organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-(2-Hy­dr­oxy-4-meth­­oxy­benzyl­­idene)-1-benzo­furan-3(2H)-one

aSankar Foundation Research Institute, Naiduthota, Vepagunta, Visakhapatnam, Andhra Pradesh 530 047, India
*Correspondence e-mail: anand.dcb@gmail.com

(Received 16 April 2011; accepted 28 April 2011; online 7 May 2011)

In the title compound, C16H12O4, the 1-benzofuran­one unit is in a planar conformation [C—C—C—C = 179.69 (12)°]. The conformation around the C=C double bond [1.3370 (17) Å] is Z. In the crystal, the mol­ecules are stabilized by O—H⋯O (running parallel to the bc plane) and C—H⋯O hydrogen bonds.

Related literature

For the synthesis and biological activity of substituted aurones, see: Varma & Varma (1992[Varma, R. S. & Varma, M. (1992). Tetrahedron Lett. 33, 5937-40.]); Beney et al. (2001[Beney, C., Mariotte, A. M. & Boumendjel, A. (2001). Heterocycles, 55, 967-972.]); Sim et al. (2008[Sim, H. M., Lee, C. Y., Ee, P. L. & Go, M. L. (2008). Eur. J. Pharm. Sci. 35, 293-306.]); Souard et al. (2010[Souard, F., Okombi, S., Beney, C., Chevalley, S., Valentin, A. & Boumendjel, A. (2010). Bioorg. Med. Chem. 1, 5724-5731.]); Wang et al. (2007[Wang, J., Wang, N., Yao, X. & Kitanaka, S. (2007). J. Trad. Med. 2, 23-29.]). For aurones as structural scaffolds in natural and synthetic compounds possessing diverse biological properties, see: Villemin et al. (1998[Villemin, D., Martin, B. & Bar, N. (1998). Molecules, 3, 88-93.]). The title compound, which is an analogue of naturally occurring aurones, holds promise as an inhibitor against human melanocytes tyrosinase towards anti­hyper­pig­ment­ation, see: Okombi et al. (2006[Okombi, S., Rival, D., Bonnet, S., Mariotte, A.-M., Perrier, E. & Boumendjel, A. (2006). J. Med. Chem. 49, 329-333.]). For the assignment of conformations and the orientation of the substituents, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.], 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]); Klyne & Prelog (1960[Klyne, W. & Prelog, V. (1960). Experientia, 16, 521-568.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O4

  • Mr = 268.26

  • Monoclinic, P 21 /n

  • a = 7.1083 (4) Å

  • b = 12.7072 (7) Å

  • c = 14.4024 (8) Å

  • β = 100.161 (2)°

  • V = 1280.52 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.975

  • 19357 measured reflections

  • 4765 independent reflections

  • 2533 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.150

  • S = 1.02

  • 4765 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.90 (2) 1.80 (2) 2.6952 (14) 170.0 (19)
C16—H16A⋯O3i 0.96 2.59 3.3328 (14) 135
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aurones are chalcone analogues containing fused benzofuranone ring system. They form essential structural scaffold in several natural and synthetic molecules possessing diverse biological properties (Villemin et al. 1998) Several functionalized aurones were reported to exhibit anti-malarial (Souard et al. 2010) and anti-histamine (Wang et al. 2007) properties. The title compound which is an analogue of naturally occurring aurones holds promise as inhibitors against human melanocytes tyrosinase towards antihyperpigmentation (Okombi et al. 2006).

Related literature top

For the synthesis and biological activity of substituted aurones, see: Varma et al. (1992); Beney et al. (2001); Sim et al. (2008); Souard et al. (2010); Wang et al. (2007). For aurones as structural scaffolds in natural and synthetic compounds possessing diverse biological properties, see: Villemin et al. (1998). The title compound, which is an analogue of naturally occurring aurones, holds promise as an inhibitor against human melanocytes tyrosinase towards antihyperpigmentation, see: Okombi et al. (2006). For the assignment of conformations and the orientation of the substituents, see: Nardelli (1983, 1995); Klyne & Prelog (1960).

Experimental top

3-coumaranone was allowed to react with 2-hydroxy-4-methoxybenzaldehyde (aldol condensation) in alcoholic solution in the presence of potassium hydroxide for 30 minutes to yield the title compound. The pure product was obtained by recrystalizing the crude product in ethanol solvent.

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. ORTEP diagram of (Z)-2-(2-hydroxy-4-methoxybenzylidene)benzofuran-3(2H)-one. (Thermal ellipsoids are at 50% probability level).
[Figure 3] Fig. 3. Crystal packing diagram of the title compound. Symmetry codes -x + 1/2,y + 1/2,-z - 1/2
(Z)-2-(2-Hydroxy-4-methoxybenzylidene)-1-benzofuran-3(2H)-one top
Crystal data top
C16H12O4F(000) = 560
Mr = 268.26Dx = 1.391 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3249 reflections
a = 7.1083 (4) Åθ = 2.9–25.3°
b = 12.7072 (7) ŵ = 0.10 mm1
c = 14.4024 (8) ÅT = 293 K
β = 100.161 (2)°Block, yellow
V = 1280.52 (12) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4765 independent reflections
Radiation source: fine-focus sealed tube2533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω and ϕ scansθmax = 32.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 105
Tmin = 0.906, Tmax = 0.975k = 1719
19357 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.0121P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4765 reflectionsΔρmax = 0.26 e Å3
187 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (16)
Crystal data top
C16H12O4V = 1280.52 (12) Å3
Mr = 268.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1083 (4) ŵ = 0.10 mm1
b = 12.7072 (7) ÅT = 293 K
c = 14.4024 (8) Å0.35 × 0.30 × 0.25 mm
β = 100.161 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4765 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2533 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.975Rint = 0.047
19357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.26 e Å3
4765 reflectionsΔρmin = 0.19 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33155 (18)0.81587 (10)0.10935 (9)0.0378 (3)
C20.3577 (2)0.79394 (12)0.20448 (10)0.0498 (4)
H20.34930.84600.24900.060*
C30.3967 (2)0.69092 (12)0.22996 (11)0.0544 (4)
H30.41680.67320.29360.065*
C40.4072 (2)0.61232 (12)0.16407 (11)0.0529 (4)
H40.43210.54330.18400.064*
C50.3811 (2)0.63594 (11)0.06989 (11)0.0487 (4)
H50.38880.58380.02540.058*
C60.34267 (17)0.73990 (10)0.04224 (9)0.0383 (3)
C70.31090 (19)0.79320 (10)0.04815 (9)0.0409 (3)
C80.27856 (18)0.90379 (10)0.02558 (9)0.0380 (3)
C90.24089 (17)0.98235 (10)0.08784 (9)0.0388 (3)
H90.23520.96210.15030.047*
C100.20767 (16)1.09256 (10)0.07510 (9)0.0362 (3)
C110.2172 (2)1.14095 (10)0.01304 (10)0.0440 (3)
H110.24181.09990.06730.053*
C120.1913 (2)1.24709 (11)0.02151 (10)0.0492 (4)
H120.19871.27720.08090.059*
C130.15384 (19)1.30956 (10)0.05866 (10)0.0412 (3)
C140.14158 (17)1.26536 (10)0.14673 (9)0.0389 (3)
H140.11551.30720.20040.047*
C150.16833 (18)1.15787 (10)0.15485 (9)0.0383 (3)
C160.0907 (2)1.48154 (11)0.12239 (11)0.0557 (4)
H16A0.19331.47910.15770.083*
H16B0.07561.55230.10150.083*
H16C0.02561.45890.16170.083*
O10.29265 (13)0.91457 (7)0.07146 (6)0.0425 (2)
O20.30983 (16)0.75813 (8)0.12769 (7)0.0611 (3)
O30.15733 (16)1.11203 (8)0.24045 (7)0.0558 (3)
O40.13342 (16)1.41402 (8)0.04288 (7)0.0556 (3)
H3A0.153 (3)1.1617 (15)0.2855 (16)0.092 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0425 (6)0.0355 (7)0.0351 (7)0.0041 (5)0.0061 (5)0.0037 (6)
C20.0625 (9)0.0539 (9)0.0334 (7)0.0009 (7)0.0092 (6)0.0034 (7)
C30.0590 (9)0.0622 (10)0.0417 (8)0.0000 (7)0.0081 (7)0.0153 (8)
C40.0516 (8)0.0457 (9)0.0598 (10)0.0006 (6)0.0052 (7)0.0184 (7)
C50.0538 (8)0.0382 (8)0.0518 (9)0.0018 (6)0.0032 (6)0.0015 (7)
C60.0413 (6)0.0349 (7)0.0370 (7)0.0023 (5)0.0021 (5)0.0023 (5)
C70.0511 (7)0.0367 (7)0.0333 (7)0.0009 (6)0.0029 (5)0.0028 (6)
C80.0476 (7)0.0364 (7)0.0299 (6)0.0026 (5)0.0065 (5)0.0015 (5)
C90.0496 (7)0.0357 (7)0.0314 (6)0.0021 (5)0.0079 (5)0.0001 (5)
C100.0419 (6)0.0339 (7)0.0339 (7)0.0024 (5)0.0099 (5)0.0007 (5)
C110.0608 (8)0.0390 (7)0.0347 (7)0.0017 (6)0.0154 (6)0.0027 (6)
C120.0736 (9)0.0420 (8)0.0361 (8)0.0030 (7)0.0212 (7)0.0029 (6)
C130.0490 (7)0.0324 (7)0.0455 (8)0.0011 (5)0.0175 (6)0.0015 (6)
C140.0476 (7)0.0336 (7)0.0362 (7)0.0005 (5)0.0096 (5)0.0043 (5)
C150.0463 (7)0.0354 (7)0.0337 (7)0.0051 (5)0.0086 (5)0.0018 (5)
C160.0749 (10)0.0352 (8)0.0597 (10)0.0034 (7)0.0194 (8)0.0045 (7)
O10.0612 (6)0.0353 (5)0.0313 (5)0.0006 (4)0.0092 (4)0.0004 (4)
O20.1001 (9)0.0452 (6)0.0353 (6)0.0094 (5)0.0048 (5)0.0087 (5)
O30.1003 (8)0.0346 (6)0.0317 (5)0.0049 (5)0.0092 (5)0.0017 (4)
O40.0859 (7)0.0353 (6)0.0495 (6)0.0077 (5)0.0222 (5)0.0011 (5)
Geometric parameters (Å, º) top
C1—O11.3764 (15)C9—H90.9300
C1—C61.3781 (19)C10—C111.4014 (18)
C1—C21.3782 (19)C10—C151.4046 (18)
C2—C31.374 (2)C11—C121.3696 (18)
C2—H20.9300C11—H110.9300
C3—C41.389 (2)C12—C131.3876 (19)
C3—H30.9300C12—H120.9300
C4—C51.370 (2)C13—O41.3588 (16)
C4—H40.9300C13—C141.3758 (18)
C5—C61.3927 (18)C14—C151.3868 (18)
C5—H50.9300C14—H140.9300
C6—C71.4495 (18)C15—O31.3533 (16)
C7—O21.2280 (16)C16—O41.4203 (17)
C7—C81.4697 (18)C16—H16A0.9600
C8—C91.3370 (17)C16—H16B0.9600
C8—O11.3902 (15)C16—H16C0.9600
C9—C101.4373 (17)O3—H3A0.90 (2)
O1—C1—C6113.12 (11)C11—C10—C15116.89 (12)
O1—C1—C2124.11 (12)C11—C10—C9124.08 (12)
C6—C1—C2122.77 (12)C15—C10—C9119.01 (11)
C3—C2—C1116.33 (14)C12—C11—C10121.80 (13)
C3—C2—H2121.8C12—C11—H11119.1
C1—C2—H2121.8C10—C11—H11119.1
C2—C3—C4122.35 (14)C11—C12—C13119.89 (13)
C2—C3—H3118.8C11—C12—H12120.1
C4—C3—H3118.8C13—C12—H12120.1
C5—C4—C3120.32 (14)O4—C13—C14124.18 (12)
C5—C4—H4119.8O4—C13—C12115.47 (12)
C3—C4—H4119.8C14—C13—C12120.34 (12)
C4—C5—C6118.46 (14)C13—C14—C15119.51 (12)
C4—C5—H5120.8C13—C14—H14120.2
C6—C5—H5120.8C15—C14—H14120.2
C1—C6—C5119.77 (13)O3—C15—C14120.93 (12)
C1—C6—C7106.47 (11)O3—C15—C10117.50 (12)
C5—C6—C7133.75 (13)C14—C15—C10121.57 (12)
O2—C7—C6130.00 (13)O4—C16—H16A109.5
O2—C7—C8125.30 (13)O4—C16—H16B109.5
C6—C7—C8104.70 (11)H16A—C16—H16B109.5
C9—C8—O1124.83 (12)O4—C16—H16C109.5
C9—C8—C7125.89 (12)H16A—C16—H16C109.5
O1—C8—C7109.29 (10)H16B—C16—H16C109.5
C8—C9—C10131.29 (12)C1—O1—C8106.42 (10)
C8—C9—H9114.4C15—O3—H3A110.1 (13)
C10—C9—H9114.4C13—O4—C16117.98 (11)
O1—C1—C2—C3179.59 (12)C8—C9—C10—C112.7 (2)
C6—C1—C2—C30.2 (2)C8—C9—C10—C15179.18 (13)
C1—C2—C3—C40.8 (2)C15—C10—C11—C120.59 (19)
C2—C3—C4—C50.9 (2)C9—C10—C11—C12177.54 (13)
C3—C4—C5—C60.4 (2)C10—C11—C12—C130.2 (2)
O1—C1—C6—C5179.94 (11)C11—C12—C13—O4178.96 (13)
C2—C1—C6—C50.23 (19)C11—C12—C13—C140.4 (2)
O1—C1—C6—C70.83 (14)O4—C13—C14—C15178.78 (12)
C2—C1—C6—C7178.99 (12)C12—C13—C14—C150.47 (19)
C4—C5—C6—C10.12 (19)C13—C14—C15—O3179.95 (11)
C4—C5—C6—C7178.85 (14)C13—C14—C15—C100.05 (18)
C1—C6—C7—O2179.03 (14)C11—C10—C15—O3179.53 (11)
C5—C6—C7—O20.0 (3)C9—C10—C15—O32.24 (17)
C1—C6—C7—C80.86 (14)C11—C10—C15—C140.47 (18)
C5—C6—C7—C8179.93 (14)C9—C10—C15—C14177.76 (11)
O2—C7—C8—C90.9 (2)C6—C1—O1—C80.43 (14)
C6—C7—C8—C9179.20 (12)C2—C1—O1—C8179.39 (12)
O2—C7—C8—O1179.27 (13)C9—C8—O1—C1179.68 (12)
C6—C7—C8—O10.63 (14)C7—C8—O1—C10.15 (13)
O1—C8—C9—C100.5 (2)C14—C13—O4—C162.1 (2)
C7—C8—C9—C10179.69 (12)C12—C13—O4—C16178.64 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.90 (2)1.80 (2)2.6952 (14)170.0 (19)
C16—H16A···O3i0.962.593.3328 (14)135
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H12O4
Mr268.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.1083 (4), 12.7072 (7), 14.4024 (8)
β (°) 100.161 (2)
V3)1280.52 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.906, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
19357, 4765, 2533
Rint0.047
(sin θ/λ)max1)0.764
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.150, 1.02
No. of reflections4765
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.90 (2)1.80 (2)2.6952 (14)170.0 (19)
C16—H16A···O3i0.962.593.3328 (14)135
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Managing Trustee and the Founder Trustee of the Sankar Foundation for their financial support and encouragement. We also acknowledge the Head of the SAIF, IIT-Chennai, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeney, C., Mariotte, A. M. & Boumendjel, A. (2001). Heterocycles, 55, 967–972.  CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKlyne, W. & Prelog, V. (1960). Experientia, 16, 521–568.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOkombi, S., Rival, D., Bonnet, S., Mariotte, A.-M., Perrier, E. & Boumendjel, A. (2006). J. Med. Chem. 49, 329–333.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSim, H. M., Lee, C. Y., Ee, P. L. & Go, M. L. (2008). Eur. J. Pharm. Sci. 35, 293–306.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSouard, F., Okombi, S., Beney, C., Chevalley, S., Valentin, A. & Boumendjel, A. (2010). Bioorg. Med. Chem. 1, 5724–5731.  Web of Science CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarma, R. S. & Varma, M. (1992). Tetrahedron Lett. 33, 5937–40.  CrossRef CAS Google Scholar
First citationVillemin, D., Martin, B. & Bar, N. (1998). Molecules, 3, 88–93.  Web of Science CrossRef Google Scholar
First citationWang, J., Wang, N., Yao, X. & Kitanaka, S. (2007). J. Trad. Med. 2, 23–29.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds