metal-organic compounds
(Acetonitrile-κN)pentacarbonyltungsten(0)
aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: ce.strasser@gmx.net
The acetonitrile ligand in the title compound, [W(CH3CN)(CO)5], is coordinated end-on to a pentacarbonyltungsten(0) fragment with a W—N bond length of 2.186 (4) Å, completing an octahedral coordination environment around the W atom.
Related literature
For other structures with an (alkyl nitrile-κN)pentacarbonyltungsten(0) fragment, see: Darensbourg et al. (1992); Reibenspies et al. (1994); Jefford et al. (1996). For structures with conjugated see: Fischer et al. (1993); Helten et al. (2010) and for structures with that are part of an organometallic complex, see: Busetto et al. (1992); Duclos et al. (1999); Tang et al. (1999); Trylus et al. (1999); Cordiner et al. (2006). For the preparation, see: Strasser et al. (2010).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Atwood & Barbour, 2003; Barbour, 2001); software used to prepare material for publication: X-SEED.
Supporting information
10.1107/S1600536811017879/ds2110sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811017879/ds2110Isup2.hkl
The compound was obtained as a side product after
of a mixture obtained by treating pentacarbonyl[(4-methyl-1,3-thiazol- 2-yl)carbonyl]tungsten(0) with bis(trichloromethyl)carbonate (Strasser et al., 2010). Decomposition of the initial product followed by reaction of the pentacarbonyltungsten fragment with acetonitrile in the mobile phase resulted in formation of the title compound. Crystals of the title compound were formed by layering a dichloromethane solution with hexane.All H atoms were positioned geometrically (C—H = 0.98 Å) and constrained to ride on their parent atoms; the Uiso(H) values were set at 1.5 times Ueq(C).
The maximum residual electron density of 1.69 e Å-3 is located 0.85 Å next to W1.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Atwood & Barbour, 2003; Barbour, 2001); software used to prepare material for publication: X-SEED (Atwood & Barbour, 2003; Barbour, 2001).Fig. 1. The asymmetric unit of the title compound, ellipsoids are drawn at the 50% probability level. |
[W(C2H3N)(CO)5] | F(000) = 664 |
Mr = 364.95 | Dx = 2.502 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3152 reflections |
a = 5.6485 (6) Å | θ = 2.2–26.4° |
b = 13.6231 (15) Å | µ = 11.92 mm−1 |
c = 12.8642 (15) Å | T = 100 K |
β = 101.883 (2)° | Prism, light yellow |
V = 968.69 (19) Å3 | 0.17 × 0.07 × 0.05 mm |
Z = 4 |
Bruker APEX CCD area-detector diffractometer | 1973 independent reflections |
Radiation source: fine-focus sealed tube | 1694 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 26.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −7→7 |
Tmin = 0.337, Tmax = 0.549 | k = −17→16 |
5297 measured reflections | l = −16→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0282P)2 + 0.8554P] where P = (Fo2 + 2Fc2)/3 |
1973 reflections | (Δ/σ)max = 0.002 |
128 parameters | Δρmax = 1.69 e Å−3 |
0 restraints | Δρmin = −1.08 e Å−3 |
[W(C2H3N)(CO)5] | V = 968.69 (19) Å3 |
Mr = 364.95 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.6485 (6) Å | µ = 11.92 mm−1 |
b = 13.6231 (15) Å | T = 100 K |
c = 12.8642 (15) Å | 0.17 × 0.07 × 0.05 mm |
β = 101.883 (2)° |
Bruker APEX CCD area-detector diffractometer | 1973 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1694 reflections with I > 2σ(I) |
Tmin = 0.337, Tmax = 0.549 | Rint = 0.021 |
5297 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.69 e Å−3 |
1973 reflections | Δρmin = −1.08 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
W1 | 0.12706 (3) | 0.623964 (12) | 0.793281 (13) | 0.01429 (8) | |
O1 | 0.3950 (6) | 0.4656 (3) | 0.6833 (3) | 0.0283 (8) | |
O2 | −0.1535 (6) | 0.4537 (2) | 0.8890 (3) | 0.0258 (8) | |
O3 | −0.2754 (7) | 0.6294 (2) | 0.5820 (3) | 0.0296 (8) | |
O4 | 0.4077 (6) | 0.7892 (3) | 0.6922 (3) | 0.0304 (9) | |
O5 | 0.5558 (7) | 0.6182 (2) | 0.9985 (3) | 0.0263 (8) | |
N1 | −0.0645 (7) | 0.7352 (3) | 0.8667 (3) | 0.0172 (8) | |
C1 | −0.3065 (9) | 0.8698 (3) | 0.9416 (4) | 0.0247 (11) | |
H1 | −0.4783 | 0.8629 | 0.9087 | 0.037* | |
H2 | −0.2493 | 0.9347 | 0.9252 | 0.037* | |
H3 | −0.2848 | 0.8623 | 1.0188 | 0.037* | |
C2 | −0.1690 (8) | 0.7948 (3) | 0.9004 (4) | 0.0171 (9) | |
C11 | 0.2982 (8) | 0.5241 (3) | 0.7252 (4) | 0.0199 (10) | |
C12 | −0.0548 (8) | 0.5153 (3) | 0.8553 (4) | 0.0183 (9) | |
C13 | −0.1353 (8) | 0.6289 (3) | 0.6600 (4) | 0.0202 (10) | |
C14 | 0.3031 (9) | 0.7309 (3) | 0.7303 (4) | 0.0205 (10) | |
C15 | 0.4008 (8) | 0.6203 (3) | 0.9262 (4) | 0.0191 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
W1 | 0.01444 (11) | 0.01441 (11) | 0.01459 (11) | −0.00045 (6) | 0.00428 (8) | −0.00013 (7) |
O1 | 0.029 (2) | 0.0272 (19) | 0.032 (2) | 0.0021 (15) | 0.0142 (17) | −0.0088 (16) |
O2 | 0.0288 (19) | 0.0226 (17) | 0.030 (2) | −0.0014 (14) | 0.0161 (17) | 0.0021 (15) |
O3 | 0.0275 (19) | 0.036 (2) | 0.0238 (19) | −0.0018 (16) | 0.0005 (17) | −0.0008 (16) |
O4 | 0.0265 (19) | 0.033 (2) | 0.031 (2) | −0.0066 (16) | 0.0033 (17) | 0.0104 (16) |
O5 | 0.0228 (18) | 0.032 (2) | 0.0234 (19) | −0.0028 (14) | 0.0031 (16) | 0.0037 (15) |
N1 | 0.0175 (19) | 0.0197 (19) | 0.0147 (19) | −0.0014 (15) | 0.0040 (16) | 0.0010 (16) |
C1 | 0.022 (2) | 0.022 (2) | 0.033 (3) | 0.0035 (19) | 0.011 (2) | −0.004 (2) |
C2 | 0.018 (2) | 0.018 (2) | 0.014 (2) | −0.0032 (18) | 0.0008 (19) | −0.0012 (18) |
C11 | 0.017 (2) | 0.022 (2) | 0.024 (3) | −0.0038 (19) | 0.011 (2) | −0.001 (2) |
C12 | 0.020 (2) | 0.019 (2) | 0.017 (2) | 0.0008 (18) | 0.0091 (19) | −0.0029 (19) |
C13 | 0.010 (2) | 0.025 (2) | 0.025 (3) | 0.0002 (18) | 0.0033 (19) | −0.002 (2) |
C14 | 0.018 (2) | 0.022 (2) | 0.019 (2) | 0.000 (2) | −0.001 (2) | −0.002 (2) |
C15 | 0.018 (2) | 0.019 (2) | 0.022 (2) | −0.0039 (18) | 0.007 (2) | 0.0045 (19) |
W1—N1 | 2.186 (4) | C1—H1 | 0.9800 |
W1—C11 | 1.975 (5) | C1—H2 | 0.9800 |
W1—C12 | 2.054 (5) | C1—H3 | 0.9800 |
W1—C13 | 2.023 (5) | C11—O1 | 1.160 (6) |
W1—C14 | 2.024 (5) | C12—O2 | 1.141 (6) |
W1—C15 | 2.056 (5) | C13—O3 | 1.143 (6) |
N1—C2 | 1.140 (6) | C14—O4 | 1.157 (6) |
C1—C2 | 1.448 (6) | C15—O5 | 1.139 (6) |
O1—C11—W1 | 178.6 (5) | C11—W1—C14 | 89.6 (2) |
O2—C12—W1 | 178.8 (4) | C11—W1—C15 | 90.0 (2) |
O3—C13—W1 | 176.5 (4) | C12—W1—C15 | 90.58 (18) |
O4—C14—W1 | 177.3 (5) | C13—W1—C12 | 90.86 (19) |
O5—C15—W1 | 178.6 (4) | C13—W1—C14 | 88.38 (19) |
N1—C2—C1 | 178.7 (5) | C13—W1—C15 | 178.36 (16) |
C2—N1—W1 | 176.9 (4) | C14—W1—C12 | 179.23 (19) |
C11—W1—N1 | 179.26 (18) | C14—W1—C15 | 90.18 (18) |
C12—W1—N1 | 90.02 (16) | C2—C1—H1 | 109.5 |
C13—W1—N1 | 90.09 (16) | C2—C1—H2 | 109.5 |
C14—W1—N1 | 90.09 (18) | C2—C1—H3 | 109.5 |
C15—W1—N1 | 90.70 (16) | H1—C1—H2 | 109.5 |
C11—W1—C13 | 89.2 (2) | H1—C1—H3 | 109.5 |
C11—W1—C12 | 90.32 (19) | H2—C1—H3 | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [W(C2H3N)(CO)5] |
Mr | 364.95 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 5.6485 (6), 13.6231 (15), 12.8642 (15) |
β (°) | 101.883 (2) |
V (Å3) | 968.69 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 11.92 |
Crystal size (mm) | 0.17 × 0.07 × 0.05 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.337, 0.549 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5297, 1973, 1694 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.055, 1.08 |
No. of reflections | 1973 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.69, −1.08 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Atwood & Barbour, 2003; Barbour, 2001).
Acknowledgements
We would like to thank the National Research Foundation (NRF) of South Africa for financial support.
References
Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8. Web of Science CrossRef CAS Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Busetto, L., Bordoni, S., Zanotti, V., Albano, V. G. & Braga, D. (1992). New J. Chem. 16, 693–696. CAS Google Scholar
Cordiner, R. L., Smith, M. E., Batsanov, A. S., Albesa-Jové, D., Hartl, F., Howard, J. A. K. & Low, P. J. (2006). Inorg. Chim. Acta, 359, 946–961. CrossRef CAS Google Scholar
Darensbourg, D. J., Atnip, E. V. & Reibenspies, J. H. (1992). Inorg. Chem. 31, 4475–4480. CrossRef CAS Google Scholar
Duclos, S., Conan, F., Triki, S., Le Mest, Y., Liu-Gonzalez, M. & Sala Pala, J. (1999). Polyhedron, 18, 1935–1939. CrossRef CAS Google Scholar
Fischer, H., Roth, G., Reindl, D. & Troll, C. (1993). J. Organomet. Chem. 454, 133–149. CrossRef CAS Google Scholar
Helten, H., Beckmann, M., Schnakenburg, G. & Streubel, R. (2010). Eur. J. Inorg. Chem. pp. 2337–2341. CrossRef Google Scholar
Jefford, V. J., Schriver, M. J. & Zaworotko, M. J. (1996). Can. J. Chem. 74, 107–113. CrossRef CAS Google Scholar
Reibenspies, J., Darensbourg, D. & Atnip, E. (1994). Z. Kristallogr. 209, 379–380. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strasser, C. E., Cronje, S. & Raubenheimer, H. G. (2010). New J. Chem. 34, 458–469. Web of Science CSD CrossRef CAS Google Scholar
Tang, Y., Sun, J. & Chen, J. (1999). Organometallics, 18, 2459–2465. CrossRef CAS Google Scholar
Trylus, K.-H., Kernbach, U., Brüdgam, I. & Fehlhammer, W. P. (1999). Inorg. Chim. Acta, 291, 266–278. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is an important starting material in the synthesis of complexes containing the pentacarbonyltungsten(0) fragment. The nitrile ligand is coordinated end-on to W(CO)5, completing an octahedral coordination geometry at the tungsten atom.
The trans-influence of the acetonitrile ligand is echoed by the comparatively short W1—C11 bond [1.975 (5) Å] compared to the cis-carbonyls [W—C bond lengths 2.023 (5) Å to 2.056 (5) Å].
When the present molecular structure of [W(CH3CN)(CO)5] is compared to other literature examples of (nitrile-κN)pentacarbonyltungsten(0) compounds, surprisingly no significant variations in bond lengths can be observed within the metal–ligand bonds despite different electronic and steric properties of the nitriles used. Related crystal structures reported include the W(CO)5 adducts of alkylnitriles (Reibenspies et al., 1994; Jefford et al., 1996), conjugated nitriles (Fischer et al., 1993; Tang et al., 1999; Cordiner et al., 2006; Helten et al., 2010), α-metal-substituted alkyl nitriles (Busetto et al., 1992; Trylus et al., 1999) as well as deprotonated 2,3,4-tricyanopent-2-enedinitrile (Duclos et al., 1999).