organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

12-Benzoyl-2-methyl­naphtho­[2,3-b]indolizine-6,11-dione

aSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
*Correspondence e-mail: liu__yun3@sina.com.cn

(Received 9 May 2011; accepted 24 May 2011; online 28 May 2011)

In the title compound, C24H15NO3, the fused naphthaquin­one–pyrrole unit is approximately planar, the naphthaquinone ring system making a dihedral angle of 2.91 (10)° with the pyrrole ring. The plane of the pyrrole ring makes a dihedral angle 61.64 (14)° with that of the benzene ring of the benzoyl­methyl­ene group. The crystal structure is stablized by intra­molecular C—H⋯O inter­actions.

Related literature

For the properties of indolizine, see Olden et al. (1991[Olden, K., Breton, P., Grzegorzevski, K., Yasuda, Y., Gause, B. L., Creaipe, O. A., Newton, S. A. & White, S. L. (1991). Pharmacol. Ther. 50, 285-290.]); Jaffrezou et al. (1992[Jaffrezou, J. P., Levade, T., Thurneyssen, O., Chiron, M., Bordier, C., Attal, M., Chatelain, P. & Laurent, G. (1992). Cancer Res. 52, 1352-1359.]). For the preparation of benzo[f]pyrido[1,2-a]indole-6,11-dione, see Pratt et al. (1957[Pratt, E. F., Rice, R. G. & Luckenbaugh, R. W. (1957). J. Am. Chem. Soc. 79, 1212-1217.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H15NO3

  • Mr = 365.37

  • Monoclinic, P 21 /c

  • a = 7.1260 (14) Å

  • b = 10.125 (2) Å

  • c = 24.352 (5) Å

  • β = 90.22 (3)°

  • V = 1757.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]) Tmin = 0.973, Tmax = 0.991

  • 3371 measured reflections

  • 3103 independent reflections

  • 1555 reflections with I > 2σ(I)

  • Rint = 0.062

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.169

  • S = 1.02

  • 3103 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O3i 0.93 2.45 3.305 (5) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius. (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The natural and many synthetic indolizines have a diversity of biological activity and are playing an increasingly important role in developing new pharmaceuticals [Olden et al., 1991; Jaffrezou et al., 1992]. Benzo[f]pyrido[1,2-a]indole-6,11-diones are benzo-fused indolizines and occur in several marine alkaloids. The synthesis of these compounds has drawn much research interest [Pratt et al., 1957]. In our ongoing research work on the direct one pot syntheses of benzo[f]pyrido[1,2-a]indole-6,11-diones, we have prepared the title compound (I). As part of this study, we have undertaken an X-ray crystallographic analysis of (I) in order to confirm its structure.

The bond lengths and angles of the title molecule (Fig. 1) are within normal ranges (Allen et al., 1987). The naphthaquinone ring is essentially planar to the pyrrole ring with the dihedral angel being 2.91 (10)°. The pyrrole ring makes the dihedral angle 61.64 (14)° with the benzene ring of the benzoylmethylene group. Although atoms C16, C20 and C24 attached to atom N are all of sp2 hybridization, their different environments cause slight differences in the N—C16, N—C20 and N—C24 bond lengths, and in the C16—N—C20, C16— N—C24, and C20—N—C24 angles (Table 1). The molecular packing is stabilized by weak intermolecular C—H···O hydrogen bonds.

Related literature top

For the properties of indolizine, see Olden et al. (1991); Jaffrezou et al. (1992). For the preparation of benzo[f]pyrido[1,2-a]indole-6,11-dione, see Pratt et al. (1957). For bond-length data, see: Allen et al. (1987).

Experimental top

The compound (I) was prepared by the reaction of 4-methyl pyridine (1.0 mmol), benzoylacetone (1.0 mmol), and 2,3-dichloro-1,4-naphthaquionone (1.0 mmol) mixed in 10 mL CH3CN. The reaction mixture were heated to reflux for 24 h and was isolated by column chromatography after evaporation of the solvent. Single crystals of (I) were obtained by slow evaporation from an petroleum ether-ethyl acetate(3:1) solvent system (yield 62%).

Refinement top

The H atoms were geometrically placed and were treated as riding, with C—H = 0.93 Å

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis.
12-Benzoyl-2-methylnaphtho[2,3-b]indolizine-6,11-dione top
Crystal data top
C24H15NO3F(000) = 760
Mr = 365.37Dx = 1.381 Mg m3
Monoclinic, P21/cMelting point: 538 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.1260 (14) ÅCell parameters from 25 reflections
b = 10.125 (2) Åθ = 9–12°
c = 24.352 (5) ŵ = 0.09 mm1
β = 90.22 (3)°T = 295 K
V = 1757.0 (6) Å3Block, red
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1555 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
ω/2θ scansh = 80
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
k = 120
Tmin = 0.973, Tmax = 0.991l = 2828
3371 measured reflections3 standard reflections every 200 reflections
3103 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.0651P]
where P = (Fo2 + 2Fc2)/3
3103 reflections(Δ/σ)max = 0.006
254 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C24H15NO3V = 1757.0 (6) Å3
Mr = 365.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1260 (14) ŵ = 0.09 mm1
b = 10.125 (2) ÅT = 295 K
c = 24.352 (5) Å0.30 × 0.20 × 0.10 mm
β = 90.22 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1555 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
Rint = 0.062
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
3371 measured reflections intensity decay: none
3103 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3103 reflectionsΔρmin = 0.22 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.1808 (3)0.6115 (3)0.44928 (11)0.0478 (7)
C240.2311 (4)0.4972 (3)0.47630 (13)0.0446 (8)
O30.2792 (4)0.5789 (3)0.56513 (10)0.0699 (8)
O20.2339 (4)0.1643 (3)0.42739 (10)0.0806 (9)
C230.3188 (4)0.2429 (3)0.51506 (14)0.0492 (9)
C220.3265 (4)0.3501 (3)0.55128 (14)0.0494 (9)
C210.2309 (4)0.3959 (3)0.43837 (13)0.0470 (8)
C200.1497 (4)0.5816 (3)0.39425 (14)0.0490 (9)
C190.3601 (5)0.1177 (4)0.53431 (16)0.0630 (10)
H190.35110.04590.51070.076*
C180.2598 (5)0.2599 (4)0.45665 (15)0.0571 (10)
C170.2775 (5)0.4848 (4)0.53324 (14)0.0508 (9)
C160.1643 (5)0.7379 (4)0.46870 (15)0.0553 (9)
H160.18480.75570.50570.066*
C150.1807 (5)0.4458 (4)0.38678 (13)0.0525 (9)
C140.3024 (6)0.2844 (3)0.31344 (13)0.0572 (10)
O10.0328 (4)0.4141 (3)0.30306 (11)0.0967 (10)
C130.1000 (5)0.6856 (4)0.35921 (15)0.0594 (10)
H130.07750.66840.32230.071*
C120.1184 (5)0.8354 (4)0.43411 (17)0.0633 (11)
H120.10920.92130.44750.076*
C110.3777 (5)0.3285 (4)0.60562 (14)0.0621 (10)
H110.38200.39880.63020.075*
C100.4852 (6)0.2881 (4)0.33161 (15)0.0648 (11)
H100.52080.34930.35820.078*
C90.0840 (5)0.8116 (4)0.37831 (17)0.0617 (10)
C80.1615 (5)0.3819 (4)0.33307 (15)0.0611 (10)
C70.4220 (5)0.2029 (5)0.62324 (17)0.0725 (12)
H70.45770.18940.65960.087*
C60.2519 (7)0.1918 (4)0.27499 (15)0.0780 (13)
H60.12910.18970.26190.094*
C50.3799 (9)0.1024 (5)0.25553 (18)0.0969 (17)
H50.34240.03770.23070.116*
C40.4142 (5)0.0979 (4)0.58804 (17)0.0733 (12)
H40.44530.01370.60030.088*
C30.6168 (7)0.2010 (4)0.31047 (18)0.0839 (13)
H30.74130.20540.32190.101*
C20.5615 (9)0.1081 (5)0.2725 (2)0.0987 (17)
H20.64880.04910.25830.118*
C10.0376 (6)0.9245 (4)0.34044 (18)0.0885 (14)
H1A0.02160.89170.30370.133*
H1B0.13790.98770.34120.133*
H1C0.07650.96600.35230.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0436 (17)0.0484 (18)0.0514 (18)0.0055 (14)0.0046 (13)0.0026 (15)
C240.0354 (18)0.048 (2)0.050 (2)0.0007 (16)0.0012 (16)0.0009 (18)
O30.083 (2)0.0695 (18)0.0574 (16)0.0013 (15)0.0041 (13)0.0141 (14)
O20.123 (3)0.0532 (17)0.0652 (17)0.0080 (16)0.0049 (16)0.0040 (14)
C230.0345 (19)0.055 (2)0.058 (2)0.0068 (17)0.0040 (15)0.0040 (19)
C220.037 (2)0.059 (2)0.051 (2)0.0021 (17)0.0061 (16)0.0020 (19)
C210.040 (2)0.049 (2)0.052 (2)0.0050 (17)0.0013 (16)0.0032 (18)
C200.039 (2)0.058 (2)0.050 (2)0.0035 (17)0.0000 (16)0.0002 (19)
C190.056 (2)0.061 (3)0.072 (3)0.010 (2)0.004 (2)0.003 (2)
C180.058 (2)0.058 (2)0.055 (2)0.008 (2)0.0059 (18)0.003 (2)
C170.041 (2)0.056 (2)0.055 (2)0.0032 (17)0.0051 (17)0.005 (2)
C160.050 (2)0.055 (2)0.060 (2)0.0076 (18)0.0073 (18)0.007 (2)
C150.052 (2)0.059 (2)0.046 (2)0.0061 (18)0.0012 (16)0.0006 (19)
C140.079 (3)0.053 (2)0.040 (2)0.011 (2)0.0035 (19)0.0030 (18)
O10.099 (2)0.114 (3)0.077 (2)0.009 (2)0.0381 (18)0.0112 (18)
C130.054 (2)0.067 (3)0.057 (2)0.001 (2)0.0025 (18)0.009 (2)
C120.062 (3)0.050 (2)0.077 (3)0.011 (2)0.004 (2)0.004 (2)
C110.054 (2)0.081 (3)0.051 (2)0.002 (2)0.0008 (18)0.006 (2)
C100.082 (3)0.055 (2)0.057 (2)0.001 (2)0.004 (2)0.001 (2)
C90.050 (2)0.059 (3)0.076 (3)0.002 (2)0.0022 (19)0.011 (2)
C80.068 (3)0.065 (3)0.049 (2)0.011 (2)0.012 (2)0.003 (2)
C70.058 (3)0.098 (3)0.062 (3)0.007 (2)0.002 (2)0.020 (3)
C60.119 (4)0.069 (3)0.046 (2)0.012 (3)0.001 (2)0.004 (2)
C50.166 (6)0.070 (3)0.056 (3)0.010 (4)0.017 (3)0.015 (2)
C40.072 (3)0.076 (3)0.072 (3)0.018 (2)0.008 (2)0.020 (3)
C30.089 (3)0.079 (3)0.084 (3)0.012 (3)0.025 (3)0.009 (3)
C20.143 (5)0.075 (3)0.079 (4)0.014 (4)0.046 (3)0.002 (3)
C10.091 (3)0.072 (3)0.102 (3)0.000 (3)0.003 (3)0.030 (3)
Geometric parameters (Å, º) top
N—C161.369 (4)O1—C81.215 (4)
N—C241.379 (4)C13—C91.363 (5)
N—C201.391 (4)C13—H130.9300
C24—C211.380 (4)C12—C91.401 (5)
C24—C171.430 (5)C12—H120.9300
O3—C171.230 (4)C11—C71.378 (5)
O2—C181.215 (4)C11—H110.9300
C23—C191.382 (5)C10—C31.388 (5)
C23—C221.400 (4)C10—H100.9300
C23—C181.492 (5)C9—C11.505 (5)
C22—C111.389 (5)C7—C41.366 (5)
C22—C171.474 (5)C7—H70.9300
C21—C151.399 (4)C6—C51.372 (6)
C21—C181.462 (5)C6—H60.9300
C20—C131.400 (4)C5—C21.358 (6)
C20—C151.404 (5)C5—H50.9300
C19—C41.377 (5)C4—H40.9300
C19—H190.9300C3—C21.376 (6)
C16—C121.338 (5)C3—H30.9300
C16—H160.9300C2—H20.9300
C15—C81.465 (5)C1—H1A0.9600
C14—C61.372 (5)C1—H1B0.9600
C14—C101.375 (5)C1—H1C0.9600
C14—C81.488 (5)
C16—N—C24130.0 (3)C16—C12—C9121.7 (4)
C16—N—C20121.5 (3)C16—C12—H12119.2
C24—N—C20108.5 (3)C9—C12—H12119.2
N—C24—C21107.7 (3)C7—C11—C22120.1 (4)
N—C24—C17126.5 (3)C7—C11—H11120.0
C21—C24—C17125.7 (3)C22—C11—H11120.0
C19—C23—C22119.3 (3)C14—C10—C3120.3 (4)
C19—C23—C18119.2 (3)C14—C10—H10119.9
C22—C23—C18121.4 (3)C3—C10—H10119.9
C11—C22—C23119.2 (3)C13—C9—C12118.5 (4)
C11—C22—C17119.4 (3)C13—C9—C1121.3 (4)
C23—C22—C17121.4 (3)C12—C9—C1120.1 (4)
C24—C21—C15109.4 (3)O1—C8—C15119.1 (4)
C24—C21—C18119.8 (3)O1—C8—C14119.6 (3)
C15—C21—C18130.5 (3)C15—C8—C14121.3 (3)
N—C20—C13117.6 (3)C4—C7—C11120.9 (4)
N—C20—C15108.3 (3)C4—C7—H7119.6
C13—C20—C15134.2 (3)C11—C7—H7119.5
C23—C19—C4120.9 (4)C14—C6—C5120.9 (5)
C23—C19—H19119.5C14—C6—H6119.5
C4—C19—H19119.5C5—C6—H6119.5
O2—C18—C21123.4 (3)C2—C5—C6120.1 (5)
O2—C18—C23120.6 (3)C2—C5—H5120.0
C21—C18—C23116.0 (3)C6—C5—H5120.0
O3—C17—C24123.1 (3)C7—C4—C19119.6 (4)
O3—C17—C22121.8 (3)C7—C4—H4120.2
C24—C17—C22115.1 (3)C19—C4—H4120.2
C12—C16—N119.6 (3)C2—C3—C10119.5 (5)
C12—C16—H16120.2C2—C3—H3120.3
N—C16—H16120.2C10—C3—H3120.3
C21—C15—C20106.1 (3)C5—C2—C3120.2 (5)
C21—C15—C8131.6 (3)C5—C2—H2119.9
C20—C15—C8122.3 (3)C3—C2—H2119.9
C6—C14—C10119.0 (4)C9—C1—H1A109.5
C6—C14—C8119.8 (4)C9—C1—H1B109.5
C10—C14—C8121.2 (3)H1A—C1—H1B109.5
C9—C13—C20121.1 (4)C9—C1—H1C109.5
C9—C13—H13119.4H1A—C1—H1C109.5
C20—C13—H13119.4H1B—C1—H1C109.5
C16—N—C24—C21178.7 (3)C24—C21—C15—C200.1 (4)
C20—N—C24—C210.2 (3)C18—C21—C15—C20172.7 (3)
C16—N—C24—C170.7 (5)C24—C21—C15—C8179.2 (3)
C20—N—C24—C17179.2 (3)C18—C21—C15—C88.0 (6)
C19—C23—C22—C110.7 (5)N—C20—C15—C210.0 (4)
C18—C23—C22—C11178.3 (3)C13—C20—C15—C21178.8 (4)
C19—C23—C22—C17177.9 (3)N—C20—C15—C8179.4 (3)
C18—C23—C22—C170.2 (5)C13—C20—C15—C80.6 (6)
N—C24—C21—C150.2 (4)N—C20—C13—C90.4 (5)
C17—C24—C21—C15179.2 (3)C15—C20—C13—C9178.3 (4)
N—C24—C21—C18173.5 (3)N—C16—C12—C90.9 (5)
C17—C24—C21—C187.1 (5)C23—C22—C11—C70.7 (5)
C16—N—C20—C130.2 (4)C17—C22—C11—C7179.3 (3)
C24—N—C20—C13178.9 (3)C6—C14—C10—C31.2 (5)
C16—N—C20—C15178.8 (3)C8—C14—C10—C3176.3 (3)
C24—N—C20—C150.1 (3)C20—C13—C9—C120.0 (5)
C22—C23—C19—C42.1 (5)C20—C13—C9—C1177.8 (3)
C18—C23—C19—C4179.7 (3)C16—C12—C9—C130.7 (5)
C24—C21—C18—O2168.7 (3)C16—C12—C9—C1178.5 (4)
C15—C21—C18—O23.5 (6)C21—C15—C8—O1140.5 (4)
C24—C21—C18—C239.5 (5)C20—C15—C8—O140.3 (5)
C15—C21—C18—C23178.3 (3)C21—C15—C8—C1443.1 (6)
C19—C23—C18—O25.7 (5)C20—C15—C8—C14136.1 (4)
C22—C23—C18—O2171.9 (3)C6—C14—C8—O127.8 (5)
C19—C23—C18—C21176.0 (3)C10—C14—C8—O1149.7 (4)
C22—C23—C18—C216.4 (4)C6—C14—C8—C15155.8 (3)
N—C24—C17—O30.8 (5)C10—C14—C8—C1526.7 (5)
C21—C24—C17—O3178.5 (3)C22—C11—C7—C40.8 (6)
N—C24—C17—C22179.9 (3)C10—C14—C6—C51.3 (5)
C21—C24—C17—C220.7 (5)C8—C14—C6—C5178.8 (4)
C11—C22—C17—O30.5 (5)C14—C6—C5—C22.9 (7)
C23—C22—C17—O3178.1 (3)C11—C7—C4—C190.5 (6)
C11—C22—C17—C24178.6 (3)C23—C19—C4—C71.9 (6)
C23—C22—C17—C242.8 (4)C14—C10—C3—C22.1 (6)
C24—N—C16—C12177.9 (3)C6—C5—C2—C32.0 (7)
C20—N—C16—C120.5 (5)C10—C3—C2—C50.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O3i0.932.453.305 (5)152
C16—H16···O30.932.402.960 (5)119
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H15NO3
Mr365.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.1260 (14), 10.125 (2), 24.352 (5)
β (°) 90.22 (3)
V3)1757.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(XCAD4; Harms & Wocadlo, 1995)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3371, 3103, 1555
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.169, 1.02
No. of reflections3103
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
N—C161.369 (4)N—C201.391 (4)
N—C241.379 (4)
C16—N—C24130.0 (3)C24—N—C20108.5 (3)
C16—N—C20121.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O3i0.932.453.305 (5)152
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Xuzhou Normal University for financial support (08XLR07). This work was also sponsored by the Qing Lan Project (08QLT001).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius. (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJaffrezou, J. P., Levade, T., Thurneyssen, O., Chiron, M., Bordier, C., Attal, M., Chatelain, P. & Laurent, G. (1992). Cancer Res. 52, 1352–1359.  PubMed CAS Web of Science Google Scholar
First citationOlden, K., Breton, P., Grzegorzevski, K., Yasuda, Y., Gause, B. L., Creaipe, O. A., Newton, S. A. & White, S. L. (1991). Pharmacol. Ther. 50, 285–290.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPratt, E. F., Rice, R. G. & Luckenbaugh, R. W. (1957). J. Am. Chem. Soc. 79, 1212–1217.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds