metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,3-di­methyl­anilinium) tetra­chlorido­zincate dihydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: wajda_sta@yahoo.fr

(Received 6 May 2011; accepted 9 May 2011; online 14 May 2011)

In the title compound, (C8H12N)2[ZnCl4]·2H2O, the Zn atom is coordinated by four Cl atoms in a tetra­hedral geometry. The water mol­ecules and the organic cations inter­act with the [ZnCl4]2− complex anions, building up a two-dimensional hydrogen-bonded network parallel to (100).

Related literature

For properties of aniline derivatives, see: Hirao & Fukuhara (1998[Hirao, T. & Fukuhara, S. (1998). J. Org. Chem. 63, 7534-7535.]); Linden et al. (1995[Linden, A., James, B. D. & Liesegang, J. (1995). Acta Cryst. C51, 2317-2320.]); MacDiamid et al. (1998[MacDiamid, A. G., Zhang, W. J., Feng, J., Huang, F. & Hsieh, B. (1998). Polym. Prepr. 39, 80-81.]); Singh et al. (1995[Singh, G., Kapoor, I. P. S. & Mannan, S. M. (1995). Thermochim. Acta, 262, 117-127.], 2002[Singh, G., Kapoor, I. P. S., Srivastava, J. & Kaur, J. (2002). J. Therm. Anal. Calorim. 69, 681-691.]); Wang et al. (2002[Wang, C., Gao, J. B. & Chen, C. H. (2002). Polym. Prepr. 40, 1746-1747.]); Fábry et al. (2002[Fábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105-o107.]). For structural comparison, see: Harrison (2005[Harrison, W. T. A. (2005). Acta Cryst. E61, m1951-m1952.]); Marouani et al. (2010[Marouani, H., Elmi, L., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o535.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H12N)2[ZnCl4]·2H2O

  • Mr = 487.57

  • Monoclinic, P 21 /c

  • a = 21.654 (2) Å

  • b = 7.432 (3) Å

  • c = 14.069 (2) Å

  • β = 90.30 (2)°

  • V = 2264.1 (10) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.82 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • 16232 measured reflections

  • 10928 independent reflections

  • 5697 reflections with I > 2σ(I)

  • Rint = 0.041

  • 2 standard reflections every 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.151

  • S = 1.03

  • 10363 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.89 2.61 3.488 (2) 168
N1—H1B⋯Cl4 0.89 2.38 3.239 (2) 162
N1—H1C⋯O1 0.89 1.83 2.707 (3) 168
N2—H2A⋯Cl2ii 0.89 2.85 3.713 (2) 165
N2—H2B⋯Cl3 0.89 2.35 3.225 (2) 168
N2—H2C⋯O2 0.89 1.82 2.696 (3) 167
O1—H22⋯Cl1iii 0.80 2.35 3.115 (2) 160
O1—H23⋯Cl4i 0.81 2.53 3.304 (3) 162
O2—H20⋯Cl3i 0.80 2.56 3.228 (3) 142
O2—H21⋯Cl1 0.79 2.50 3.213 (2) 150
Symmetry codes: (i) x, y+1, z; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Aniline is an useful chemical product used in various areas. Some derivatives of aniline have improving anticorrosion ability for metals (Wang et al., 2002), others show high efficiency as chemical sensors (MacDiamid et al.,1998) and catalitic oxidation (Hirao & Fukuhara, 1998). Bibliography reports some structures where the cation dimethylanilinium is associated to other anions as sulfate (Singh et al., 2002), nitrate, perchlorate (Singh et al., 1995), chloride (Linden et al., 1995), and phosphate (Fábry et al., 2002). We report here a crystal structure where this organic cation is associated to an anionic complex (I).

The asymmetric unit consists of two 2,3-dimethylanilinium cations, two water molecules and one complex anion [ZnCl4]2- linked by N-H···O, N-H···Cl and O-H···Cl hydrogen bonds (Fig. 1). The atomic arrangement of (2,3-(CH3)2C6H3NH3)2ZnCl4.2H2O (I) is made up of inorganic layers, parallel to the (1 0 0) plane, built up by [ZnCl4]2- complex and water molecules held together by O—H···Cl hydrogen bonds. The organic groups are attached to both sides of these layers through N—H···Cl and N—H···O hydrogen bonds, electrostatic and Van der walls interactions, to form a two dimensional infinite network (Fig. 2).

In the title compound (I), the four chlorine atoms of the [ZnCl4]2- anion are acting as acceptors of the hydrogen bonds. The bond angles Cl—Zn—Cl vary from 102.50 (3) to 113.71 (3)°, and the bond length of the Zn—Cl lie in the range 2.2071 (8) - 2.4649 (9) Å. These values indicate that the coordination geometry of the Zn atom can be considered as being a slightly distorted tetrahedron (Harrison, 2005). The nearst Zn···Zn intra-chain separation is 7.135 (1) Å, while the distance between adjacent chains is 11.050 (2) Å. The examination of the organic cations shows that the value distances and angles show no significant difference from those obtained in other crystals involving the same organic groups (Marouani et al., 2010). The phenyl rings of these cations are planar with a maximum atomic deviation of 0.00025 Å and a dihedral angle between them of 21.95°.

Related literature top

For properties of aniline derivatives, see: Hirao & Fukuhara (1998); Linden et al. (1995); MacDiamid et al. (1998); Singh et al. (1995, 2002); Wang et al. (2002); Fábry et al. (2002). For structural comparison, see: Harrison (2005); Marouani et al. (2010).

Experimental top

A mixture of an aqueous solution of 2,3-xylidine, HCl and ZnCl2 in a 2:2:1 molar ratio was prepared, stirred then slowly evaporated at room temperature (293 K). After few days, colourless prismatic crystals of (C16H28N2) [ZnCl4].H2O appear with suitable size for x-ray diffraction measurements.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl,N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.82 (1)Å and H···H= 1.37 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycle of refinement, they were treated as riding on their parent O atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The assymetric unit of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view of the atomic arrangement of the title compound along the b axis.
Bis(2,3-dimethylanilinium) tetrachloridozincate dihydrate top
Crystal data top
(C8H12N)2[ZnCl4]·2H2OF(000) = 1008
Mr = 487.57Dx = 1.430 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 21.654 (2) Åθ = 9–11°
b = 7.432 (3) ŵ = 0.82 mm1
c = 14.069 (2) ÅT = 293 K
β = 90.30 (2)°Block, colourless
V = 2264.1 (10) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.041
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.3°
Graphite monochromatorh = 362
non–profiled ω scansk = 312
16232 measured reflectionsl = 2323
10928 independent reflections2 standard reflections every 120 min
5697 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0738P)2]
where P = (Fo2 + 2Fc2)/3
10363 reflections(Δ/σ)max = 0.005
232 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
(C8H12N)2[ZnCl4]·2H2OV = 2264.1 (10) Å3
Mr = 487.57Z = 4
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
a = 21.654 (2) ŵ = 0.82 mm1
b = 7.432 (3) ÅT = 293 K
c = 14.069 (2) Å0.35 × 0.30 × 0.25 mm
β = 90.30 (2)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.041
16232 measured reflections2 standard reflections every 120 min
10928 independent reflections intensity decay: 5%
5697 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.03Δρmax = 0.77 e Å3
10363 reflectionsΔρmin = 0.92 e Å3
232 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.252371 (12)0.16993 (3)0.528190 (18)0.03788 (8)
Cl10.27972 (3)0.07344 (10)0.43474 (5)0.05745 (18)
Cl20.21828 (3)0.39507 (9)0.44011 (4)0.04583 (14)
Cl30.33196 (3)0.28623 (10)0.59834 (5)0.05693 (18)
Cl40.18023 (3)0.07803 (10)0.65412 (5)0.05405 (16)
N10.15472 (9)0.3472 (3)0.62226 (15)0.0432 (5)
H1A0.16660.40370.56970.065*
H1B0.16820.23410.62100.065*
H1C0.17040.40320.67280.065*
C10.00434 (11)0.2889 (3)0.55691 (16)0.0390 (5)
C20.06097 (10)0.2868 (3)0.54830 (14)0.0337 (4)
C30.08621 (10)0.3481 (3)0.62776 (15)0.0352 (4)
C40.05039 (12)0.4082 (4)0.71143 (15)0.0433 (5)
H40.07250.44970.76380.052*
C50.01386 (13)0.4076 (4)0.71794 (18)0.0496 (6)
H50.03520.44630.77130.060*
C60.04063 (11)0.3476 (3)0.64175 (18)0.0455 (5)
H60.08350.34080.63970.055*
C70.10203 (12)0.2261 (4)0.45764 (17)0.0469 (5)
H7A0.14230.18950.47900.070*
H7B0.10590.32560.41450.070*
H7C0.08220.12750.42580.070*
C80.03606 (13)0.2301 (4)0.47333 (19)0.0528 (7)
H8A0.02300.11040.45750.079*
H8B0.02680.30990.42170.079*
H8C0.07970.23040.48460.079*
N20.32690 (9)0.0370 (3)0.75104 (14)0.0449 (5)
H2A0.30190.02550.80070.067*
H2B0.32360.05970.71410.067*
H2C0.31640.13450.71800.067*
C90.38814 (10)0.0540 (3)0.78301 (15)0.0370 (4)
C100.44164 (11)0.0658 (3)0.71609 (16)0.0392 (5)
C110.49906 (12)0.0739 (3)0.75038 (19)0.0476 (6)
C120.49854 (14)0.0754 (4)0.8488 (2)0.0633 (8)
H120.53690.08390.87830.076*
C130.44415 (15)0.0651 (4)0.9136 (2)0.0618 (8)
H130.45070.06720.97890.074*
C140.38810 (12)0.0534 (4)0.88115 (16)0.0458 (5)
H140.35290.04570.91860.055*
C150.44037 (14)0.0705 (5)0.60951 (17)0.0584 (7)
H15A0.46670.16540.58740.088*
H15B0.39890.09170.58790.088*
H15C0.45470.04260.58510.088*
C160.56043 (13)0.0778 (5)0.6831 (3)0.0686 (9)
H16A0.56230.03090.64630.103*
H16B0.59670.08710.72230.103*
H16C0.55830.17950.64110.103*
O10.18655 (11)0.5435 (3)0.77698 (15)0.0708 (6)
H220.21470.49970.80630.106*
H230.19380.63490.74810.106*
O20.29296 (11)0.2985 (3)0.62872 (17)0.0694 (6)
H200.30010.39710.64970.104*
H210.30010.27030.57570.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03496 (13)0.03231 (13)0.04624 (15)0.00035 (10)0.01116 (10)0.00039 (11)
Cl10.0599 (4)0.0473 (4)0.0651 (4)0.0146 (3)0.0099 (3)0.0139 (3)
Cl20.0435 (3)0.0433 (3)0.0506 (3)0.0065 (2)0.0105 (2)0.0068 (2)
Cl30.0492 (3)0.0477 (3)0.0736 (4)0.0098 (3)0.0305 (3)0.0102 (3)
Cl40.0570 (4)0.0474 (4)0.0578 (3)0.0109 (3)0.0097 (3)0.0049 (3)
N10.0379 (9)0.0407 (11)0.0508 (10)0.0003 (8)0.0184 (8)0.0025 (9)
C10.0378 (10)0.0280 (9)0.0511 (12)0.0022 (9)0.0153 (9)0.0082 (9)
C20.0355 (10)0.0258 (9)0.0397 (10)0.0004 (8)0.0097 (8)0.0028 (8)
C30.0343 (10)0.0295 (10)0.0416 (10)0.0011 (8)0.0112 (8)0.0040 (8)
C40.0494 (13)0.0440 (13)0.0363 (10)0.0034 (11)0.0096 (9)0.0023 (10)
C50.0523 (14)0.0528 (16)0.0439 (12)0.0089 (12)0.0023 (11)0.0071 (11)
C60.0345 (11)0.0441 (13)0.0579 (14)0.0004 (10)0.0052 (10)0.0122 (11)
C70.0455 (12)0.0456 (13)0.0494 (12)0.0001 (11)0.0075 (10)0.0090 (11)
C80.0521 (14)0.0380 (12)0.0680 (16)0.0076 (11)0.0301 (12)0.0042 (12)
N20.0385 (10)0.0503 (12)0.0458 (10)0.0011 (9)0.0087 (8)0.0019 (9)
C90.0386 (10)0.0295 (10)0.0427 (11)0.0009 (9)0.0088 (9)0.0016 (9)
C100.0419 (11)0.0317 (10)0.0439 (11)0.0016 (9)0.0035 (9)0.0002 (9)
C110.0390 (11)0.0336 (11)0.0702 (16)0.0032 (10)0.0105 (11)0.0016 (11)
C120.0550 (16)0.0554 (17)0.0791 (19)0.0041 (14)0.0303 (15)0.0023 (15)
C130.0702 (19)0.0612 (18)0.0537 (15)0.0002 (16)0.0254 (14)0.0045 (14)
C140.0497 (13)0.0462 (14)0.0414 (11)0.0022 (11)0.0065 (10)0.0017 (10)
C150.0564 (16)0.073 (2)0.0455 (13)0.0108 (15)0.0007 (12)0.0042 (13)
C160.0426 (14)0.0590 (19)0.104 (3)0.0093 (14)0.0012 (15)0.0018 (18)
O10.0872 (16)0.0537 (12)0.0712 (12)0.0128 (12)0.0381 (11)0.0002 (10)
O20.0762 (15)0.0501 (12)0.0815 (14)0.0020 (11)0.0265 (12)0.0059 (10)
Geometric parameters (Å, º) top
Zn1—Cl32.1618 (7)N2—C91.404 (3)
Zn1—Cl22.2069 (8)N2—H2A0.8900
Zn1—Cl12.3149 (9)N2—H2B0.8900
Zn1—Cl42.4648 (8)N2—H2C0.8900
N1—C31.486 (3)C9—C141.381 (3)
N1—H1A0.8900C9—C101.499 (3)
N1—H1B0.8900C10—C111.333 (3)
N1—H1C0.8900C10—C151.500 (3)
C1—C21.420 (3)C11—C121.384 (4)
C1—C81.427 (3)C11—C161.636 (4)
C1—C61.498 (4)C12—C131.495 (5)
C2—C31.323 (3)C12—H120.9300
C2—C71.623 (3)C13—C141.297 (4)
C3—C41.482 (3)C13—H130.9300
C4—C51.395 (4)C14—H140.9300
C4—H40.9300C15—H15A0.9600
C5—C61.295 (4)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—H60.9300C16—H16A0.9600
C7—H7A0.9600C16—H16B0.9600
C7—H7B0.9600C16—H16C0.9600
C7—H7C0.9600O1—H220.8041
C8—H8A0.9600O1—H230.8069
C8—H8B0.9600O2—H200.8042
C8—H8C0.9600O2—H210.7908
Cl3—Zn1—Cl2102.52 (3)H8A—C8—H8C109.5
Cl3—Zn1—Cl1111.47 (3)H8B—C8—H8C109.5
Cl2—Zn1—Cl1111.06 (3)C9—N2—H2A109.5
Cl3—Zn1—Cl4106.82 (3)C9—N2—H2B109.5
Cl2—Zn1—Cl4113.72 (3)H2A—N2—H2B109.5
Cl1—Zn1—Cl4110.90 (3)C9—N2—H2C109.5
C3—N1—H1A109.5H2A—N2—H2C109.5
C3—N1—H1B109.5H2B—N2—H2C109.5
H1A—N1—H1B109.5C14—C9—N2108.3 (2)
C3—N1—H1C109.5C14—C9—C10129.3 (2)
H1A—N1—H1C109.5N2—C9—C10122.40 (19)
H1B—N1—H1C109.5C11—C10—C9119.9 (2)
C2—C1—C8113.7 (2)C11—C10—C15111.9 (2)
C2—C1—C6126.7 (2)C9—C10—C15128.2 (2)
C8—C1—C6119.6 (2)C10—C11—C12110.5 (3)
C3—C2—C1109.4 (2)C10—C11—C16123.4 (2)
C3—C2—C7122.3 (2)C12—C11—C16126.1 (2)
C1—C2—C7128.32 (18)C11—C12—C13128.3 (2)
C2—C3—C4124.0 (2)C11—C12—H12115.8
C2—C3—N1111.3 (2)C13—C12—H12115.8
C4—C3—N1124.71 (19)C14—C13—C12121.8 (2)
C5—C4—C3125.3 (2)C14—C13—H13119.1
C5—C4—H4117.4C12—C13—H13119.1
C3—C4—H4117.4C13—C14—C9110.2 (3)
C6—C5—C4112.9 (3)C13—C14—H14124.9
C6—C5—H5123.6C9—C14—H14124.9
C4—C5—H5123.6C10—C15—H15A109.5
C5—C6—C1121.7 (2)C10—C15—H15B109.5
C5—C6—H6119.1H15A—C15—H15B109.5
C1—C6—H6119.1C10—C15—H15C109.5
C2—C7—H7A109.5H15A—C15—H15C109.5
C2—C7—H7B109.5H15B—C15—H15C109.5
H7A—C7—H7B109.5C11—C16—H16A109.5
C2—C7—H7C109.5C11—C16—H16B109.5
H7A—C7—H7C109.5H16A—C16—H16B109.5
H7B—C7—H7C109.5C11—C16—H16C109.5
C1—C8—H8A109.5H16A—C16—H16C109.5
C1—C8—H8B109.5H16B—C16—H16C109.5
H8A—C8—H8B109.5H22—O1—H23116.7
C1—C8—H8C109.5H20—O2—H21123.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.892.613.488 (2)168
N1—H1B···Cl40.892.383.239 (2)162
N1—H1C···O10.891.832.707 (3)168
N2—H2A···Cl2ii0.892.853.713 (2)165
N2—H2B···Cl30.892.353.225 (2)168
N2—H2C···O20.891.822.696 (3)167
O1—H22···Cl1iii0.802.353.115 (2)160
O1—H23···Cl4i0.812.533.304 (3)162
O2—H20···Cl3i0.802.563.228 (3)142
O2—H21···Cl10.792.503.213 (2)150
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C8H12N)2[ZnCl4]·2H2O
Mr487.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)21.654 (2), 7.432 (3), 14.069 (2)
β (°) 90.30 (2)
V3)2264.1 (10)
Z4
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.82
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16232, 10928, 5697
Rint0.041
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.151, 1.03
No. of reflections10363
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.92

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.892.613.488 (2)168
N1—H1B···Cl40.892.383.239 (2)162
N1—H1C···O10.891.832.707 (3)168
N2—H2A···Cl2ii0.892.853.713 (2)165
N2—H2B···Cl30.892.353.225 (2)168
N2—H2C···O20.891.822.696 (3)167
O1—H22···Cl1iii0.802.353.115 (2)160
O1—H23···Cl4i0.812.533.304 (3)162
O2—H20···Cl3i0.802.563.228 (3)142
O2—H21···Cl10.792.503.213 (2)150
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105–o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHarrison, W. T. A. (2005). Acta Cryst. E61, m1951–m1952.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHirao, T. & Fukuhara, S. (1998). J. Org. Chem. 63, 7534–7535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLinden, A., James, B. D. & Liesegang, J. (1995). Acta Cryst. C51, 2317–2320.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacDiamid, A. G., Zhang, W. J., Feng, J., Huang, F. & Hsieh, B. (1998). Polym. Prepr. 39, 80–81.  Google Scholar
First citationMarouani, H., Elmi, L., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G., Kapoor, I. P. S. & Mannan, S. M. (1995). Thermochim. Acta, 262, 117–127.  CrossRef CAS Google Scholar
First citationSingh, G., Kapoor, I. P. S., Srivastava, J. & Kaur, J. (2002). J. Therm. Anal. Calorim. 69, 681–691.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C., Gao, J. B. & Chen, C. H. (2002). Polym. Prepr. 40, 1746–1747.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds