metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(2-imino­methyl-3-fluoro­phenyl-κ2C1,N)tris­­(tri­methyl­phos­phane-κP)iron

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: Xli63@sdu.edu.cn

(Received 18 March 2011; accepted 21 April 2011; online 7 May 2011)

The title compound, [Fe(C7H5FN)Cl(C3H9P)3], was obtained as a product of the reaction of [Fe(Me3P)4] with a molar equivalent of (2-chloro-6-fluoro­phen­yl)methanimine in diethyl ether. This compound is sensitive to air, and rapidly decomposes when exposed to air for a few minutes. The Fe atom has an octa­hedral coordination geometry in which the bidentate fluoro­phenyl methanimine ligand forms the equatorial plane with the Cl atom and one of the trimethyl­phosphane ligands. The other two trimethyl­phosphane ligands are located in the axial positions. In the crystal, an N—H⋯Cl hydrogen bond occurs.

Related literature

For related literature regarding C—Cl bond activation, see: Wang et al. (2007[Wang, T., Alfonso, B. J. & Love, J. A. (2007). Org. Lett. 9, 5629-5631.]); Wang & Love (2008[Wang, T. & Love, J. A. (2008). Organometallics, 27, 3290-3296.]); Shi et al. (2009[Shi, Y., Li, M., Hu, Q., Li, X. & Sun, H. (2009). Organometallics, 28, 2206-2210.]). Related crystal structures of iron compounds have not yet been reported in the literature. For substituted phenyl­methanimine coordinated dihydride complexes of osmium, see: Schloerer et al. (2006[Schloerer, N., Pons, V., Gusev, D. G. & Heinekey, D. M. (2006). Organometallics, 25, 3481-3485.]); Barea et al. (1998[Barea, G., Esteruelas, M. A., Lledos, A., Lopez, A., Onate, E. & Tolosa, J. I. (1998). Organometallics, 17, 4065-4076.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C7H5FN)Cl(C3H9P)3]

  • Mr = 441.64

  • Monoclinic, P 21 /c

  • a = 8.9879 (6) Å

  • b = 19.4457 (13) Å

  • c = 13.5438 (7) Å

  • β = 114.937 (3)°

  • V = 2146.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.816, Tmax = 0.858

  • 12499 measured reflections

  • 4859 independent reflections

  • 4109 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.071

  • S = 1.04

  • 4859 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.86 2.53 3.3339 (15) 157
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

C-Cl bond activation and C-C coupling reactions are of great interest, with much focus on ortho-substitued imines (Wang et al., 2007; Wang & Love, 2008), where Pt complexes have been used to catalyze the cross coupling of imines and dimethylzinc reagents through C-X bond activation. We have previously shown that the iron complexes supported by trimethylphosphine can easily activate the C-X (X=Cl,F) bond (Shi et al., 2009).

Reaction of the low valent complex of Fe(PMe3)4 with (2-chloro-6-fluorophenyl)methanimine afforded the title compound. The ortho C—Cl bond was selectively activated due to its energy being lower than the C—F bond. The coordination of the imine group and one of the C atoms led to the formation of a five membered chelate ring which can provide enough energy to actiatve the C—Cl bond. It indicates that with the assistance of the imine group iron(0) complexes can easily activate the C—Cl bond affording iron(II) chloride complexes. Subsequently, C—C coupling reactions with organometallic reagents may occur.

In the title molecule (Fig. 1) the iron atom lies in an octahedral geometry in which atoms C1, N1, Cl1 and P2 form the basal plane with P1 and P3 in the axial positions. The two axial groups are located in a distorted linear geometry. A five-membered chelate ring is formed by C1, C6, C7, N1 and Fe. The bite angle of N1—Fe—C1 is 81.08 (7)°. The sum of internal bond angles (360.0 °) of N1—Fe—C1, C1—Fe—P2, P2—Fe—Cl1 and Cl1—Fe—N1 indicates nearly perfect planarity. The N—H···Cl interaction is rather short (2.53 Å). The probable reason is the steric effect of atom P2 which forces the Cl1 atom closer to the H1 atom. The C1—Fe—Cl1 angle is 167.34 (5)°, while the N1—Fe—Cl1 angle (86.27 (4)°) is less than 90°. Related structures of Os complexes containing the same iminomethyl ligand have been reported in the literature (Barea et al., 1998; Schloerer et al., 2006), although one molecule of hydrogen occupies the position trans to the nitrogen atom instead of one of the trimethylphosphine ligands. In this structure the N—Os—Cl angle is also less than 90°, and also contains a similar short N—H···Cl interaction.

Related literature top

For related literature regarding C—Cl bond activation, see: Wang et al. (2007); Wang & Love (2008); Shi et al. (2009). Related crystal structures of iron compounds have not yet been reported in the literature. For substituted phenylmethanimine coordinated dihydride complexes of osmium, see: Schloerer et al. (2006); and Barea et al. (1998).

Experimental top

A sample of Fe(PMe3)4 (0.50 g, 1.39 mmol) in 30 ml of diethyl ether was combined with a solution of (2-chloro-6-fluorophenyl)methanimine (0.22 g, 1.39 mmol) in diethyl ether (20 ml) at -80 °. The reaction mixture was warmed to ambient temperature and stirred for 24 h to form a red solution. The volatiles were removed in vacuo, and the resulting solid was extracted with pentane (40 ml). Crystallization at -15 ° afforded red crystals suitable for X-ray diffraction analysis (yield 0.40 g, 65%), dec. > 86 °.

Refinement top

All H atoms on C were placed in calculated positions with a C—H bond distance of 0.93 or 0.96 Å and Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atomic numbering scheme and 30% probability displacement ellipsoids.
Chlorido(2-iminomethyl-3-fluorophenyl- κ2C1,N)tris(trimethylphosphane-κP)iron top
Crystal data top
[Fe(C7H5FN)Cl(C3H9P)3]F(000) = 928
Mr = 441.64Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 5013 reflections
a = 8.9879 (6) Åθ = 2.5–27.5°
b = 19.4457 (13) ŵ = 1.06 mm1
c = 13.5438 (7) ÅT = 298 K
β = 114.937 (3)°Block, red
V = 2146.4 (2) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4859 independent reflections
Radiation source: fine-focus sealed tube4109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1011
Tmin = 0.816, Tmax = 0.858k = 2425
12499 measured reflectionsl = 1713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.4204P]
where P = (Fo2 + 2Fc2)/3
4859 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Fe(C7H5FN)Cl(C3H9P)3]V = 2146.4 (2) Å3
Mr = 441.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9879 (6) ŵ = 1.06 mm1
b = 19.4457 (13) ÅT = 298 K
c = 13.5438 (7) Å0.20 × 0.18 × 0.15 mm
β = 114.937 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4859 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4109 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.858Rint = 0.024
12499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
4859 reflectionsΔρmin = 0.23 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.02988 (3)0.391645 (11)0.325636 (18)0.01883 (7)
P30.25510 (6)0.35114 (2)0.46464 (4)0.02733 (11)
P20.14694 (5)0.39138 (2)0.20985 (4)0.02377 (11)
P10.19959 (5)0.44130 (2)0.20154 (4)0.02855 (11)
C10.0641 (2)0.29926 (8)0.29408 (13)0.0239 (3)
C60.1656 (2)0.28469 (9)0.34912 (13)0.0249 (4)
C50.2479 (2)0.22233 (10)0.33495 (15)0.0311 (4)
C40.2322 (2)0.17074 (10)0.27239 (15)0.0377 (5)
H40.28770.12930.26470.045*
C30.1304 (3)0.18198 (9)0.22048 (15)0.0372 (5)
H30.11540.14720.17840.045*
C20.0503 (2)0.24454 (9)0.23040 (15)0.0319 (4)
H20.01530.25050.19330.038*
N10.08235 (18)0.39126 (7)0.42146 (12)0.0272 (3)
H10.07350.42560.46360.033*
C70.1695 (2)0.33880 (9)0.42040 (14)0.0291 (4)
H70.22960.33600.46180.035*
C120.2364 (2)0.47338 (9)0.19708 (15)0.0320 (4)
H12A0.32180.48600.26630.048*
H12B0.15300.50820.17370.048*
H12C0.28160.46900.14450.048*
C130.0237 (3)0.37148 (12)0.06515 (15)0.0414 (5)
H13A0.06240.40480.03440.062*
H13B0.02330.32650.05870.062*
H13C0.09250.37280.02690.062*
C110.3211 (2)0.33487 (10)0.22908 (17)0.0375 (5)
H11A0.35550.34280.17190.056*
H11B0.28840.28770.22730.056*
H11C0.41050.34450.29810.056*
C80.1846 (3)0.51567 (12)0.1234 (2)0.0500 (6)
H8A0.29260.53280.07920.075*
H8B0.13220.50220.07760.075*
H8C0.12110.55110.17250.075*
C100.3503 (2)0.38749 (12)0.09655 (18)0.0475 (6)
H10A0.38220.35040.13020.071*
H10B0.30300.36920.05040.071*
H10C0.44490.41460.05380.071*
C90.3291 (3)0.47893 (11)0.2609 (2)0.0479 (6)
H9A0.41210.50700.20750.072*
H9B0.26320.50670.32240.072*
H9C0.38030.44290.28400.072*
C140.4433 (2)0.40139 (11)0.50640 (17)0.0441 (5)
H14A0.53190.37710.56230.066*
H14B0.42860.44510.53400.066*
H14C0.46840.40840.44490.066*
C150.3272 (3)0.26346 (10)0.46240 (18)0.0451 (5)
H15A0.36410.25950.40570.068*
H15B0.23910.23170.44910.068*
H15C0.41630.25320.53130.068*
C160.2353 (3)0.34609 (12)0.59360 (16)0.0458 (5)
H16A0.33930.33400.65110.069*
H16B0.15540.31170.58810.069*
H16C0.20080.38990.60920.069*
F0.34624 (14)0.21266 (6)0.38775 (10)0.0473 (3)
Cl10.11769 (5)0.50640 (2)0.39209 (4)0.02803 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.02089 (13)0.01713 (12)0.02020 (13)0.00157 (9)0.01036 (10)0.00253 (9)
P30.0284 (2)0.0237 (2)0.0260 (2)0.00102 (18)0.00766 (19)0.00456 (18)
P20.0242 (2)0.0271 (2)0.0231 (2)0.00228 (18)0.01291 (18)0.00302 (17)
P10.0204 (2)0.0289 (2)0.0338 (3)0.00095 (18)0.00892 (19)0.00162 (19)
C10.0254 (8)0.0222 (8)0.0227 (8)0.0012 (7)0.0089 (7)0.0011 (7)
C60.0263 (9)0.0237 (8)0.0238 (8)0.0022 (7)0.0096 (7)0.0012 (7)
C50.0281 (9)0.0313 (10)0.0288 (9)0.0073 (8)0.0069 (8)0.0074 (8)
C40.0423 (11)0.0239 (9)0.0336 (10)0.0110 (8)0.0031 (9)0.0016 (8)
C30.0509 (12)0.0219 (9)0.0315 (10)0.0031 (8)0.0103 (9)0.0076 (8)
C20.0395 (10)0.0256 (9)0.0329 (10)0.0050 (8)0.0175 (8)0.0085 (8)
N10.0347 (8)0.0233 (7)0.0299 (8)0.0039 (6)0.0198 (7)0.0072 (6)
C70.0325 (10)0.0324 (10)0.0290 (9)0.0031 (8)0.0194 (8)0.0001 (8)
C120.0320 (10)0.0350 (10)0.0337 (10)0.0038 (8)0.0184 (8)0.0030 (8)
C130.0455 (12)0.0559 (13)0.0254 (10)0.0109 (10)0.0174 (9)0.0086 (9)
C110.0375 (11)0.0365 (11)0.0479 (12)0.0022 (9)0.0273 (10)0.0050 (9)
C80.0326 (11)0.0499 (13)0.0586 (14)0.0082 (10)0.0106 (10)0.0259 (11)
C100.0277 (10)0.0572 (14)0.0437 (13)0.0041 (10)0.0015 (9)0.0069 (10)
C90.0316 (11)0.0448 (12)0.0696 (16)0.0098 (9)0.0235 (11)0.0042 (11)
C140.0296 (10)0.0465 (12)0.0406 (12)0.0066 (9)0.0004 (9)0.0105 (10)
C150.0475 (12)0.0315 (11)0.0546 (13)0.0139 (9)0.0197 (11)0.0145 (10)
C160.0600 (14)0.0450 (12)0.0273 (10)0.0034 (11)0.0135 (10)0.0072 (9)
F0.0466 (7)0.0466 (7)0.0524 (7)0.0150 (6)0.0245 (6)0.0088 (6)
Cl10.0366 (2)0.01904 (19)0.0327 (2)0.00468 (17)0.01878 (19)0.00525 (17)
Geometric parameters (Å, º) top
Fe—N11.9508 (14)C7—H70.9300
Fe—C11.9544 (16)C12—H12A0.9600
Fe—P22.2265 (5)C12—H12B0.9600
Fe—P32.2470 (5)C12—H12C0.9600
Fe—P12.2556 (5)C13—H13A0.9600
Fe—Cl12.4111 (5)C13—H13B0.9600
P3—C141.825 (2)C13—H13C0.9600
P3—C151.829 (2)C11—H11A0.9600
P3—C161.832 (2)C11—H11B0.9600
P2—C121.8268 (18)C11—H11C0.9600
P2—C111.8393 (19)C8—H8A0.9600
P2—C131.8404 (19)C8—H8B0.9600
P1—C101.824 (2)C8—H8C0.9600
P1—C91.824 (2)C10—H10A0.9600
P1—C81.830 (2)C10—H10B0.9600
C1—C21.408 (2)C10—H10C0.9600
C1—C61.429 (2)C9—H9A0.9600
C6—C51.391 (2)C9—H9B0.9600
C6—C71.439 (2)C9—H9C0.9600
C5—C41.359 (3)C14—H14A0.9600
C5—F1.364 (2)C14—H14B0.9600
C4—C31.386 (3)C14—H14C0.9600
C4—H40.9300C15—H15A0.9600
C3—C21.391 (3)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C2—H20.9300C16—H16A0.9600
N1—C71.283 (2)C16—H16B0.9600
N1—H10.8600C16—H16C0.9600
N1—Fe—C181.08 (7)C6—C7—H7123.2
N1—Fe—P2177.39 (5)P2—C12—H12A109.5
C1—Fe—P297.64 (5)P2—C12—H12B109.5
N1—Fe—P388.69 (5)H12A—C12—H12B109.5
C1—Fe—P390.84 (5)P2—C12—H12C109.5
P2—Fe—P393.61 (2)H12A—C12—H12C109.5
N1—Fe—P186.02 (5)H12B—C12—H12C109.5
C1—Fe—P193.18 (5)P2—C13—H13A109.5
P2—Fe—P191.794 (19)P2—C13—H13B109.5
P3—Fe—P1172.79 (2)H13A—C13—H13B109.5
N1—Fe—Cl186.27 (4)P2—C13—H13C109.5
C1—Fe—Cl1167.34 (5)H13A—C13—H13C109.5
P2—Fe—Cl195.022 (17)H13B—C13—H13C109.5
P3—Fe—Cl188.522 (18)P2—C11—H11A109.5
P1—Fe—Cl186.246 (18)P2—C11—H11B109.5
C14—P3—C15102.46 (10)H11A—C11—H11B109.5
C14—P3—C16100.56 (11)P2—C11—H11C109.5
C15—P3—C1698.25 (10)H11A—C11—H11C109.5
C14—P3—Fe117.51 (7)H11B—C11—H11C109.5
C15—P3—Fe120.89 (7)P1—C8—H8A109.5
C16—P3—Fe113.72 (8)P1—C8—H8B109.5
C12—P2—C1198.76 (9)H8A—C8—H8B109.5
C12—P2—C13100.02 (9)P1—C8—H8C109.5
C11—P2—C1396.86 (10)H8A—C8—H8C109.5
C12—P2—Fe114.99 (6)H8B—C8—H8C109.5
C11—P2—Fe121.91 (7)P1—C10—H10A109.5
C13—P2—Fe119.97 (7)P1—C10—H10B109.5
C10—P1—C999.88 (11)H10A—C10—H10B109.5
C10—P1—C8102.37 (11)P1—C10—H10C109.5
C9—P1—C898.87 (11)H10A—C10—H10C109.5
C10—P1—Fe118.72 (8)H10B—C10—H10C109.5
C9—P1—Fe113.34 (8)P1—C9—H9A109.5
C8—P1—Fe120.13 (7)P1—C9—H9B109.5
C2—C1—C6114.22 (15)H9A—C9—H9B109.5
C2—C1—Fe133.41 (14)P1—C9—H9C109.5
C6—C1—Fe112.36 (12)H9A—C9—H9C109.5
C5—C6—C1121.36 (16)H9B—C9—H9C109.5
C5—C6—C7124.61 (16)P3—C14—H14A109.5
C1—C6—C7114.01 (15)P3—C14—H14B109.5
C4—C5—F119.09 (16)H14A—C14—H14B109.5
C4—C5—C6122.71 (18)P3—C14—H14C109.5
F—C5—C6118.19 (17)H14A—C14—H14C109.5
C5—C4—C3117.68 (17)H14B—C14—H14C109.5
C5—C4—H4121.2P3—C15—H15A109.5
C3—C4—H4121.2P3—C15—H15B109.5
C4—C3—C2120.94 (18)H15A—C15—H15B109.5
C4—C3—H3119.5P3—C15—H15C109.5
C2—C3—H3119.5H15A—C15—H15C109.5
C3—C2—C1123.01 (18)H15B—C15—H15C109.5
C3—C2—H2118.5P3—C16—H16A109.5
C1—C2—H2118.5P3—C16—H16B109.5
C7—N1—Fe118.71 (12)H16A—C16—H16B109.5
C7—N1—H1120.6P3—C16—H16C109.5
Fe—N1—H1120.6H16A—C16—H16C109.5
N1—C7—C6113.67 (15)H16B—C16—H16C109.5
N1—C7—H7123.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.862.533.3339 (15)157
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C7H5FN)Cl(C3H9P)3]
Mr441.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.9879 (6), 19.4457 (13), 13.5438 (7)
β (°) 114.937 (3)
V3)2146.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.816, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
12499, 4859, 4109
Rint0.024
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.04
No. of reflections4859
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.862.533.3339 (15)156.8
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge support by the NSF China, grant Nos. 20872080/20772072, and the Science Foundation of Shandong Province, grant Nos. Y2007B06/Y2006B18.

References

First citationBarea, G., Esteruelas, M. A., Lledos, A., Lopez, A., Onate, E. & Tolosa, J. I. (1998). Organometallics, 17, 4065–4076.  CrossRef CAS Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSchloerer, N., Pons, V., Gusev, D. G. & Heinekey, D. M. (2006). Organometallics, 25, 3481–3485.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y., Li, M., Hu, Q., Li, X. & Sun, H. (2009). Organometallics, 28, 2206–2210.  CrossRef CAS Google Scholar
First citationWang, T., Alfonso, B. J. & Love, J. A. (2007). Org. Lett. 9, 5629–5631.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, T. & Love, J. A. (2008). Organometallics, 27, 3290–3296.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds