metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[4-(methyl­sulfan­yl)phen­yl]-1H-benzimidazol-3-ium} tetra­bromido­cadmate(II) ethanol monosolvate

aDepartment of Chemistry, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 12 February 2011; accepted 12 May 2011; online 20 May 2011)

In the anion of the title compound, (C14H13N2S)2[CdBr4]·C2H5OH, the CdII atom is in a distorted tetra­hedral environment and one of the Br atoms is disordered over three sites with site-occupancy factors of 0.828 (5), 0.106 (3) and 0.068 (4). In the crystal, inter­molecular N—H⋯O, C—H⋯O and N—H⋯Br inter­actions result in a two-dimensional polymeric network extending parallel to (010).

Related literature

For general background to benzimidazole derivatives, see: Huang & Scarborough (1999[Huang, W. & Scarborough, R. M. (1999). Tetrahedron Lett. 40, 2665-2668.]); Preston (1974[Preston, P. N. (1974). Chem. Rev. 74, 279-314.]); Zarrinmayeh et al. (1998[Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709-2719.]); Zhu et al. (2000[Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430-2437.]). For related structures, see: Ziaulla et al. (2011[Ziaulla, M., Manjunatha, M. N., Sankolli, R., Nagasundara, K. R. & Begum, N. S. (2011). Acta Cryst. E67, o341-o342.]). For hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H13N2S)2[CdBr4]·C2H6O

  • Mr = 960.76

  • Orthorhombic, P b c a

  • a = 22.1321 (15) Å

  • b = 13.8746 (10) Å

  • c = 22.2594 (16) Å

  • V = 6835.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.47 mm−1

  • T = 123 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.408, Tmax = 0.439

  • 93968 measured reflections

  • 7467 independent reflections

  • 5951 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.079

  • S = 0.79

  • 7467 reflections

  • 407 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Br3 0.79 (7) 2.51 (7) 3.272 (5) 164 (5)
N2—H2N⋯Br2i 0.81 (7) 2.50 (7) 3.267 (4) 160 (5)
N4—H4N⋯O1ii 0.83 (7) 1.88 (7) 2.679 (6) 161 (6)
C4—H4⋯O1ii 0.95 2.55 3.464 (8) 160
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996)[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzimidazole derivatives are effective against the human cytomegalo virus (HCMV) (Zhu et al., 2000) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998). In addition, benzimidazole derivatives exhibit a number of important pharmacological properties, such as antihistaminic, anti-ulcerative, antiallergic and antipyretic. The described methods for the synthesis of benzimidazoles make use of solid-phase synthesis via o-nitroanilines (Preston et al., 1974; Huang et al., 1999) or the condensation of o-phenylenediamines with carboxylic acid derivatives, aldehydes and aryl halides. The benzimidazole derivative has been used as a ligand for complexation with cadmium metal to give the above metal complex. In the title compound, as shown in Fig. 1, there are two cation,one tetrabormocadmate(II) anion and an ethanol molecule in the asymmetric unit. One of the coordinated bromine atom Br4 of the anion is disordered over three sites (Br4A/Br4B/Br4C) with site occupancy factors 0.83, 0,11 and 0.06 resulting in one major and two minor components.The CdII atom has a distorted tetrahedral geometry, coordinating with four terminal bromine atoms with the bond lengths in the range 2.5616 (7)Å to 2.6177 (6) Å. The Br—Cd—Br bond angles are between 111.37 (3)° and 107.14 (2)°, The benzimidazole and thiomethyl phenyl rings are virtually planar and inclined at an dihedral angle 5.19 (2)°. The molecular structure is primarly stablised by intramolecular N—H···Br interactions. The bond lengths and angles for the benzimidazole moiety of the molecule are in good agreement, within experimental errors, with those observed in other benzimidazole derivatives (Ziaulla et al., 2011). Further, the crystal structure is stabilized by intermolecular N—H···O, C—H···O and N—H···Br hydrogen bonds.

Related literature top

For general background to benzimidazole derivatives, see: Huang & Scarborough (1999); Preston (1974); Zarrinmayeh et al. (1998); Zhu et al. (2000). For related structures, see: Ziaulla et al. (2011). For hydrogen bonding, see: Bernstein et al. (1995); Nardelli (1983).

Experimental top

An ethanolic solution (15 ml) of the 2-(4-Methyl sulfanyl phenyl)-1H- benzimidazole) (0.960 mg, 2 mmol) was added to a solution of cadmium(II) bromide (0.272 mg, 1 mmol) in ethanol (25 ml). The mixture was then treated with 48% HBr (2–3 ml) followed by liquid Br2 (2–3 ml). The mixture was refluxed for nearly six hours during which yellow crystals suitable for X-ray analysis were obtained. The crystals were washed with cold ethanol and dried in vacuum over P2O5. (yield 1.23 mg, 85%).

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.83 and C—H = 0.95 Å, and Uiso(H) = 1.2Ueq(N/C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
Bis{2-[4-(methylsulfanyl)phenyl]-1H-benzimidazol-3-ium} tetrabromidocadmate(II) ethanol monosolvate top
Crystal data top
(C14H13N2S)2[CdBr4]·C2H6OF(000) = 3744
Mr = 960.76Dx = 1.867 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7467 reflections
a = 22.1321 (15) Åθ = 1.8–27.0°
b = 13.8746 (10) ŵ = 5.47 mm1
c = 22.2594 (16) ÅT = 123 K
V = 6835.3 (8) Å3Block, yellow
Z = 80.20 × 0.18 × 0.18 mm
Data collection top
Bruker SMART APEX CCD detector
diffractometer
7467 independent reflections
Radiation source: Enhance (Mo) X-ray Source5951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2828
Tmin = 0.408, Tmax = 0.439k = 1717
93968 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.79 w = 1/[σ2(Fo2) + (0.0318P)2 + 49.2262P]
where P = (Fo2 + 2Fc2)/3
7467 reflections(Δ/σ)max = 0.001
407 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
(C14H13N2S)2[CdBr4]·C2H6OV = 6835.3 (8) Å3
Mr = 960.76Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 22.1321 (15) ŵ = 5.47 mm1
b = 13.8746 (10) ÅT = 123 K
c = 22.2594 (16) Å0.20 × 0.18 × 0.18 mm
Data collection top
Bruker SMART APEX CCD detector
diffractometer
7467 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5951 reflections with I > 2σ(I)
Tmin = 0.408, Tmax = 0.439Rint = 0.084
93968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.79 w = 1/[σ2(Fo2) + (0.0318P)2 + 49.2262P]
where P = (Fo2 + 2Fc2)/3
7467 reflectionsΔρmax = 0.87 e Å3
407 parametersΔρmin = 0.69 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.348496 (11)0.21808 (2)0.361336 (13)0.02080 (7)
Br10.326079 (18)0.11642 (3)0.26634 (2)0.02983 (11)
Br20.399388 (19)0.11298 (3)0.441935 (19)0.02699 (10)
Br30.425609 (17)0.35205 (3)0.330092 (18)0.02342 (9)
Br4A0.25223 (3)0.29865 (10)0.40079 (6)0.0445 (4)0.828 (5)
Br4B0.2514 (2)0.2592 (6)0.4250 (3)0.0302 (17)*0.106 (3)
Br4C0.2621 (4)0.3426 (10)0.3968 (3)0.028 (3)*0.068 (4)
S10.11862 (4)0.36770 (8)0.16669 (5)0.0261 (2)
S20.64644 (5)0.09455 (8)0.43078 (5)0.0259 (2)
N10.42680 (14)0.3486 (2)0.18313 (16)0.0184 (7)
H1N0.4190 (18)0.346 (3)0.217 (2)0.011 (11)*
N20.41912 (14)0.3569 (2)0.08615 (16)0.0172 (7)
H2N0.405 (2)0.362 (3)0.051 (2)0.022 (12)*
N30.45281 (14)0.1032 (2)0.19059 (16)0.0186 (7)
H3N0.429 (2)0.100 (4)0.218 (2)0.038 (15)*
N40.53761 (15)0.1058 (2)0.14156 (16)0.0208 (7)
H4N0.575 (2)0.103 (3)0.136 (2)0.034 (13)*
O10.15209 (14)0.1207 (3)0.39651 (19)0.0460 (9)
H10.16970.17410.39940.069*
C10.72537 (18)0.1017 (3)0.4124 (2)0.0306 (10)
H1A0.73750.04340.39070.046*
H1B0.74910.10730.44940.046*
H1C0.73260.15830.38710.046*
C20.61084 (17)0.0962 (3)0.36033 (19)0.0194 (8)
C30.64147 (17)0.0996 (3)0.3056 (2)0.0229 (9)
H30.68440.10150.30490.027*
C40.60955 (16)0.1002 (3)0.25272 (19)0.0214 (8)
H40.63070.10150.21560.026*
C50.54640 (17)0.0990 (3)0.25268 (18)0.0184 (8)
C60.51621 (16)0.0957 (3)0.30770 (18)0.0196 (8)
H60.47330.09440.30840.024*
C70.54755 (17)0.0943 (3)0.36072 (19)0.0212 (8)
H70.52640.09200.39780.025*
C80.51336 (16)0.1021 (3)0.19612 (18)0.0181 (8)
C90.49220 (16)0.1105 (3)0.09894 (18)0.0205 (8)
C100.43776 (17)0.1091 (3)0.13000 (18)0.0186 (8)
C110.38240 (17)0.1154 (3)0.1008 (2)0.0234 (9)
H110.34520.11450.12220.028*
C120.38445 (18)0.1230 (3)0.0395 (2)0.0252 (9)
H120.34760.12830.01790.030*
C130.43935 (19)0.1233 (3)0.0071 (2)0.0279 (9)
H130.43860.12800.03540.034*
C140.49412 (19)0.1170 (3)0.0366 (2)0.0271 (9)
H140.53130.11700.01540.033*
C150.08636 (17)0.3561 (3)0.0930 (2)0.0263 (9)
H15A0.10010.40960.06770.039*
H15B0.04220.35750.09590.039*
H15C0.09920.29490.07510.039*
C160.19661 (16)0.3623 (3)0.15389 (19)0.0209 (8)
C170.22338 (16)0.3494 (3)0.09802 (19)0.0203 (8)
H170.19870.34270.06330.024*
C180.28564 (16)0.3464 (3)0.09239 (18)0.0197 (8)
H180.30340.33790.05390.024*
C190.32244 (16)0.3556 (3)0.14304 (18)0.0182 (8)
C200.29562 (17)0.3688 (3)0.19946 (19)0.0233 (8)
H200.32020.37540.23420.028*
C210.23346 (18)0.3722 (3)0.2046 (2)0.0253 (9)
H210.21550.38130.24300.030*
C220.38773 (16)0.3542 (3)0.13739 (17)0.0172 (7)
C230.48535 (16)0.3490 (3)0.16087 (18)0.0180 (8)
C240.54085 (17)0.3457 (3)0.1900 (2)0.0253 (9)
H240.54400.34200.23250.030*
C250.59109 (18)0.3483 (3)0.1532 (2)0.0301 (10)
H250.63010.34630.17100.036*
C260.58653 (17)0.3537 (3)0.0909 (2)0.0273 (9)
H260.62250.35550.06760.033*
C270.53125 (17)0.3566 (3)0.0619 (2)0.0235 (9)
H270.52800.36020.01940.028*
C280.48085 (16)0.3539 (3)0.09907 (18)0.0174 (7)
C290.22850 (16)0.0414 (3)0.45435 (18)0.0460 (13)
H29A0.25350.09920.45890.069*
H29B0.25420.01600.45590.069*
H29C0.19880.03880.48690.069*
C300.19621 (16)0.0449 (3)0.39490 (18)0.0428 (12)
H30A0.22560.05700.36220.051*
H30B0.17610.01760.38710.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01375 (12)0.02995 (15)0.01871 (15)0.00150 (11)0.00061 (11)0.00047 (12)
Br10.01902 (18)0.0486 (3)0.0218 (2)0.00511 (18)0.00033 (16)0.00842 (19)
Br20.0268 (2)0.0371 (2)0.0170 (2)0.00091 (17)0.00239 (16)0.00446 (17)
Br30.02397 (19)0.0292 (2)0.0171 (2)0.00377 (16)0.00242 (16)0.00177 (16)
Br4A0.0152 (3)0.0288 (7)0.0897 (8)0.0002 (3)0.0138 (3)0.0106 (5)
S10.0164 (4)0.0349 (6)0.0269 (6)0.0037 (4)0.0056 (4)0.0071 (5)
S20.0231 (5)0.0303 (5)0.0241 (6)0.0015 (4)0.0071 (4)0.0005 (4)
N10.0197 (16)0.0236 (17)0.0121 (18)0.0033 (13)0.0002 (13)0.0013 (14)
N20.0143 (14)0.0235 (16)0.0137 (18)0.0019 (12)0.0029 (13)0.0010 (13)
N30.0138 (15)0.0223 (17)0.0196 (19)0.0024 (12)0.0015 (13)0.0029 (14)
N40.0147 (15)0.0261 (17)0.0218 (19)0.0031 (13)0.0018 (13)0.0018 (14)
O10.0256 (16)0.052 (2)0.060 (3)0.0025 (15)0.0133 (17)0.010 (2)
C10.0209 (19)0.031 (2)0.040 (3)0.0003 (17)0.0128 (19)0.002 (2)
C20.0216 (18)0.0139 (17)0.023 (2)0.0013 (14)0.0059 (16)0.0002 (15)
C30.0143 (17)0.024 (2)0.030 (2)0.0039 (15)0.0001 (16)0.0005 (17)
C40.0147 (17)0.027 (2)0.023 (2)0.0007 (15)0.0014 (15)0.0019 (17)
C50.0180 (17)0.0178 (18)0.019 (2)0.0018 (14)0.0005 (15)0.0007 (15)
C60.0149 (17)0.0217 (19)0.022 (2)0.0015 (14)0.0024 (15)0.0014 (16)
C70.0180 (17)0.0232 (19)0.022 (2)0.0003 (15)0.0050 (16)0.0001 (16)
C80.0168 (17)0.0167 (18)0.021 (2)0.0006 (14)0.0010 (15)0.0025 (16)
C90.0180 (18)0.0240 (19)0.020 (2)0.0044 (15)0.0004 (15)0.0003 (16)
C100.0219 (18)0.0176 (18)0.016 (2)0.0021 (14)0.0003 (15)0.0011 (15)
C110.0181 (18)0.0229 (19)0.029 (2)0.0014 (15)0.0034 (16)0.0016 (17)
C120.026 (2)0.024 (2)0.026 (2)0.0024 (16)0.0112 (17)0.0067 (17)
C130.035 (2)0.033 (2)0.015 (2)0.0056 (18)0.0035 (17)0.0049 (18)
C140.027 (2)0.031 (2)0.023 (2)0.0022 (17)0.0060 (17)0.0015 (18)
C150.0160 (18)0.034 (2)0.029 (2)0.0018 (16)0.0002 (16)0.0008 (19)
C160.0153 (17)0.0181 (18)0.029 (2)0.0021 (14)0.0042 (16)0.0044 (16)
C170.0163 (17)0.0217 (19)0.023 (2)0.0010 (14)0.0014 (16)0.0011 (16)
C180.0169 (17)0.0224 (19)0.020 (2)0.0003 (14)0.0039 (15)0.0006 (16)
C190.0182 (17)0.0171 (17)0.019 (2)0.0020 (14)0.0016 (15)0.0000 (15)
C200.0213 (19)0.028 (2)0.021 (2)0.0022 (16)0.0011 (16)0.0035 (17)
C210.0239 (19)0.032 (2)0.020 (2)0.0040 (16)0.0048 (17)0.0045 (18)
C220.0224 (18)0.0138 (17)0.015 (2)0.0001 (14)0.0015 (15)0.0008 (15)
C230.0163 (17)0.0182 (18)0.019 (2)0.0007 (14)0.0027 (15)0.0016 (16)
C240.0214 (19)0.031 (2)0.024 (2)0.0006 (16)0.0071 (17)0.0011 (18)
C250.0187 (19)0.035 (2)0.036 (3)0.0032 (17)0.0103 (18)0.000 (2)
C260.0157 (18)0.038 (2)0.028 (2)0.0009 (16)0.0009 (16)0.0081 (19)
C270.0196 (18)0.027 (2)0.025 (2)0.0007 (15)0.0017 (16)0.0024 (17)
C280.0163 (17)0.0173 (17)0.019 (2)0.0005 (14)0.0048 (15)0.0011 (15)
C290.048 (3)0.054 (3)0.036 (3)0.005 (3)0.006 (2)0.003 (3)
C300.031 (2)0.049 (3)0.049 (3)0.007 (2)0.007 (2)0.009 (3)
Geometric parameters (Å, º) top
Cd1—Br4A2.5612 (6)C9—C141.390 (6)
Cd1—Br22.5717 (5)C9—C101.389 (5)
Cd1—Br12.5898 (5)C10—C111.390 (5)
Cd1—Br32.6175 (5)C11—C121.370 (6)
Cd1—Br4B2.636 (5)C11—H110.9500
Cd1—Br4C2.695 (8)C12—C131.413 (6)
Br4A—Br4C0.654 (14)C12—H120.9500
Br4A—Br4B0.768 (8)C13—C141.382 (6)
Br4B—Br4C1.338 (16)C13—H130.9500
S1—C161.751 (4)C14—H140.9500
S1—C151.797 (4)C15—H15A0.9800
S2—C21.755 (4)C15—H15B0.9800
S2—C11.797 (4)C15—H15C0.9800
N1—C221.338 (5)C16—C171.389 (6)
N1—C231.387 (5)C16—C211.400 (6)
N1—H1N0.77 (4)C17—C181.384 (5)
N2—C221.336 (5)C17—H170.9500
N2—C281.397 (4)C18—C191.397 (5)
N2—H2N0.84 (5)C18—H180.9500
N3—C81.346 (5)C19—C201.401 (6)
N3—C101.392 (5)C19—C221.451 (5)
N3—H3N0.81 (5)C20—C211.381 (5)
N4—C81.329 (5)C20—H200.9500
N4—C91.384 (5)C21—H210.9500
N4—H4N0.84 (5)C23—C281.381 (5)
O1—C301.435 (5)C23—C241.390 (5)
O1—H10.8400C24—C251.382 (6)
C1—H1A0.9800C24—H240.9500
C1—H1B0.9800C25—C261.392 (6)
C1—H1C0.9800C25—H250.9500
C2—C31.395 (6)C26—C271.384 (5)
C2—C71.401 (5)C26—H260.9500
C3—C41.373 (6)C27—C281.390 (5)
C3—H30.9500C27—H270.9500
C4—C51.398 (5)C29—C301.5047
C4—H40.9500C29—H29A0.9800
C5—C61.396 (5)C29—H29B0.9800
C5—C81.457 (5)C29—H29C0.9800
C6—C71.369 (6)C30—H30A0.9900
C6—H60.9500C30—H30B0.9900
C7—H70.9500
Br4A—Cd1—Br2111.87 (4)C11—C10—N3131.9 (4)
Br4A—Cd1—Br1111.00 (2)C12—C11—C10116.2 (4)
Br2—Cd1—Br1110.162 (19)C12—C11—H11121.9
Br4A—Cd1—Br3108.88 (4)C10—C11—H11121.9
Br2—Cd1—Br3107.605 (16)C11—C12—C13122.5 (4)
Br1—Cd1—Br3107.142 (17)C11—C12—H12118.8
Br4A—Cd1—Br4B16.92 (16)C13—C12—H12118.8
Br2—Cd1—Br4B96.01 (16)C14—C13—C12120.8 (4)
Br1—Cd1—Br4B113.60 (11)C14—C13—H13119.6
Br3—Cd1—Br4B121.39 (17)C12—C13—H13119.6
Br4A—Cd1—Br4C14.0 (3)C13—C14—C9116.8 (4)
Br2—Cd1—Br4C118.01 (18)C13—C14—H14121.6
Br1—Cd1—Br4C116.9 (2)C9—C14—H14121.6
Br3—Cd1—Br4C94.9 (3)S1—C15—H15A109.5
Br4B—Cd1—Br4C29.0 (3)S1—C15—H15B109.5
Br4C—Br4A—Br4B140.2 (8)H15A—C15—H15B109.5
Br4C—Br4A—Cd194.7 (6)S1—C15—H15C109.5
Br4B—Br4A—Cd187.1 (4)H15A—C15—H15C109.5
Br4A—Br4B—Br4C18.3 (5)H15B—C15—H15C109.5
Br4A—Br4B—Cd176.0 (4)C17—C16—C21119.1 (3)
Br4C—Br4B—Cd177.9 (4)C17—C16—S1124.9 (3)
Br4A—Br4C—Br4B21.6 (5)C21—C16—S1116.0 (3)
Br4A—Br4C—Cd171.3 (6)C18—C17—C16120.6 (4)
Br4B—Br4C—Cd173.0 (5)C18—C17—H17119.7
C16—S1—C15103.9 (2)C16—C17—H17119.7
C2—S2—C1103.4 (2)C17—C18—C19120.3 (4)
C22—N1—C23109.4 (3)C17—C18—H18119.9
C22—N1—H1N127 (3)C19—C18—H18119.9
C23—N1—H1N124 (3)C18—C19—C20119.2 (3)
C22—N2—C28109.4 (3)C18—C19—C22120.6 (4)
C22—N2—H2N127 (3)C20—C19—C22120.1 (4)
C28—N2—H2N124 (3)C21—C20—C19120.1 (4)
C8—N3—C10109.1 (3)C21—C20—H20120.0
C8—N3—H3N126 (4)C19—C20—H20120.0
C10—N3—H3N125 (4)C20—C21—C16120.6 (4)
C8—N4—C9109.6 (3)C20—C21—H21119.7
C8—N4—H4N122 (3)C16—C21—H21119.7
C9—N4—H4N128 (3)N2—C22—N1108.4 (3)
C30—O1—H1109.5N2—C22—C19126.3 (4)
S2—C1—H1A109.5N1—C22—C19125.3 (4)
S2—C1—H1B109.5C28—C23—N1106.8 (3)
H1A—C1—H1B109.5C28—C23—C24122.0 (4)
S2—C1—H1C109.5N1—C23—C24131.2 (4)
H1A—C1—H1C109.5C25—C24—C23115.7 (4)
H1B—C1—H1C109.5C25—C24—H24122.1
C3—C2—C7119.5 (4)C23—C24—H24122.1
C3—C2—S2124.2 (3)C24—C25—C26122.3 (4)
C7—C2—S2116.3 (3)C24—C25—H25118.9
C4—C3—C2119.9 (3)C26—C25—H25118.9
C4—C3—H3120.0C27—C26—C25122.0 (4)
C2—C3—H3120.0C27—C26—H26119.0
C3—C4—C5121.0 (4)C25—C26—H26119.0
C3—C4—H4119.5C28—C27—C26115.5 (4)
C5—C4—H4119.5C28—C27—H27122.2
C6—C5—C4118.6 (4)C26—C27—H27122.2
C6—C5—C8121.3 (3)C23—C28—C27122.5 (3)
C4—C5—C8120.1 (4)C23—C28—N2106.1 (3)
C7—C6—C5120.9 (3)C27—C28—N2131.4 (4)
C7—C6—H6119.5C30—C29—H29A109.5
C5—C6—H6119.5C30—C29—H29B109.5
C6—C7—C2120.1 (4)H29A—C29—H29B109.5
C6—C7—H7120.0C30—C29—H29C109.5
C2—C7—H7120.0H29A—C29—H29C109.5
N4—C8—N3108.6 (3)H29B—C29—H29C109.5
N4—C8—C5126.0 (3)O1—C30—C29108.9 (2)
N3—C8—C5125.4 (4)O1—C30—H30A109.9
N4—C9—C14131.7 (4)C29—C30—H30A109.9
N4—C9—C10106.7 (3)O1—C30—H30B109.9
C14—C9—C10121.6 (4)C29—C30—H30B109.9
C9—C10—C11122.1 (4)H30A—C30—H30B108.3
C9—C10—N3106.0 (3)
Br2—Cd1—Br4A—Br4C118.8 (7)C8—N4—C9—C14178.9 (4)
Br1—Cd1—Br4A—Br4C117.7 (7)C8—N4—C9—C100.2 (4)
Br3—Cd1—Br4A—Br4C0.0 (7)N4—C9—C10—C11178.3 (3)
Br4B—Cd1—Br4A—Br4C140.1 (8)C14—C9—C10—C111.0 (6)
Br2—Cd1—Br4A—Br4B21.3 (4)N4—C9—C10—N30.2 (4)
Br1—Cd1—Br4A—Br4B102.2 (4)C14—C9—C10—N3179.4 (4)
Br3—Cd1—Br4A—Br4B140.1 (4)C8—N3—C10—C90.6 (4)
Br4C—Cd1—Br4A—Br4B140.1 (8)C8—N3—C10—C11177.7 (4)
Cd1—Br4A—Br4B—Br4C93.9 (10)C9—C10—C11—C120.1 (6)
Br4C—Br4A—Br4B—Cd193.9 (10)N3—C10—C11—C12178.1 (4)
Br2—Cd1—Br4B—Br4A160.2 (4)C10—C11—C12—C130.8 (6)
Br1—Cd1—Br4B—Br4A84.7 (4)C11—C12—C13—C140.8 (6)
Br3—Cd1—Br4B—Br4A45.3 (4)C12—C13—C14—C90.1 (6)
Br4C—Cd1—Br4B—Br4A18.6 (5)N4—C9—C14—C13178.1 (4)
Br4A—Cd1—Br4B—Br4C18.6 (5)C10—C9—C14—C130.9 (6)
Br2—Cd1—Br4B—Br4C141.6 (4)C15—S1—C16—C171.4 (4)
Br1—Cd1—Br4B—Br4C103.3 (4)C15—S1—C16—C21178.5 (3)
Br3—Cd1—Br4B—Br4C26.7 (5)C21—C16—C17—C180.0 (6)
Cd1—Br4A—Br4C—Br4B91.1 (9)S1—C16—C17—C18179.9 (3)
Br4B—Br4A—Br4C—Cd191.1 (9)C16—C17—C18—C190.4 (6)
Cd1—Br4B—Br4C—Br4A81.9 (10)C17—C18—C19—C200.6 (6)
Br4A—Br4B—Br4C—Cd181.9 (10)C17—C18—C19—C22178.8 (3)
Br2—Cd1—Br4C—Br4A67.1 (7)C18—C19—C20—C210.3 (6)
Br1—Cd1—Br4C—Br4A68.0 (7)C22—C19—C20—C21178.6 (4)
Br3—Cd1—Br4C—Br4A180.0 (7)C19—C20—C21—C160.1 (6)
Br4B—Cd1—Br4C—Br4A22.6 (5)C17—C16—C21—C200.3 (6)
Br4A—Cd1—Br4C—Br4B22.6 (5)S1—C16—C21—C20179.8 (3)
Br2—Cd1—Br4C—Br4B44.5 (5)C28—N2—C22—N10.6 (4)
Br1—Cd1—Br4C—Br4B90.6 (4)C28—N2—C22—C19179.7 (3)
Br3—Cd1—Br4C—Br4B157.4 (4)C23—N1—C22—N20.8 (4)
C1—S2—C2—C31.6 (4)C23—N1—C22—C19179.9 (3)
C1—S2—C2—C7178.1 (3)C18—C19—C22—N29.0 (6)
C7—C2—C3—C40.6 (6)C20—C19—C22—N2169.2 (4)
S2—C2—C3—C4179.7 (3)C18—C19—C22—N1169.9 (4)
C2—C3—C4—C51.0 (6)C20—C19—C22—N111.8 (6)
C3—C4—C5—C60.9 (6)C22—N1—C23—C280.7 (4)
C3—C4—C5—C8178.5 (3)C22—N1—C23—C24179.1 (4)
C4—C5—C6—C70.4 (6)C28—C23—C24—C250.4 (6)
C8—C5—C6—C7179.0 (4)N1—C23—C24—C25179.4 (4)
C5—C6—C7—C20.0 (6)C23—C24—C25—C260.1 (6)
C3—C2—C7—C60.1 (6)C24—C25—C26—C270.2 (7)
S2—C2—C7—C6179.8 (3)C25—C26—C27—C280.1 (6)
C9—N4—C8—N30.6 (4)N1—C23—C28—C27179.3 (3)
C9—N4—C8—C5178.4 (4)C24—C23—C28—C270.5 (6)
C10—N3—C8—N40.8 (4)N1—C23—C28—N20.3 (4)
C10—N3—C8—C5178.3 (3)C24—C23—C28—N2179.5 (4)
C6—C5—C8—N4179.6 (4)C26—C27—C28—C230.2 (6)
C4—C5—C8—N40.2 (6)C26—C27—C28—N2178.9 (4)
C6—C5—C8—N30.8 (6)C22—N2—C28—C230.2 (4)
C4—C5—C8—N3178.6 (4)C22—N2—C28—C27178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br30.79 (7)2.51 (7)3.272 (5)164 (5)
N2—H2N···Br2i0.81 (7)2.50 (7)3.267 (4)160 (5)
N4—H4N···O1ii0.83 (7)1.88 (7)2.679 (6)161 (6)
C4—H4···O1ii0.952.553.464 (8)160
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula(C14H13N2S)2[CdBr4]·C2H6O
Mr960.76
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)22.1321 (15), 13.8746 (10), 22.2594 (16)
V3)6835.3 (8)
Z8
Radiation typeMo Kα
µ (mm1)5.47
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.408, 0.439
No. of measured, independent and
observed [I > 2σ(I)] reflections
93968, 7467, 5951
Rint0.084
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.079, 0.79
No. of reflections7467
No. of parameters407
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0318P)2 + 49.2262P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.87, 0.69

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br30.79 (7)2.51 (7)3.272 (5)164 (5)
N2—H2N···Br2i0.81 (7)2.50 (7)3.267 (4)160 (5)
N4—H4N···O1ii0.83 (7)1.88 (7)2.679 (6)161 (6)
C4—H4···O1ii0.9502.5543.464 (8)160
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and Department of Science and Technology, (DST), India, for the data collection facility under the IRHPA–DST program. MNM thanks the M. S. Ramaiah Institute of Technology, Bangalore, for their support and encouragement.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, W. & Scarborough, R. M. (1999). Tetrahedron Lett. 40, 2665–2668.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPreston, P. N. (1974). Chem. Rev. 74, 279–314.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZiaulla, M., Manjunatha, M. N., Sankolli, R., Nagasundara, K. R. & Begum, N. S. (2011). Acta Cryst. E67, o341–o342.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds