organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(3-methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 May 2011; accepted 23 May 2011; online 28 May 2011)

In the crystal of the title compound, C13H12ClNO2S, the N—H bond is anti to the meta-methyl group in the aniline ring. The C—SO2—NH—C torsion angle is −57.6 (2)°. The sulfonyl and aniline benzene rings are tilted relative to each other by 84.7 (1)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004[Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845-852.]), on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o434.]); Nirmala et al. (2009[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3208.]); Shakuntala et al. (2011[Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1252.]) and on the structures of N-(ar­yl)methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12ClNO2S

  • Mr = 281.75

  • Monoclinic, C 2/c

  • a = 14.202 (1) Å

  • b = 14.561 (1) Å

  • c = 13.271 (1) Å

  • β = 97.292 (9)°

  • V = 2722.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.48 × 0.44 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.821, Tmax = 0.848

  • 5706 measured reflections

  • 2777 independent reflections

  • 2186 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.05

  • 2777 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.11 (2) 2.942 (2) 172 (2)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The sulfonamide moieties are the constituents of many biologically important compounds. The hydrogen bonding preferences of sulfonamides has been investigated (Adsmond & Grant, 2001). As a part of studying the substituent effects on the structures of this class of compounds (Gowda et al., 2004, 2007, 2010; Nirmala et al., 2009, Shakuntala et al., 2011), in the present work, the crystal structure of 4-chloro-N-(3-methylphenyl)-benzenesulfonamide (I) has been determined (Fig.1). In the title compound, the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the SO bonds. Furthermore, the N—H bond is anti to the meta-methyl group in the anilino ring, similar to that observed in 4-methyl-N-(3-methylphenyl)-benzenesulfonamide (II) (Nirmala et al., 2009), but in contrast to the syn conformation observed with respect to the meta-methyl groups in N-(3-methylphenyl)-benzenesulfonamide (III) (Gowda et al., 2010)

The molecule is twisted at the S atom with the C—SO2—NH—C torsion angle of -57.6 (2)°, compared to the values of 56.7 (3)° in (II), 55.8 (2)° (molecule 1) and -58.4 (3)° (molecule 2) in the two molecules of (III), and -53.8 (3)° and -63.4 (3)° in the two independent molecules of 4-chloro-N-(phenyl)-benzenesulfonamide (IV)(Shakuntala et al., 2011).

The sulfonyl and the anilino benzene rings are tilted relative to each other by 84.7 (1)° in (I), compared to the values of 83.9 (1)° in (II), 67.9 (1)° (molecule 1) and 68.6 (1)° (molecule 2) in (III), and 69.1 (1)° and 82.6 (1)° in the two independent molecules of (IV).

The packing of molecules in the crystal via intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2004), on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2010); Nirmala et al. (2009); Shakuntala et al. (2011) and on the structures of N-(aryl)methanesulfonamides, see: Gowda et al. (2007).

Experimental top

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with m-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-chloro-N-(3-methylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The compound was characterized by recording its infrared and NMR spectra.

Needle like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and the methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-(3-methylphenyl)benzenesulfonamide top
Crystal data top
C13H12ClNO2SF(000) = 1168
Mr = 281.75Dx = 1.375 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2392 reflections
a = 14.202 (1) Åθ = 2.7–27.8°
b = 14.561 (1) ŵ = 0.43 mm1
c = 13.271 (1) ÅT = 293 K
β = 97.292 (9)°Prism, colourless
V = 2722.2 (3) Å30.48 × 0.44 × 0.40 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2777 independent reflections
Radiation source: fine-focus sealed tube2186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1716
Tmin = 0.821, Tmax = 0.848k = 1818
5706 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0632P)2 + 1.8143P]
where P = (Fo2 + 2Fc2)/3
2777 reflections(Δ/σ)max = 0.008
167 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.45 e Å3
Crystal data top
C13H12ClNO2SV = 2722.2 (3) Å3
Mr = 281.75Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.202 (1) ŵ = 0.43 mm1
b = 14.561 (1) ÅT = 293 K
c = 13.271 (1) Å0.48 × 0.44 × 0.40 mm
β = 97.292 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2777 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2186 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.848Rint = 0.012
5706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.44 e Å3
2777 reflectionsΔρmin = 0.45 e Å3
167 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53559 (14)0.23409 (14)0.05005 (15)0.0406 (5)
C20.57647 (15)0.31911 (14)0.04598 (18)0.0491 (5)
H20.63360.32560.01940.059*
C30.53266 (18)0.39513 (17)0.0813 (2)0.0593 (6)
H30.56000.45300.07880.071*
C40.44869 (19)0.3845 (2)0.11999 (18)0.0605 (7)
C50.40852 (18)0.3008 (2)0.1274 (2)0.0730 (8)
H50.35230.29500.15600.088*
C60.45174 (18)0.2240 (2)0.0922 (2)0.0644 (7)
H60.42470.16620.09670.077*
C70.67268 (14)0.08513 (13)0.18508 (15)0.0388 (4)
C80.73805 (14)0.15662 (14)0.19410 (16)0.0442 (5)
H80.74300.19490.13890.053*
C90.79595 (16)0.17110 (16)0.28509 (18)0.0522 (5)
C100.78847 (19)0.11271 (18)0.36573 (19)0.0617 (6)
H100.82720.12150.42690.074*
C110.72408 (19)0.04155 (17)0.35625 (19)0.0611 (6)
H110.72020.00240.41100.073*
C120.66545 (16)0.02758 (15)0.26704 (18)0.0500 (5)
H120.62140.02000.26160.060*
C130.8658 (2)0.2492 (2)0.2948 (2)0.0907 (10)
H13A0.84760.29350.34230.109*
H13B0.86640.27790.22970.109*
H13C0.92810.22620.31840.109*
N10.61358 (14)0.06654 (12)0.09302 (14)0.0510 (5)
H1N0.5746 (16)0.0231 (14)0.092 (2)0.061*
O10.67240 (11)0.16746 (10)0.03772 (11)0.0512 (4)
O20.51716 (12)0.09095 (11)0.06921 (12)0.0610 (5)
Cl10.38998 (7)0.48058 (7)0.15793 (7)0.1027 (4)
S10.58782 (4)0.13761 (3)0.00050 (4)0.04315 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0383 (10)0.0444 (11)0.0372 (10)0.0031 (8)0.0019 (8)0.0028 (9)
C20.0448 (11)0.0439 (12)0.0593 (13)0.0027 (9)0.0093 (10)0.0030 (10)
C30.0589 (14)0.0483 (13)0.0702 (16)0.0051 (11)0.0061 (12)0.0041 (12)
C40.0637 (15)0.0735 (17)0.0444 (12)0.0243 (13)0.0070 (11)0.0019 (12)
C50.0540 (15)0.103 (2)0.0668 (16)0.0160 (15)0.0266 (13)0.0172 (16)
C60.0540 (14)0.0701 (17)0.0708 (16)0.0093 (13)0.0150 (12)0.0166 (14)
C70.0395 (10)0.0315 (9)0.0440 (11)0.0032 (8)0.0004 (8)0.0019 (8)
C80.0463 (11)0.0412 (11)0.0433 (11)0.0026 (9)0.0017 (9)0.0033 (9)
C90.0493 (12)0.0527 (12)0.0508 (12)0.0051 (10)0.0086 (10)0.0008 (11)
C100.0654 (15)0.0674 (16)0.0470 (13)0.0000 (12)0.0129 (11)0.0024 (12)
C110.0754 (16)0.0580 (14)0.0482 (13)0.0013 (13)0.0012 (12)0.0140 (12)
C120.0521 (12)0.0405 (11)0.0570 (13)0.0014 (9)0.0049 (10)0.0048 (10)
C130.089 (2)0.100 (2)0.0737 (19)0.0454 (18)0.0238 (16)0.0067 (18)
N10.0607 (12)0.0336 (9)0.0535 (11)0.0148 (8)0.0127 (9)0.0027 (8)
O10.0560 (9)0.0485 (8)0.0505 (9)0.0052 (7)0.0128 (7)0.0060 (7)
O20.0759 (11)0.0490 (9)0.0514 (9)0.0178 (8)0.0183 (8)0.0017 (7)
Cl10.1129 (7)0.1136 (7)0.0848 (6)0.0634 (6)0.0249 (5)0.0053 (5)
S10.0500 (3)0.0366 (3)0.0402 (3)0.0082 (2)0.0044 (2)0.0017 (2)
Geometric parameters (Å, º) top
C1—C21.371 (3)C8—H80.9300
C1—C61.386 (3)C9—C101.381 (3)
C1—S11.761 (2)C9—C131.505 (3)
C2—C31.381 (3)C10—C111.377 (4)
C2—H20.9300C10—H100.9300
C3—C41.366 (4)C11—C121.373 (3)
C3—H30.9300C11—H110.9300
C4—C51.354 (4)C12—H120.9300
C4—Cl11.736 (3)C13—H13A0.9600
C5—C61.386 (4)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—H60.9300N1—S11.6216 (19)
C7—C121.387 (3)N1—H1N0.839 (16)
C7—C81.390 (3)O1—S11.4236 (15)
C7—N11.418 (3)O2—S11.4380 (15)
C8—C91.388 (3)
C2—C1—C6120.1 (2)C8—C9—C13120.0 (2)
C2—C1—S1120.29 (16)C11—C10—C9120.5 (2)
C6—C1—S1119.59 (18)C11—C10—H10119.7
C1—C2—C3119.9 (2)C9—C10—H10119.7
C1—C2—H2120.0C12—C11—C10120.9 (2)
C3—C2—H2120.0C12—C11—H11119.6
C4—C3—C2119.3 (2)C10—C11—H11119.6
C4—C3—H3120.4C11—C12—C7119.3 (2)
C2—C3—H3120.4C11—C12—H12120.4
C5—C4—C3121.7 (2)C7—C12—H12120.4
C5—C4—Cl1118.8 (2)C9—C13—H13A109.5
C3—C4—Cl1119.5 (2)C9—C13—H13B109.5
C4—C5—C6119.5 (2)H13A—C13—H13B109.5
C4—C5—H5120.2C9—C13—H13C109.5
C6—C5—H5120.2H13A—C13—H13C109.5
C5—C6—C1119.4 (2)H13B—C13—H13C109.5
C5—C6—H6120.3C7—N1—S1126.09 (14)
C1—C6—H6120.3C7—N1—H1N118.7 (18)
C12—C7—C8120.01 (19)S1—N1—H1N112.3 (18)
C12—C7—N1117.75 (18)O1—S1—O2118.42 (10)
C8—C7—N1122.22 (18)O1—S1—N1110.01 (10)
C9—C8—C7120.3 (2)O2—S1—N1104.79 (9)
C9—C8—H8119.9O1—S1—C1107.66 (9)
C7—C8—H8119.9O2—S1—C1108.95 (10)
C10—C9—C8119.0 (2)N1—S1—C1106.42 (10)
C10—C9—C13120.9 (2)
C6—C1—C2—C31.8 (4)C9—C10—C11—C120.6 (4)
S1—C1—C2—C3176.87 (18)C10—C11—C12—C71.2 (4)
C1—C2—C3—C40.0 (4)C8—C7—C12—C110.7 (3)
C2—C3—C4—C52.0 (4)N1—C7—C12—C11177.6 (2)
C2—C3—C4—Cl1176.41 (19)C12—C7—N1—S1161.80 (17)
C3—C4—C5—C62.0 (4)C8—C7—N1—S119.9 (3)
Cl1—C4—C5—C6176.4 (2)C7—N1—S1—O158.7 (2)
C4—C5—C6—C10.1 (4)C7—N1—S1—O2172.95 (19)
C2—C1—C6—C51.8 (4)C7—N1—S1—C157.6 (2)
S1—C1—C6—C5176.92 (19)C2—C1—S1—O11.6 (2)
C12—C7—C8—C90.4 (3)C6—C1—S1—O1179.70 (18)
N1—C7—C8—C9178.6 (2)C2—C1—S1—O2127.99 (18)
C7—C8—C9—C100.9 (3)C6—C1—S1—O250.7 (2)
C7—C8—C9—C13179.3 (2)C2—C1—S1—N1119.52 (19)
C8—C9—C10—C110.4 (4)C6—C1—S1—N161.8 (2)
C13—C9—C10—C11179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (2)2.11 (2)2.942 (2)172 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H12ClNO2S
Mr281.75
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.202 (1), 14.561 (1), 13.271 (1)
β (°) 97.292 (9)
V3)2722.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.48 × 0.44 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.821, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
5706, 2777, 2186
Rint0.012
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.05
No. of reflections2777
No. of parameters167
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.45

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.839 (16)2.109 (17)2.942 (2)172 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.  Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds