organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2-{[(5-oxo-5H-thio­chromeno[2,3-b]pyridin-7-yl)amino]­methyl­­idene}propane­dioate

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories complex, Lahore 54600, Pakistan, cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 April 2011; accepted 29 April 2011; online 7 May 2011)

In the title compound, C15H14O2S, the three fused rings are roughly coplanar, the largest deviation from the mean plane being 0.1285 (13) Å for the S atom. An intra­molecular N—H⋯O hydrogen bond generates an S6 ring. In the crystal, inter­molecular C—H⋯O hydrogen bonds form R22(14), R22(13) and R32(17) ring motifs, building a layer parallel to (100).

Related literature

For related structures, see: Khan et al. (2008a[Khan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008a). Acta Cryst. E64, o730.],b[Khan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008b). Acta Cryst. E64, o1704.]); Lokaj et al. (1994[Lokaj, J., Kettmann, V., Vrábel, V., Ilavský, D. & Milata, V. (1994). Acta Cryst. C50, 1784-1786.]); Lynch & McClenaghan (2003[Lynch, D. E. & McClenaghan, I. (2003). Acta Cryst. E59, o242-o243.]); For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O5S

  • Mr = 398.42

  • Monoclinic, C 2/c

  • a = 13.8013 (7) Å

  • b = 7.5180 (3) Å

  • c = 36.2743 (15) Å

  • β = 94.330 (3)°

  • V = 3753.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.35 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.985

  • 13274 measured reflections

  • 3314 independent reflections

  • 1776 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.130

  • S = 0.97

  • 3314 reflections

  • 269 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.86 2.06 2.683 (3) 129
C11—H11⋯O5i 0.93 2.49 3.403 (4) 167
C12—H12⋯O1i 0.93 2.45 3.322 (4) 157
C17A—H17C⋯O3ii 0.96 2.58 3.516 (8) 165
C19A—H19B⋯O3iii 0.97 2.47 3.231 (11) 135
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])'; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We reported the crystal structures of (II) i.e. 7-nitro-5H-thiochromeno[2,3-b]pyridin-5-one (Khan et al., 2008a) and (III) i.e. 5H-thiochromeno[2,3-b]pyridin-5-one (Khan et al., 2008b). The title compound (Fig. 1) is in continuation of our work to synthesize the derivatives of 5H-thiochromeno[2,3-b]pyridin-5-one. The crystal structures of (IV) i.e., diethyl 2-(2,3-diphenylquinoxalin-6-ylaminomethylene)malonate (Lokaj et al., 1994) and (V) i.e., diethyl (4-tert-butyl-1,3-thiazol-2-ylaminomethylene)malonate (Lynch & McClenaghan, 2003) have been published. Both contain the diethyl (aminomethylidene)propanedioate moiety which is also present in (I).

In (I), the central heterocyclic ring A (C1/C2/C6/S1/C7/C8), the pyridinic group B (C2/C3/C4/C5/N1/C6) and benzene ring C (C7—C12) are planar with r. m. s. deviation of 0.0388, 0.0053 and 0.0049 Å, respectively. The carbonyl O-atom is at a distance of 0.1532 (35) Å from its parent ring A. The dihedral angle between A/B, A/C and B/C is 3.68 (12), 3.50 (9) and 7.19 (12)°, respectively. A strong intramolecular H-bonding of N—H···O type completes an S(6) (Etter et al., 1990; Bernstein et al., 1995) ring motif. Intermolecular C—H···O hydrogen bonds complete R22(14), R22(13) and R32(17) ring motifs building a layer parallel to the (1 0 0) plane (Table 1, Fig 2).

Related literature top

For related structures, see: Khan et al. (2008a,b); Lokaj et al. (1994); Lynch & McClenaghan (2003); For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

Diethyl (ethoxymethylene)malonate (0.473 g, 2.1 mmol), 7-amino-5H-thiochromeno[2,3-b]pyridin-5-one (500 mg, 2.1 mmol) and 8.0 ml of ethyl alcohol was heated under reflux on water bath for 3 h. Completion of reaction was monitored by TLC. The product precipitated by the addition of n-hexane was filtered, washed, dried and recrystallized from chloroform to give the yellow needles of (I).

Refinement top

The diethyl groups are disordered over two set of sites with occupancy ratio of 0.75:0.25 and 0.53:0.47. The disordered poitions were refined using O-C and C-C bond restraints to maintain chemically reasonable geometry. The disordered groups were refined anistropically with however equal thermal parameters for the C-atoms.

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and treated as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009)'; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal displacements are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii. The disordered miniority ethyl groups are omitted for clarity.
[Figure 2] Fig. 2. Partial packing view showing the formation of different ring motifs through C-H···O hydrogen bonds. Only the major component of the disordered moieties are represented and H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) x, y-1, z.]
Diethyl 2-{[(5-oxo-5H-thiochromeno[2,3-b]pyridin-7- yl)amino]methylidene}propanedioate top
Crystal data top
C20H18N2O5SF(000) = 1664
Mr = 398.42Dx = 1.410 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1789 reflections
a = 13.8013 (7) Åθ = 2.3–25.3°
b = 7.5180 (3) ŵ = 0.21 mm1
c = 36.2743 (15) ÅT = 296 K
β = 94.330 (3)°Needle, yellow
V = 3753.0 (3) Å30.35 × 0.18 × 0.15 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3314 independent reflections
Radiation source: fine-focus sealed tube1776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 8.10 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 08
Tmin = 0.968, Tmax = 0.985l = 042
13274 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0533P)2]
where P = (Fo2 + 2Fc2)/3
3314 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.20 e Å3
10 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H18N2O5SV = 3753.0 (3) Å3
Mr = 398.42Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.8013 (7) ŵ = 0.21 mm1
b = 7.5180 (3) ÅT = 296 K
c = 36.2743 (15) Å0.35 × 0.18 × 0.15 mm
β = 94.330 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3314 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1776 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.985Rint = 0.077
13274 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05410 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.97Δρmax = 0.20 e Å3
3314 reflectionsΔρmin = 0.18 e Å3
269 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.10364 (6)0.08366 (11)0.04024 (2)0.0529 (3)
O10.11162 (17)0.4807 (3)0.00428 (6)0.0604 (7)
O20.3194 (2)0.3243 (3)0.21973 (6)0.0911 (9)
C16A0.3217 (7)0.1867 (9)0.24963 (15)0.1062 (19)0.75
H16A0.25630.14920.25400.127*0.75
H16B0.35850.08340.24280.127*0.75
C17A0.3688 (6)0.2726 (9)0.28278 (13)0.1062 (19)0.75
H17A0.43330.30860.27800.159*0.75
H17B0.37180.19010.30300.159*0.75
H17C0.33180.37510.28900.159*0.75
C16B0.2928 (14)0.259 (3)0.2569 (5)0.122 (7)0.25
H16C0.24410.16590.25560.147*0.25
H16D0.27620.35340.27360.147*0.25
C17B0.3965 (14)0.192 (3)0.2636 (8)0.122 (7)0.25
H17D0.41310.12210.24290.184*0.25
H17E0.40190.11980.28550.184*0.25
H17F0.44010.29120.26680.184*0.25
O30.2852 (2)0.0944 (4)0.18250 (6)0.0853 (9)
O40.40074 (19)0.5902 (3)0.18304 (7)0.0793 (8)
C19A0.4388 (7)0.7695 (14)0.1889 (4)0.105 (3)0.53
H19A0.43660.80600.21450.126*0.53
H19B0.40310.85480.17300.126*0.53
C20A0.5401 (7)0.7499 (13)0.1787 (3)0.105 (3)0.53
H20A0.57260.66110.19410.157*0.53
H20B0.57340.86140.18220.157*0.53
H20C0.53990.71460.15330.157*0.53
C19B0.4500 (8)0.7644 (17)0.1791 (5)0.108 (4)0.47
H19C0.40980.85990.18740.130*0.47
H19D0.46150.78540.15340.130*0.47
C20B0.5450 (7)0.7572 (16)0.2024 (3)0.108 (4)0.47
H20D0.53250.74510.22800.163*0.47
H20E0.58080.86470.19900.163*0.47
H20F0.58220.65710.19500.163*0.47
O50.2939 (2)0.6807 (4)0.13788 (7)0.0874 (9)
N10.0155 (2)0.0557 (4)0.09743 (7)0.0591 (8)
N20.23819 (19)0.1593 (4)0.11064 (7)0.0544 (8)
H20.24320.07650.12700.065*
C10.1051 (2)0.3242 (5)0.01327 (8)0.0440 (8)
C20.0601 (2)0.2734 (4)0.05003 (8)0.0446 (8)
C30.0182 (2)0.4052 (5)0.07279 (9)0.0618 (10)
H30.01950.52290.06490.074*
C40.0251 (3)0.3623 (6)0.10695 (10)0.0737 (12)
H40.05420.44910.12230.088*
C50.0242 (3)0.1861 (6)0.11782 (9)0.0719 (11)
H50.05330.15740.14100.086*
C60.0558 (2)0.1015 (4)0.06379 (8)0.0460 (8)
C70.1410 (2)0.0021 (4)0.00313 (8)0.0407 (8)
C80.1395 (2)0.1820 (4)0.01247 (8)0.0390 (8)
C90.1711 (2)0.2333 (4)0.04837 (8)0.0452 (8)
H90.16910.35280.05490.054*
C100.2052 (2)0.1102 (5)0.07425 (8)0.0448 (8)
C110.2065 (2)0.0693 (4)0.06457 (8)0.0507 (9)
H110.22940.15340.08190.061*
C120.1743 (2)0.1219 (4)0.02973 (8)0.0468 (8)
H120.17460.24210.02370.056*
C130.2620 (2)0.3227 (5)0.12156 (8)0.0525 (9)
H130.25550.41060.10350.063*
C140.2949 (2)0.3776 (4)0.15601 (8)0.0503 (9)
C150.3008 (3)0.2515 (6)0.18640 (9)0.0634 (10)
C180.3268 (3)0.5646 (5)0.15800 (9)0.0608 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0609 (6)0.0445 (6)0.0529 (5)0.0014 (5)0.0003 (4)0.0085 (4)
O10.0728 (18)0.0357 (15)0.0714 (15)0.0011 (13)0.0036 (12)0.0025 (12)
O20.150 (3)0.077 (2)0.0444 (14)0.0195 (18)0.0106 (15)0.0048 (13)
C16A0.175 (6)0.088 (4)0.050 (2)0.010 (4)0.023 (3)0.004 (2)
C17A0.175 (6)0.088 (4)0.050 (2)0.010 (4)0.023 (3)0.004 (2)
C16B0.20 (2)0.056 (13)0.107 (13)0.034 (13)0.004 (15)0.009 (9)
C17B0.20 (2)0.056 (13)0.107 (13)0.034 (13)0.004 (15)0.009 (9)
O30.135 (3)0.0529 (19)0.0666 (16)0.0019 (18)0.0001 (15)0.0044 (14)
O40.085 (2)0.0608 (19)0.0880 (18)0.0109 (15)0.0233 (15)0.0001 (14)
C19A0.127 (9)0.055 (5)0.129 (7)0.022 (5)0.010 (6)0.006 (4)
C20A0.127 (9)0.055 (5)0.129 (7)0.022 (5)0.010 (6)0.006 (4)
C19B0.080 (8)0.102 (8)0.138 (8)0.009 (5)0.026 (5)0.044 (6)
C20B0.080 (8)0.102 (8)0.138 (8)0.009 (5)0.026 (5)0.044 (6)
O50.115 (2)0.063 (2)0.0792 (18)0.0021 (16)0.0280 (16)0.0106 (15)
N10.058 (2)0.072 (2)0.0474 (17)0.0035 (16)0.0008 (14)0.0064 (15)
N20.065 (2)0.053 (2)0.0452 (16)0.0068 (16)0.0044 (13)0.0012 (13)
C10.034 (2)0.044 (2)0.054 (2)0.0031 (17)0.0088 (15)0.0006 (17)
C20.038 (2)0.046 (2)0.0496 (19)0.0001 (16)0.0032 (15)0.0073 (16)
C30.060 (2)0.059 (3)0.065 (2)0.003 (2)0.0019 (19)0.003 (2)
C40.075 (3)0.081 (3)0.063 (3)0.007 (2)0.008 (2)0.016 (2)
C50.075 (3)0.091 (4)0.049 (2)0.001 (3)0.0056 (19)0.000 (2)
C60.039 (2)0.054 (2)0.0446 (18)0.0004 (17)0.0057 (15)0.0009 (17)
C70.035 (2)0.039 (2)0.0479 (18)0.0044 (16)0.0062 (15)0.0002 (15)
C80.0351 (19)0.037 (2)0.0452 (18)0.0044 (15)0.0061 (14)0.0006 (15)
C90.044 (2)0.042 (2)0.0507 (19)0.0033 (16)0.0073 (16)0.0075 (16)
C100.047 (2)0.050 (2)0.0386 (17)0.0050 (17)0.0066 (14)0.0010 (16)
C110.053 (2)0.046 (2)0.053 (2)0.0014 (18)0.0071 (17)0.0101 (17)
C120.051 (2)0.037 (2)0.052 (2)0.0022 (16)0.0077 (16)0.0007 (15)
C130.051 (2)0.060 (3)0.047 (2)0.0038 (19)0.0060 (16)0.0018 (17)
C140.059 (2)0.049 (2)0.0430 (18)0.0047 (18)0.0061 (16)0.0007 (16)
C150.072 (3)0.066 (3)0.051 (2)0.003 (2)0.0017 (19)0.005 (2)
C180.067 (3)0.064 (3)0.050 (2)0.001 (2)0.0044 (19)0.0032 (19)
Geometric parameters (Å, º) top
S1—C61.737 (3)C20B—H20D0.9600
S1—C71.742 (3)C20B—H20E0.9600
O1—C11.222 (3)C20B—H20F0.9600
O2—C151.334 (4)O5—C181.204 (4)
O2—C16A1.497 (6)N1—C51.321 (4)
O2—C16B1.506 (14)N1—C61.347 (4)
C16A—C17A1.472 (7)N2—C131.324 (4)
C16A—H16A0.9700N2—C101.413 (4)
C16A—H16B0.9700N2—H20.8600
C17A—H17A0.9600C1—C81.474 (4)
C17A—H17B0.9600C1—C21.478 (4)
C17A—H17C0.9600C2—C61.385 (4)
C16B—C17B1.520 (10)C2—C31.388 (4)
C16B—H16C0.9700C3—C41.373 (4)
C16B—H16D0.9700C3—H30.9300
C17B—H17D0.9600C4—C51.382 (5)
C17B—H17E0.9600C4—H40.9300
C17B—H17F0.9600C5—H50.9300
O3—C151.206 (4)C7—C121.395 (4)
O4—C181.328 (4)C7—C81.395 (4)
O4—C19A1.457 (10)C8—C91.396 (4)
O4—C19B1.487 (12)C9—C101.375 (4)
C19A—C20A1.480 (9)C9—H90.9300
C19A—H19A0.9700C10—C111.395 (4)
C19A—H19B0.9700C11—C121.366 (4)
C20A—H20A0.9600C11—H110.9300
C20A—H20B0.9600C12—H120.9300
C20A—H20C0.9600C13—C141.361 (4)
C19B—C20B1.506 (10)C13—H130.9300
C19B—H19C0.9700C14—C151.452 (4)
C19B—H19D0.9700C14—C181.473 (4)
C6—S1—C7102.90 (15)C6—C2—C1124.7 (3)
C15—O2—C16A111.4 (4)C3—C2—C1118.7 (3)
C15—O2—C16B129.4 (11)C4—C3—C2120.2 (3)
C16A—O2—C16B28.4 (8)C4—C3—H3119.9
C17A—C16A—O2105.8 (5)C2—C3—H3119.9
C17A—C16A—H16A110.6C3—C4—C5118.0 (4)
O2—C16A—H16A110.6C3—C4—H4121.0
C17A—C16A—H16B110.6C5—C4—H4121.0
O2—C16A—H16B110.6N1—C5—C4124.3 (4)
H16A—C16A—H16B108.7N1—C5—H5117.9
O2—C16B—C17B87.8 (14)C4—C5—H5117.9
O2—C16B—H16C114.0N1—C6—C2124.6 (3)
C17B—C16B—H16C114.0N1—C6—S1110.9 (3)
O2—C16B—H16D114.0C2—C6—S1124.5 (2)
C17B—C16B—H16D114.0C12—C7—C8119.4 (3)
H16C—C16B—H16D111.2C12—C7—S1115.9 (2)
C16B—C17B—H17D109.5C8—C7—S1124.7 (2)
C16B—C17B—H17E109.5C7—C8—C9119.0 (3)
H17D—C17B—H17E109.5C7—C8—C1124.0 (3)
C16B—C17B—H17F109.5C9—C8—C1117.0 (3)
H17D—C17B—H17F109.5C10—C9—C8121.2 (3)
H17E—C17B—H17F109.5C10—C9—H9119.4
C18—O4—C19A118.9 (6)C8—C9—H9119.4
C18—O4—C19B113.3 (6)C9—C10—C11119.3 (3)
C19A—O4—C19B15.6 (11)C9—C10—N2122.1 (3)
O4—C19A—C20A102.0 (8)C11—C10—N2118.6 (3)
O4—C19A—H19A111.4C12—C11—C10120.2 (3)
C20A—C19A—H19A111.4C12—C11—H11119.9
O4—C19A—H19B111.4C10—C11—H11119.9
C20A—C19A—H19B111.4C11—C12—C7120.9 (3)
H19A—C19A—H19B109.2C11—C12—H12119.5
O4—C19B—C20B107.4 (10)C7—C12—H12119.5
O4—C19B—H19C110.2N2—C13—C14127.9 (3)
C20B—C19B—H19C110.2N2—C13—H13116.1
O4—C19B—H19D110.2C14—C13—H13116.1
C20B—C19B—H19D110.2C13—C14—C15119.7 (3)
H19C—C19B—H19D108.5C13—C14—C18114.3 (3)
C5—N1—C6116.3 (3)C15—C14—C18125.9 (3)
C13—N2—C10125.3 (3)O3—C15—O2121.9 (3)
C13—N2—H2117.4O3—C15—C14123.4 (3)
C10—N2—H2117.4O2—C15—C14114.6 (4)
O1—C1—C8121.0 (3)O5—C18—O4123.0 (4)
O1—C1—C2120.4 (3)O5—C18—C14124.4 (4)
C8—C1—C2118.5 (3)O4—C18—C14112.5 (3)
C6—C2—C3116.6 (3)
C15—O2—C16A—C17A164.6 (6)O1—C1—C8—C95.8 (4)
C16B—O2—C16A—C17A60.2 (19)C2—C1—C8—C9172.7 (2)
C15—O2—C16B—C17B101.0 (17)C7—C8—C9—C101.2 (4)
C16A—O2—C16B—C17B42.9 (14)C1—C8—C9—C10179.5 (3)
C18—O4—C19A—C20A118.4 (9)C8—C9—C10—C111.1 (4)
C19B—O4—C19A—C20A46 (3)C8—C9—C10—N2179.5 (3)
C18—O4—C19B—C20B166.4 (9)C13—N2—C10—C916.8 (5)
C19A—O4—C19B—C20B79 (3)C13—N2—C10—C11163.8 (3)
O1—C1—C2—C6174.9 (3)C9—C10—C11—C120.0 (4)
C8—C1—C2—C66.5 (4)N2—C10—C11—C12179.4 (3)
O1—C1—C2—C35.4 (4)C10—C11—C12—C71.0 (4)
C8—C1—C2—C3173.2 (3)C8—C7—C12—C110.9 (4)
C6—C2—C3—C40.4 (5)S1—C7—C12—C11179.2 (2)
C1—C2—C3—C4179.3 (3)C10—N2—C13—C14179.4 (3)
C2—C3—C4—C50.9 (5)N2—C13—C14—C154.2 (5)
C6—N1—C5—C40.9 (5)N2—C13—C14—C18172.5 (3)
C3—C4—C5—N10.2 (6)C16A—O2—C15—O32.2 (6)
C5—N1—C6—C21.5 (5)C16B—O2—C15—O323.5 (11)
C5—N1—C6—S1179.4 (2)C16A—O2—C15—C14178.4 (5)
C3—C2—C6—N10.9 (4)C16B—O2—C15—C14152.7 (10)
C1—C2—C6—N1179.4 (3)C13—C14—C15—O36.0 (5)
C3—C2—C6—S1179.8 (2)C18—C14—C15—O3170.3 (4)
C1—C2—C6—S10.5 (4)C13—C14—C15—O2170.2 (3)
C7—S1—C6—N1174.8 (2)C18—C14—C15—O213.5 (5)
C7—S1—C6—C26.2 (3)C19A—O4—C18—O55.6 (8)
C6—S1—C7—C12173.8 (2)C19B—O4—C18—O510.6 (8)
C6—S1—C7—C86.1 (3)C19A—O4—C18—C14178.4 (6)
C12—C7—C8—C90.2 (4)C19B—O4—C18—C14165.4 (7)
S1—C7—C8—C9179.7 (2)C13—C14—C18—O529.7 (5)
C12—C7—C8—C1179.4 (3)C15—C14—C18—O5153.8 (4)
S1—C7—C8—C10.5 (4)C13—C14—C18—O4146.2 (3)
O1—C1—C8—C7175.0 (3)C15—C14—C18—O430.3 (5)
C2—C1—C8—C76.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.862.062.683 (3)129
C11—H11···O5i0.932.493.403 (4)167
C12—H12···O1i0.932.453.322 (4)157
C17A—H17C···O3ii0.962.583.516 (8)165
C19A—H19B···O3iii0.972.473.231 (11)135
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H18N2O5S
Mr398.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)13.8013 (7), 7.5180 (3), 36.2743 (15)
β (°) 94.330 (3)
V3)3753.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.35 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.968, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
13274, 3314, 1776
Rint0.077
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.130, 0.97
No. of reflections3314
No. of parameters269
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009)'.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.862.062.683 (3)129
C11—H11···O5i0.932.493.403 (4)167
C12—H12···O1i0.932.453.322 (4)157
C17A—H17C···O3ii0.962.583.516 (8)165
C19A—H19B···O3iii0.972.473.231 (11)135
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Ex-Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008a). Acta Cryst. E64, o730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008b). Acta Cryst. E64, o1704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLokaj, J., Kettmann, V., Vrábel, V., Ilavský, D. & Milata, V. (1994). Acta Cryst. C50, 1784–1786.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2003). Acta Cryst. E59, o242–o243.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds