organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 8-amino-6-bromoimidazo[1,2-a]pyridine-2-carb­­oxy­late

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bDepartamento de Quimica Inorganica & Organica, ESTCE, Universitat Jaume I, E-12080 Castellon, Spain, cLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: s_dahmani12@yahoo.fr

(Received 30 April 2011; accepted 5 May 2011; online 11 May 2011)

There are two independent mol­ecules in the asymmetric unit of the title compound, C10H10BrN3O2, which are linked by N—H⋯O and C—H⋯O hydrogen bonds. The fused ring systems in both mol­ecules are nearly planar with maximum deviations of 0.001 (3) and 0.029 (3) Å. All non-H atoms of the first mol­ecule are approximately co-planar whereas in the second mol­ecule, the ethyl group is almost perpendicular to the imidazo[1,2-a]pyridine system, the C—O—C—C torsion angles in the carb­oxy­lic acid ethyl group being −179.8 (4) and 112.1 (5)°, respectively.

Related literature

For the biological activity of imidazo[1,2-a]pyridine derivatives, see: Anderson et al. (2003[Anderson, M., Beattie, J. F., Breault, G. A., Breed, J., Byth, K. F., Culshaw, J. D., Ellston, R. P., Rebecca, P. A., Green, S., Minshull, C. A., Norman, R. A., Pauptit, R. A., Stanway, J., Thomas, A. P. & Jewsbury, P. J. (2003). Bioorg. Med. Chem. Lett. 13, 3021-3026.]); Trapani et al. (2003[Trapani, G., Latrofa, A., Franco, M., Carrieri, A., Cellamare, S., Serra, M., Sanna, E., Biggio, G. & Liso, G. (2003). Eur. J. Pharm. Sci. 18, 231-240.]); Gueiffier et al. (1998[Gueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, I. C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J. P. (1998). J. Med. Chem. 41, 5108-5112.]); Mavel et al. (2002[Mavel, S., Renou, J., Galtier, C., Allouchi, H., Snoeck, R., De Andrei, G. D., Clercq, E., Balzarini, J. & Gueiffier, A. (2002). Bioorg. Med. Chem. Lett. 10, 941-946.]). For their pharmacological activity, see: Rival et al. (1992[Rival, Y., Grassy, G. & Michel, G. (1992). Chem. Pharm. Bull. 40, 1170-1176.]); Rupert et al. (2003[Rupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347-350.]); Katritzky et al. (2003[Katritzky, A. R., Xu, Y.-J. & Tu, H. (2003). J. Org. Chem. 68, 4935-4937.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10BrN3O2

  • Mr = 284.12

  • Monoclinic, P 21 /c

  • a = 8.366 (2) Å

  • b = 11.842 (3) Å

  • c = 22.743 (5) Å

  • β = 98.328 (6)°

  • V = 2229.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.68 mm−1

  • T = 292 K

  • 0.44 × 0.19 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.437, Tmax = 0.535

  • 13222 measured reflections

  • 4555 independent reflections

  • 3156 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.03

  • 4555 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N5i 0.86 2.47 3.300 (4) 161
N3—H3B⋯O3ii 0.86 2.38 3.055 (5) 135
N6—H6B⋯O2 0.85 2.34 3.096 (4) 147
N6—H6A⋯O1iii 0.86 2.58 3.183 (4) 129
N6—H6A⋯N2iii 0.86 2.60 3.388 (4) 154
C5—H5⋯O4 0.93 2.26 3.074 (4) 146
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Imidazo[1,2-a]pyridine derivatives are important intermediates in organic synthesis, especially in the synthesis of biologically active and medicinally useful agents. For instance, they are widely used in the synthesis of cyclin- dependent kinases (CDK) inhibitors (Anderson et al., 2003), anticonvulsant agents, (Trapani et al., 2003) and antiviral agents (Gueiffier et al.,1998; Mavel et al.,2002).

Derivatives containing the imidazo[1,2-a]- pyridine ring system have been shown to possess a broad range of useful pharmacological activities, including antibacterial, (Rival et al., 1992) and anti-inflammatory properties (Rupert et al., 2003). Drug formulations containing imidazo[1,2-a]pyridines currently available on the market include alpidem (anxiolytic), zolpidem (hypnotic), and zolimidine (antiulcer) (Katritzky et al.,2003).

In this work, we report a novel and efficient method for the synthesis of 6-bromo-8-amino-imidazo[1,2-a]pyridine via the treatment of ethyl bromopyruvate with 5-bromo-2,3-diaminopyridine in the presence of NaHCO3 in ethanol at reflux in 65% yield (scheme1).

The Plot of the two molecules building the asymmetric unit of the 8-Amino-6- bromo-imidazo[1,2-a]pyridin-2-carboxylic acid ethyl ester is shown in Fig.1. The two fused five and six-membered rings belonging to each molecule are nearly planar with the maximum deviation of -0.001 (3)Å from C7 and 0.029 (3)Å from C17. The dihedral angle between them is 26.06 (11)°. The ethyl group is almost perpendicular to the imidazo[1,2-a]pyridine system, in the second molecule, as indicated by the torsion angle C18–O3–C19–C20 of 112.1 (5)° (see Fig.2). The first molecule is approximately planar and the torsion angle C—O—C—C is in the range of -179.8 (4)°. In the crystal, the molecules are linked by intermolecular N—H···O and C—H···O hydrogen bonds building a three dimensionnal network (Table 1).

Related literature top

For the biological activity of imidazo[1,2-a]pyridine derivatives, see: Anderson et al. (2003); Trapani et al. (2003); Gueiffier et al. (1998); Mavel et al. (2002). For their pharmacological activity, see: Rival et al. (1992); Rupert et al. (2003); Katritzky et al. (2003).

Experimental top

A mixture of ethyl bromopyruvate (0.3 ml; 2.35 mmol), 5-bromo-2,3-diaminopyridine (0.5 g, 2.35 mmol) and NaHCO3 (0.22 g, 2.35 mmol) in ethanol was stirred at reflux for the appropriate time. After completion of the reaction, as indicated by TLC, The solution was extracted with dichloromethane and the organic layer was dried over anhydrous Na2SO4. Evaporation of the solvent followed by recrystallization in hexane afforded yellow crystals of the title compound.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å, 0.97, Å, 0.96 Å, and 0.86 Å for aromatic, methylene, methyl and –NH respectively. All H atoms with Uiso(H) = 1.2 Ueq (aromatic, methylene, –NH) and Uiso(H) = 1.5 Ueq(methyl). H atoms attached to amino groups were located in difference Fourier map and their coordinates were initially refined using N-H restraints (0.86Å with s.u. of 0.01) with Uiso(H) = 1.2 Ueq (N). In the last cycles of refinement, they were treated as riding on their parent N atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Plot of of the two molecules building the asymmetric unit of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. View showing the fitting of the two molecules building the asymmetric unit of the title compound.
Ethyl 8-amino-6-bromoimidazo[1,2-a]pyridine-2-carboxylate top
Crystal data top
C10H10BrN3O2F(000) = 1136
Mr = 284.12Dx = 1.693 Mg m3
Monoclinic, P21/cMelting point: 414(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.366 (2) ÅCell parameters from 4555 reflections
b = 11.842 (3) Åθ = 1.8–26.8°
c = 22.743 (5) ŵ = 3.68 mm1
β = 98.328 (6)°T = 292 K
V = 2229.3 (8) Å3Fiber, yellow
Z = 80.44 × 0.19 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
4555 independent reflections
Radiation source: fine-focus sealed tube3156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.437, Tmax = 0.535k = 1114
13222 measured reflectionsl = 2428
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0571P)2 + 1.0629P]
where P = (Fo2 + 2Fc2)/3
4555 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C10H10BrN3O2V = 2229.3 (8) Å3
Mr = 284.12Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.366 (2) ŵ = 3.68 mm1
b = 11.842 (3) ÅT = 292 K
c = 22.743 (5) Å0.44 × 0.19 × 0.17 mm
β = 98.328 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
4555 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3156 reflections with I > 2σ(I)
Tmin = 0.437, Tmax = 0.535Rint = 0.032
13222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.70 e Å3
4555 reflectionsΔρmin = 0.51 e Å3
291 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6311 (4)0.1790 (2)0.24000 (15)0.0364 (7)
C20.5137 (4)0.1042 (3)0.20858 (16)0.0424 (8)
C30.3848 (4)0.0737 (3)0.23542 (17)0.0463 (8)
H30.30730.02480.21620.056*
C40.3685 (4)0.1156 (3)0.29203 (17)0.0457 (8)
C50.4772 (4)0.1854 (3)0.32284 (16)0.0458 (8)
H50.46510.21140.36050.055*
C60.7346 (4)0.2859 (3)0.31519 (15)0.0407 (7)
H60.75310.32440.35120.049*
C70.8290 (4)0.2868 (3)0.27069 (15)0.0399 (7)
C80.9804 (4)0.3528 (3)0.27430 (17)0.0442 (8)
C91.2055 (5)0.4046 (4)0.2303 (2)0.0646 (11)
H9A1.28050.38410.26530.078*
H9B1.18150.48450.23270.078*
C101.2790 (6)0.3820 (4)0.1765 (2)0.0738 (13)
H10A1.37550.42630.17750.111*
H10B1.20410.40180.14200.111*
H10C1.30560.30330.17500.111*
N10.6074 (3)0.2165 (2)0.29548 (13)0.0391 (6)
N20.7654 (3)0.2206 (2)0.22339 (12)0.0387 (6)
N30.5421 (4)0.0657 (3)0.15447 (15)0.0609 (9)
H3A0.46340.03380.13200.073*
H3B0.60480.10430.13510.073*
O11.0571 (3)0.33902 (19)0.22826 (11)0.0493 (6)
O21.0266 (3)0.4127 (2)0.31636 (13)0.0619 (7)
Br10.18490 (5)0.07406 (4)0.32785 (2)0.06942 (17)
C110.8701 (4)0.5979 (3)0.45987 (15)0.0382 (7)
C120.9608 (4)0.6732 (3)0.42770 (16)0.0422 (8)
C131.0265 (4)0.7670 (3)0.45760 (17)0.0472 (8)
H131.07980.82090.43790.057*
C141.0129 (4)0.7813 (3)0.51807 (17)0.0450 (8)
C150.9362 (4)0.7088 (3)0.54986 (17)0.0462 (8)
H150.93240.71950.59010.055*
C160.7710 (4)0.5322 (3)0.53803 (16)0.0418 (8)
H160.74590.52140.57620.050*
C170.7243 (3)0.4671 (3)0.48894 (15)0.0367 (7)
C180.6206 (4)0.3662 (3)0.48367 (16)0.0432 (8)
C190.4773 (5)0.2335 (4)0.5359 (2)0.0772 (14)
H19A0.39260.25370.55900.093*
H19B0.42720.21810.49560.093*
C200.5572 (7)0.1346 (5)0.5605 (4)0.118 (2)
H20A0.47900.07660.56380.177*
H20B0.61470.15140.59910.177*
H20C0.63200.10910.53510.177*
N40.8630 (3)0.6170 (2)0.51890 (13)0.0399 (6)
N50.7852 (3)0.5068 (2)0.43990 (12)0.0400 (6)
N60.9732 (4)0.6470 (3)0.37068 (14)0.0565 (8)
H6A1.03180.68770.35120.068*
H6B0.94940.57900.36050.068*
O30.5891 (3)0.3286 (2)0.53566 (12)0.0551 (6)
O40.5670 (3)0.3250 (3)0.43682 (13)0.0718 (8)
Br21.11787 (5)0.90661 (3)0.55921 (2)0.06673 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0447 (17)0.0342 (16)0.0290 (19)0.0055 (13)0.0002 (13)0.0018 (13)
C20.0483 (19)0.0406 (18)0.036 (2)0.0027 (14)0.0025 (15)0.0035 (14)
C30.0489 (19)0.0436 (19)0.043 (2)0.0036 (14)0.0038 (15)0.0022 (15)
C40.0421 (18)0.0477 (19)0.048 (2)0.0002 (14)0.0078 (15)0.0012 (16)
C50.0481 (19)0.052 (2)0.039 (2)0.0039 (15)0.0119 (15)0.0082 (16)
C60.0470 (18)0.0433 (18)0.032 (2)0.0051 (14)0.0057 (14)0.0103 (14)
C70.0445 (18)0.0396 (17)0.035 (2)0.0010 (13)0.0038 (14)0.0032 (14)
C80.050 (2)0.0431 (19)0.039 (2)0.0005 (15)0.0071 (15)0.0031 (15)
C90.050 (2)0.071 (3)0.075 (3)0.0188 (18)0.015 (2)0.014 (2)
C100.073 (3)0.076 (3)0.076 (4)0.017 (2)0.022 (2)0.002 (2)
N10.0401 (14)0.0400 (14)0.0370 (18)0.0004 (11)0.0050 (11)0.0060 (12)
N20.0459 (15)0.0400 (14)0.0299 (16)0.0022 (11)0.0046 (11)0.0048 (11)
N30.071 (2)0.074 (2)0.036 (2)0.0150 (16)0.0027 (15)0.0158 (15)
O10.0495 (13)0.0516 (14)0.0492 (17)0.0087 (10)0.0148 (11)0.0136 (11)
O20.0700 (17)0.0704 (18)0.0464 (18)0.0226 (13)0.0126 (13)0.0225 (14)
Br10.0567 (3)0.0777 (3)0.0779 (4)0.01732 (19)0.0233 (2)0.0092 (2)
C110.0426 (17)0.0423 (17)0.0292 (19)0.0124 (14)0.0030 (13)0.0034 (14)
C120.0444 (18)0.0447 (19)0.037 (2)0.0086 (14)0.0035 (14)0.0056 (15)
C130.052 (2)0.0419 (19)0.048 (2)0.0031 (15)0.0075 (16)0.0079 (16)
C140.0484 (19)0.0375 (17)0.047 (2)0.0041 (14)0.0003 (15)0.0022 (15)
C150.056 (2)0.0454 (19)0.035 (2)0.0031 (15)0.0003 (15)0.0051 (15)
C160.0446 (18)0.0478 (19)0.033 (2)0.0039 (14)0.0062 (14)0.0050 (15)
C170.0349 (15)0.0437 (17)0.032 (2)0.0073 (13)0.0047 (13)0.0007 (14)
C180.0396 (17)0.0526 (19)0.038 (2)0.0056 (14)0.0075 (15)0.0054 (16)
C190.067 (3)0.074 (3)0.089 (4)0.018 (2)0.006 (2)0.017 (3)
C200.096 (4)0.076 (4)0.183 (8)0.014 (3)0.026 (4)0.027 (4)
N40.0433 (15)0.0402 (15)0.0352 (18)0.0041 (11)0.0024 (12)0.0005 (11)
N50.0412 (14)0.0463 (15)0.0318 (17)0.0057 (12)0.0029 (11)0.0002 (12)
N60.081 (2)0.0522 (18)0.039 (2)0.0051 (15)0.0172 (15)0.0063 (14)
O30.0587 (15)0.0573 (15)0.0489 (18)0.0115 (12)0.0064 (12)0.0049 (12)
O40.0805 (19)0.088 (2)0.049 (2)0.0289 (16)0.0165 (14)0.0289 (15)
Br20.0787 (3)0.0502 (2)0.0698 (3)0.01168 (19)0.0056 (2)0.01129 (19)
Geometric parameters (Å, º) top
C1—N21.331 (4)C11—N51.335 (4)
C1—N11.379 (4)C11—N41.371 (4)
C1—C21.434 (4)C11—C121.437 (5)
C2—C31.363 (5)C12—N61.352 (4)
C2—N31.365 (5)C12—C131.376 (5)
C3—C41.405 (5)C13—C141.407 (5)
C3—H30.9300C13—H130.9300
C4—C51.348 (5)C14—C151.344 (5)
C4—Br11.904 (3)C14—Br21.900 (3)
C5—N11.380 (4)C15—N41.389 (4)
C5—H50.9300C15—H150.9300
C6—N11.368 (4)C16—C171.367 (5)
C6—C71.371 (5)C16—N41.374 (4)
C6—H60.9300C16—H160.9300
C7—N21.374 (4)C17—N51.375 (4)
C7—C81.480 (5)C17—C181.472 (5)
C8—O21.209 (4)C18—O41.199 (4)
C8—O11.315 (4)C18—O31.325 (4)
C9—O11.460 (4)C19—C201.422 (7)
C9—C101.471 (6)C19—O31.464 (5)
C9—H9A0.9700C19—H19A0.9700
C9—H9B0.9700C19—H19B0.9700
C10—H10A0.9600C20—H20A0.9600
C10—H10B0.9600C20—H20B0.9600
C10—H10C0.9600C20—H20C0.9600
N3—H3A0.8604N6—H6A0.8550
N3—H3B0.8634N6—H6B0.8530
N2—C1—N1112.3 (3)N5—C11—N4111.7 (3)
N2—C1—C2129.3 (3)N5—C11—C12128.5 (3)
N1—C1—C2118.4 (3)N4—C11—C12119.8 (3)
C3—C2—N3124.6 (3)N6—C12—C13125.3 (3)
C3—C2—C1118.0 (3)N6—C12—C11117.8 (3)
N3—C2—C1117.3 (3)C13—C12—C11116.9 (3)
C2—C3—C4120.3 (3)C12—C13—C14119.8 (3)
C2—C3—H3119.8C12—C13—H13120.1
C4—C3—H3119.8C14—C13—H13120.1
C5—C4—C3123.1 (3)C15—C14—C13124.2 (3)
C5—C4—Br1117.5 (3)C15—C14—Br2117.1 (3)
C3—C4—Br1119.5 (3)C13—C14—Br2118.6 (3)
C4—C5—N1116.5 (3)C14—C15—N4115.9 (3)
C4—C5—H5121.7C14—C15—H15122.0
N1—C5—H5121.7N4—C15—H15122.0
N1—C6—C7105.5 (3)C17—C16—N4105.1 (3)
N1—C6—H6127.3C17—C16—H16127.4
C7—C6—H6127.3N4—C16—H16127.4
C6—C7—N2112.0 (3)C16—C17—N5112.0 (3)
C6—C7—C8122.9 (3)C16—C17—C18128.3 (3)
N2—C7—C8125.1 (3)N5—C17—C18119.7 (3)
O2—C8—O1124.4 (3)O4—C18—O3124.0 (3)
O2—C8—C7121.8 (3)O4—C18—C17122.9 (3)
O1—C8—C7113.8 (3)O3—C18—C17113.0 (3)
O1—C9—C10109.4 (3)C20—C19—O3111.7 (4)
O1—C9—H9A109.8C20—C19—H19A109.3
C10—C9—H9A109.8O3—C19—H19A109.3
O1—C9—H9B109.8C20—C19—H19B109.3
C10—C9—H9B109.8O3—C19—H19B109.3
H9A—C9—H9B108.2H19A—C19—H19B107.9
C9—C10—H10A109.5C19—C20—H20A109.5
C9—C10—H10B109.5C19—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
C9—C10—H10C109.5C19—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
C6—N1—C1106.6 (3)C11—N4—C16107.2 (3)
C6—N1—C5129.8 (3)C11—N4—C15123.2 (3)
C1—N1—C5123.7 (3)C16—N4—C15129.6 (3)
C1—N2—C7103.7 (3)C11—N5—C17104.0 (3)
C2—N3—H3A117.6C12—N6—H6A119.8
C2—N3—H3B118.9C12—N6—H6B115.4
H3A—N3—H3B113.5H6A—N6—H6B121.3
C8—O1—C9114.8 (3)C18—O3—C19118.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N5i0.862.473.300 (4)161
N3—H3B···O3ii0.862.383.055 (5)135
N6—H6B···O20.852.343.096 (4)147
N6—H6A···O1iii0.862.583.183 (4)129
N6—H6A···N2iii0.862.603.388 (4)154
C5—H5···O40.932.263.074 (4)146
C19—H19B···O40.972.282.703 (6)105
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H10BrN3O2
Mr284.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)8.366 (2), 11.842 (3), 22.743 (5)
β (°) 98.328 (6)
V3)2229.3 (8)
Z8
Radiation typeMo Kα
µ (mm1)3.68
Crystal size (mm)0.44 × 0.19 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.437, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
13222, 4555, 3156
Rint0.032
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.03
No. of reflections4555
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.51

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N5i0.862.473.300 (4)161
N3—H3B···O3ii0.862.383.055 (5)135
N6—H6B···O20.852.343.096 (4)147
N6—H6A···O1iii0.862.583.183 (4)129
N6—H6A···N2iii0.862.603.388 (4)154
C5—H5···O40.932.263.074 (4)146
C19—H19B···O40.972.282.703 (6)105
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y+1/2, z+1/2.
 

References

First citationAnderson, M., Beattie, J. F., Breault, G. A., Breed, J., Byth, K. F., Culshaw, J. D., Ellston, R. P., Rebecca, P. A., Green, S., Minshull, C. A., Norman, R. A., Pauptit, R. A., Stanway, J., Thomas, A. P. & Jewsbury, P. J. (2003). Bioorg. Med. Chem. Lett. 13, 3021–3026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, I. C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J. P. (1998). J. Med. Chem. 41, 5108–5112.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKatritzky, A. R., Xu, Y.-J. & Tu, H. (2003). J. Org. Chem. 68, 4935–4937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMavel, S., Renou, J., Galtier, C., Allouchi, H., Snoeck, R., De Andrei, G. D., Clercq, E., Balzarini, J. & Gueiffier, A. (2002). Bioorg. Med. Chem. Lett. 10, 941–946.  CrossRef CAS Google Scholar
First citationRival, Y., Grassy, G. & Michel, G. (1992). Chem. Pharm. Bull. 40, 1170–1176.  CrossRef PubMed CAS Google Scholar
First citationRupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347–350.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrapani, G., Latrofa, A., Franco, M., Carrieri, A., Cellamare, S., Serra, M., Sanna, E., Biggio, G. & Liso, G. (2003). Eur. J. Pharm. Sci. 18, 231–240.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds