecules into columns propagated in direction [100], with the short distance of 3.725 (3)Å between the centroids of benzene rings inside these columns.

Related literature top

The title compound is an intermediate in the synthesis of lixivaptan (systematic name N-[3-chloro-4-(5H-pyrrolo-[2,1-c][1,4]benzodiazepin-10(11H)-ylcarbonyl)phenyl]-5-fluoro-2-methylbenzamide), a vasopressin receptor antagonist with high V2 receptor affinity. For preliminary studies of lixivaptan, which is now undergoing Phase III clinical trials, see, for example, Ku et al. (2009). For the synthesis of the title compound, see: Albright et al. (1998).

Experimental top

(I) was prepared from pyrrole-2-carboxaldehyde and 2-nitrobenzyl bromide in the solution of sodium hydride in N,N-dimethylformamide under argon. Colourless crystals (m.p. 138 °C) were obtained in a yield of 95% as crude product. Single crystals were grown from petroleum ether-ethyl acetate (2:1) solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 - 0.99 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atomic numbering and 50% probability displacement ellipsoids.
1-(2-Nitrobenzyl)-1H-pyrrole-2-carbaldehyde top
Crystal data top
C12H10N2O3Z = 2
Mr = 230.22F(000) = 240
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2643 (8) ÅCell parameters from 1889 reflections
b = 8.3072 (10) Åθ = 2.3–28.0°
c = 9.2570 (12) ŵ = 0.11 mm1
α = 104.10 (2)°T = 113 K
β = 96.463 (11)°Prism, colourless
γ = 96.92 (2)°0.20 × 0.18 × 0.10 mm
V = 531.98 (11) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2544 independent reflections
Radiation source: rotating anode1517 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.040
Detector resolution: 14.22 pixels mm-1θmax = 28.0°, θmin = 2.3°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1010
Tmin = 0.979, Tmax = 0.990l = 1212
6867 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0455P)2]
where P = (Fo2 + 2Fc2)/3
2544 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H10N2O3γ = 96.92 (2)°
Mr = 230.22V = 531.98 (11) Å3
Triclinic, P1Z = 2
a = 7.2643 (8) ÅMo Kα radiation
b = 8.3072 (10) ŵ = 0.11 mm1
c = 9.2570 (12) ÅT = 113 K
α = 104.10 (2)°0.20 × 0.18 × 0.10 mm
β = 96.463 (11)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2544 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1517 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.990Rint = 0.040
6867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 0.95Δρmax = 0.24 e Å3
2544 reflectionsΔρmin = 0.28 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73782 (17)0.83214 (12)0.55982 (12)0.0507 (4)
O20.80539 (16)0.77297 (12)0.33569 (12)0.0402 (3)
O30.39124 (13)0.35491 (12)0.08896 (11)0.0281 (2)
N10.76728 (15)0.73149 (14)0.44833 (13)0.0255 (3)
N20.78470 (15)0.30999 (13)0.04974 (12)0.0206 (3)
C10.75954 (17)0.55405 (15)0.45094 (15)0.0202 (3)
C20.73377 (18)0.52045 (17)0.58762 (15)0.0258 (3)
H20.72090.60850.67140.031*
C30.72705 (19)0.35811 (18)0.60071 (16)0.0291 (3)
H30.70880.33340.69350.035*
C40.74712 (19)0.23132 (17)0.47785 (16)0.0284 (3)
H40.74490.11960.48690.034*
C50.77038 (18)0.26669 (16)0.34158 (16)0.0244 (3)
H50.78270.17770.25830.029*
C60.77633 (17)0.42904 (16)0.32299 (14)0.0198 (3)
C70.79970 (19)0.46275 (15)0.17131 (14)0.0220 (3)
H7A0.70280.52930.14510.026*
H7B0.92380.53110.18000.026*
C80.93194 (19)0.24383 (17)0.00619 (15)0.0251 (3)
H81.06050.28680.03000.030*
C90.86490 (19)0.10454 (17)0.12366 (15)0.0275 (3)
H90.93820.03510.18290.033*
C100.66954 (19)0.08388 (15)0.14002 (15)0.0237 (3)
H100.58570.00250.21240.028*
C110.61976 (18)0.21166 (15)0.03203 (14)0.0200 (3)
C120.43411 (19)0.24082 (17)0.00666 (15)0.0226 (3)
H120.33350.16350.07080.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0839 (10)0.0285 (6)0.0404 (7)0.0147 (6)0.0260 (7)0.0002 (5)
O20.0676 (8)0.0260 (6)0.0292 (6)0.0057 (5)0.0086 (6)0.0110 (5)
O30.0241 (5)0.0363 (6)0.0267 (6)0.0097 (4)0.0074 (4)0.0094 (5)
N10.0252 (6)0.0239 (6)0.0257 (7)0.0043 (5)0.0009 (5)0.0042 (5)
N20.0180 (6)0.0239 (6)0.0197 (6)0.0037 (5)0.0028 (5)0.0054 (5)
C10.0153 (6)0.0201 (7)0.0250 (8)0.0017 (5)0.0001 (5)0.0072 (6)
C20.0202 (7)0.0340 (8)0.0216 (8)0.0021 (6)0.0024 (6)0.0056 (6)
C30.0245 (8)0.0399 (9)0.0249 (8)0.0001 (7)0.0004 (6)0.0160 (7)
C40.0248 (8)0.0274 (7)0.0355 (9)0.0001 (6)0.0011 (6)0.0172 (7)
C50.0226 (7)0.0222 (7)0.0273 (8)0.0024 (6)0.0001 (6)0.0068 (6)
C60.0139 (6)0.0229 (7)0.0222 (7)0.0020 (5)0.0002 (5)0.0065 (6)
C70.0236 (7)0.0212 (7)0.0203 (7)0.0016 (6)0.0019 (6)0.0051 (6)
C80.0178 (7)0.0332 (8)0.0273 (8)0.0065 (6)0.0060 (6)0.0114 (6)
C90.0295 (8)0.0315 (8)0.0260 (8)0.0123 (6)0.0098 (6)0.0095 (6)
C100.0270 (7)0.0225 (7)0.0210 (7)0.0017 (6)0.0028 (6)0.0058 (6)
C110.0192 (7)0.0234 (7)0.0183 (7)0.0023 (5)0.0020 (5)0.0082 (5)
C120.0205 (7)0.0278 (7)0.0215 (7)0.0024 (6)0.0014 (6)0.0116 (6)
Geometric parameters (Å, º) top
O1—N11.2175 (14)C4—H40.9500
O2—N11.2247 (14)C5—C61.3968 (18)
O3—C121.2260 (15)C5—H50.9500
N1—C11.4745 (16)C6—C71.5207 (17)
N2—C81.3571 (16)C7—H7A0.9900
N2—C111.3909 (16)C7—H7B0.9900
N2—C71.4602 (15)C8—C91.3750 (19)
C1—C21.3881 (17)C8—H80.9500
C1—C61.4000 (18)C9—C101.3952 (18)
C2—C31.3787 (19)C9—H90.9500
C2—H20.9500C10—C111.3834 (17)
C3—C41.3837 (19)C10—H100.9500
C3—H30.9500C11—C121.4335 (17)
C4—C51.3867 (18)C12—H120.9500
O1—N1—O2122.35 (12)C1—C6—C7123.58 (11)
O1—N1—C1118.45 (12)N2—C7—C6113.43 (10)
O2—N1—C1119.20 (11)N2—C7—H7A108.9
C8—N2—C11108.47 (11)C6—C7—H7A108.9
C8—N2—C7125.06 (11)N2—C7—H7B108.9
C11—N2—C7126.43 (10)C6—C7—H7B108.9
C2—C1—C6122.84 (12)H7A—C7—H7B107.7
C2—C1—N1115.52 (12)N2—C8—C9108.95 (12)
C6—C1—N1121.64 (12)N2—C8—H8125.5
C3—C2—C1119.42 (13)C9—C8—H8125.5
C3—C2—H2120.3C8—C9—C10107.48 (12)
C1—C2—H2120.3C8—C9—H9126.3
C2—C3—C4119.60 (13)C10—C9—H9126.3
C2—C3—H3120.2C11—C10—C9107.74 (12)
C4—C3—H3120.2C11—C10—H10126.1
C3—C4—C5120.23 (13)C9—C10—H10126.1
C3—C4—H4119.9C10—C11—N2107.36 (11)
C5—C4—H4119.9C10—C11—C12127.39 (13)
C4—C5—C6122.05 (13)N2—C11—C12125.25 (12)
C4—C5—H5119.0O3—C12—C11126.96 (13)
C6—C5—H5119.0O3—C12—H12116.5
C5—C6—C1115.84 (12)C11—C12—H12116.5
C5—C6—C7120.58 (12)
O1—N1—C1—C25.10 (18)C11—N2—C7—C682.11 (15)
O2—N1—C1—C2173.91 (12)C5—C6—C7—N29.06 (17)
O1—N1—C1—C6174.59 (12)C1—C6—C7—N2170.91 (11)
O2—N1—C1—C66.41 (19)C11—N2—C8—C90.35 (14)
C6—C1—C2—C31.07 (19)C7—N2—C8—C9177.37 (12)
N1—C1—C2—C3179.24 (11)N2—C8—C9—C100.30 (15)
C1—C2—C3—C40.36 (19)C8—C9—C10—C110.14 (15)
C2—C3—C4—C51.2 (2)C9—C10—C11—N20.08 (14)
C3—C4—C5—C60.6 (2)C9—C10—C11—C12179.91 (12)
C4—C5—C6—C10.72 (19)C8—N2—C11—C100.26 (14)
C4—C5—C6—C7179.26 (12)C7—N2—C11—C10177.42 (11)
C2—C1—C6—C51.58 (19)C8—N2—C11—C12179.89 (12)
N1—C1—C6—C5178.76 (11)C7—N2—C11—C122.4 (2)
C2—C1—C6—C7178.40 (12)C10—C11—C12—O3179.65 (12)
N1—C1—C6—C71.26 (19)N2—C11—C12—O30.2 (2)
C8—N2—C7—C6100.58 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.413.1919 (17)139
C8—H8···O3ii0.952.373.3107 (17)170
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H10N2O3
Mr230.22
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)7.2643 (8), 8.3072 (10), 9.2570 (12)
α, β, γ (°)104.10 (2), 96.463 (11), 96.92 (2)
V3)531.98 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.979, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6867, 2544, 1517
Rint0.040
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 0.95
No. of reflections2544
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.413.1919 (17)139
C8—H8···O3ii0.952.373.3107 (17)170
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors thank Mr Hai-Bin Song at Nankai University for the X-ray diffraction measurements and helpful suggestions.

References

First citationAlbright, J. D., Reich, M. F., Delos Santos, E. G., Dusza, J. P., Sum, F. W., Venkatesan, A. M., Coupet, J., Chan, P. S., Ru, X., Mazandarani, H. & Bailey, T. (1998). J. Med. Chem. 41, 2442–2444.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKu, E., Nobakht, N. & Campese, V. M. (2009). Exp. Opin. Invest. Drugs, 18, 657–662.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds