organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1551-o1552

Benzyl­sulfamide

aInstitute of Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at

(Received 6 May 2011; accepted 23 May 2011; online 28 May 2011)

The crystal of the title compound [systematic name: 4-(benzyl­amino)­benzene­sulfonamide], C13H14N2O2S, displays a hydrogen-bonded framework structure. Mol­ecules are doubly N—H⋯O hydrogen bonded to one another via their NH2 groups and sulfonyl O atoms. These inter­actions generate a hydrogen-bonded ladder structure parallel to the a axis, which contains fused R22(8) rings. The NH group serves as the hydrogen-bond donor for a second set of inter­molecular N—H⋯O=S inter­actions.

Related literature

For the pharmacology and synthesis of the title compound, see Goissedet et al. (1936[Goissedet, P., Despois, R., Gailliot, P. & Mayer, R. (1936). C. R. Soc. Biol. 121, 1082-1084.]); Goissedet & Despois (1938[Goissedet, P. E. C. & Despois, R. L. (1938). US Patent 2 111 768.]); Mellon et al. (1938[Mellon, R. R., Gross, P. & Cooper, F. B. (1938). Sulfanilamide Therapy of Bacterial Infections. Springfield, Illinois & Baltimore: Charles C. Thomas.]); Long & Bliss (1939[Long, P. H. & Bliss, E. A. (1939). The Clinical and Experimental Use of Sulfanilamide, Sulfapyridine and Allied Compounds. New York: The Macmillan Company.]). For related structures, see: Hursthouse et al. (1998[Hursthouse, M. B., Threlfall, T. L., Coles, S. J. & Ward, S. C. (1998). University of Southampton, Crystal Structure Report Archive. doi:10.3737/ecrystals.chem.soton.ac.uk/158.], 1999a[Hursthouse, M. B., Threlfall, T. L., Coles, S. J. & Ward, S. C. (1999a). University of Southampton, Crystal Structure Report Archive. doi:10.3737/ecrystals.chem.soton.ac.uk/169.],b[Hursthouse, M. B., Threlfall, T. L., Coles, S. J. & Ward, S. C. (1999b). University of Southampton, Crystal Structure Report Archive. doi:10.3737/ecrystals.chem.soton.ac.uk/170.]); Gelbrich et al. (2008[Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205-o207.]); Davis et al. (1996[Davis, F. A., Boyd, R., Zhou, P., Abdul-Malik, N. F. & Carroll, P. J. (1996). Tetrahedron Lett. 37, 3267-3270.]); Costanzo et al. (1999[Costanzo, M. J., Jaroskova, L., Gauthier, D. A. & Maryanoff, B. E. (1999). Tetrahedron Asymmetry, 10, 689-703.]); Kubicki & Codding (2001[Kubicki, M. & Codding, P. W. (2001). J. Mol. Struct. 561, 65-70.]);Yathirajan et al. (2005[Yathirajan, H. S., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o179-o181.]); Denehy et al. (2006[Denehy, E., White, J. M. & Williams, S. J. (2006). Chem. Commun. pp. 314-316.]); Toumieux et al. (2006[Toumieux, S., Compain, P., Martin, O. R. & Selkti, M. (2006). Org. Lett. 8, 4493-4496.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O2S

  • Mr = 262.32

  • Orthorhombic, P 21 21 21

  • a = 7.8426 (1) Å

  • b = 10.5549 (11) Å

  • c = 14.6694 (3) Å

  • V = 1214.30 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.962

  • 11460 measured reflections

  • 2364 independent reflections

  • 2312 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.06

  • 2364 reflections

  • 176 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 972 Friedel pairs

  • Flack parameter: −0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H3N⋯O2i 0.87 (2) 2.20 (2) 3.0264 (16) 160 (2)
N1—H2N⋯O1ii 0.89 (2) 2.09 (2) 2.9613 (16) 168 (2)
N1—H1N⋯O2iii 0.86 (1) 2.18 (1) 3.0281 (16) 172 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: AcademicPress.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (synonyms: proseptazine, septazine, benzylsulfanilamide, chemodyn; CAS No. 104–22–3), first marketed in 1936, was one of the early antibacterial agents of the sulfonamide class (Goissedet et al., 1936; Goissedet & Despois, 1938; Mellon et al., 1938; Long & Bliss, 1939). The C–N–(C6H4)–S fragment of the molecule (see Fig. 1) is essentially planar, and the molecular geometry is characterized by the torsion angles N1–S1–C1–C2 and N2–C7–C8–C9 of 43.6 (1)° and -65.9 (2)°, respectively.

The crystal structure contains three independent intermolecular N—H···O=S bonds which lead to the formation of an H-bonded framework. Each molecule is doubly H-bonded, via its NH2 and sulfonyl groups, to two neighbouring molecules. These interactions generate an N—H···O=S-bonded ladder structure parallel to [100], which consists of fused R22(8) rings (Bernstein et al., 1995) and displays a 21 symmetry. This situation is illustrated in Fig. 2. The same one-dimensional structure has been found previously in only a few other compounds of the sulfonamide class, see Davis et al. (1996); Costanzo et al. (1999); Kubicki & Codding (2001);Yathirajan et al. (2005); Denehy et al. (2006); Toumieux et al. (2006).

The sulfonyl oxygen atom O2 accepts an additional H-bond from the NH group of a neighbouring molecule. This interaction links molecules which are related to one another by a 21 operation parallel to the c-axis (see Fig. 3).

Related literature top

For the pharmacology and synthesis of the title compound, see Goissedet et al. (1936); Goissedet & Despois (1938); Mellon et al. (1938); Long & Bliss (1939). For related structures, see: Hursthouse et al. (1998, 1999a,b); Gelbrich et al. (2008); Davis et al. (1996); Costanzo et al. (1999); Kubicki & Codding (2001);Yathirajan et al. (2005); Denehy et al. (2006); Toumieux et al. (2006). For graph-set analysis, see: Bernstein et al. (1995).

Refinement top

All H atoms were identified in a difference map. Secondary CH2 (C—H = 0.99 Å) and aromatic carbon atoms (C—H = 0.95 Å) were positioned geometrically and refined with Uiso = 1.2 Ueq(C). Hydrogen atoms attached to N and O were refined with restrained distances [N—H = 0.88 (2) Å]; and their Uiso parameters were refined freely.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary size.
[Figure 2] Fig. 2. Ladder structure parallel to [100] formed by H-bonds involving the NH2 group. The interactions between the NH group and O2 are indicated by arrows. O and H atoms directly engaged in N–H···O bonds are drawn as balls.
[Figure 3] Fig. 3. H-bonded framework structure viewed parallel to the a-axis, with H-bonds indicated by arrows.
4-(benzylamino)benzenesulfonamide top
Crystal data top
C13H14N2O2SF(000) = 552
Mr = 262.32Dx = 1.435 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6120 reflections
a = 7.8426 (1) Åθ = 2.9–27.5°
b = 10.5549 (11) ŵ = 0.26 mm1
c = 14.6694 (3) ÅT = 120 K
V = 1214.30 (13) Å3Block, colourless
Z = 40.20 × 0.20 × 0.15 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2364 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.2°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1213
Tmin = 0.950, Tmax = 0.962l = 1818
11460 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.032P)2 + 0.3394P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.19 e Å3
2364 reflectionsΔρmin = 0.30 e Å3
176 parametersExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.021 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 972 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (5)
Crystal data top
C13H14N2O2SV = 1214.30 (13) Å3
Mr = 262.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.8426 (1) ŵ = 0.26 mm1
b = 10.5549 (11) ÅT = 120 K
c = 14.6694 (3) Å0.20 × 0.20 × 0.15 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2364 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2312 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.962Rint = 0.027
11460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061Δρmax = 0.19 e Å3
S = 1.06Δρmin = 0.30 e Å3
2364 reflectionsAbsolute structure: Flack (1983), 972 Friedel pairs
176 parametersAbsolute structure parameter: 0.01 (5)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88925 (4)0.14891 (3)0.47921 (2)0.00933 (11)
O11.04460 (12)0.09326 (9)0.51381 (7)0.0132 (2)
O20.73029 (12)0.08853 (9)0.50432 (7)0.0127 (2)
N10.88280 (16)0.29082 (11)0.51938 (8)0.0124 (3)
H2N0.789 (2)0.3327 (18)0.5037 (13)0.027 (5)*
H1N0.9760 (19)0.3323 (16)0.5125 (12)0.016 (4)*
N20.94618 (16)0.14533 (12)0.07743 (8)0.0141 (3)
H3N0.879 (2)0.0925 (18)0.0498 (13)0.032 (5)*
C10.89793 (18)0.15385 (13)0.36038 (9)0.0103 (3)
C21.00520 (19)0.23999 (13)0.31668 (10)0.0131 (3)
H21.06880.29900.35180.016*
C31.01965 (19)0.24017 (13)0.22311 (10)0.0135 (3)
H31.09080.30080.19400.016*
C40.92945 (17)0.15099 (14)0.17015 (9)0.0110 (3)
C50.82057 (18)0.06548 (14)0.21519 (10)0.0115 (3)
H50.75740.00570.18050.014*
C60.80389 (18)0.06679 (13)0.30896 (9)0.0107 (3)
H60.72910.00900.33830.013*
C91.15434 (18)0.09176 (14)0.09378 (10)0.0145 (3)
H91.21090.04860.04560.017*
C71.03437 (19)0.24066 (13)0.02344 (10)0.0138 (3)
H7A1.14870.25640.04970.017*
H7B0.96960.32110.02510.017*
C81.05223 (18)0.19639 (14)0.07416 (10)0.0119 (3)
C101.1744 (2)0.04982 (15)0.18294 (11)0.0182 (3)
H101.24450.02140.19570.022*
C111.0911 (2)0.11273 (15)0.25348 (10)0.0187 (3)
H111.10380.08400.31450.022*
C120.9903 (2)0.21671 (15)0.23489 (11)0.0184 (3)
H120.93400.25960.28320.022*
C130.97056 (19)0.25909 (14)0.14530 (10)0.0150 (3)
H130.90130.33090.13290.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.00952 (18)0.01096 (17)0.00751 (17)0.00004 (13)0.00065 (13)0.00008 (13)
O10.0124 (5)0.0159 (5)0.0115 (5)0.0029 (4)0.0014 (4)0.0013 (4)
O20.0118 (5)0.0143 (5)0.0120 (5)0.0022 (4)0.0026 (4)0.0015 (4)
N10.0110 (6)0.0127 (6)0.0136 (6)0.0003 (5)0.0009 (6)0.0031 (5)
N20.0181 (6)0.0152 (6)0.0090 (6)0.0072 (5)0.0009 (5)0.0005 (5)
C10.0105 (6)0.0132 (7)0.0073 (6)0.0018 (6)0.0007 (5)0.0008 (5)
C20.0137 (7)0.0134 (7)0.0122 (7)0.0033 (6)0.0011 (6)0.0012 (6)
C30.0145 (7)0.0136 (7)0.0125 (7)0.0049 (6)0.0011 (6)0.0017 (6)
C40.0117 (6)0.0116 (6)0.0099 (6)0.0011 (6)0.0000 (5)0.0004 (6)
C50.0109 (7)0.0114 (6)0.0123 (6)0.0016 (5)0.0006 (5)0.0019 (6)
C60.0106 (7)0.0099 (6)0.0117 (6)0.0007 (5)0.0008 (5)0.0006 (6)
C90.0132 (7)0.0150 (7)0.0154 (7)0.0002 (6)0.0015 (5)0.0027 (6)
C70.0167 (7)0.0139 (7)0.0109 (7)0.0039 (6)0.0016 (6)0.0016 (6)
C80.0117 (7)0.0128 (6)0.0112 (7)0.0047 (5)0.0002 (5)0.0006 (6)
C100.0176 (8)0.0158 (7)0.0212 (8)0.0008 (6)0.0041 (6)0.0029 (6)
C110.0220 (8)0.0236 (8)0.0105 (7)0.0104 (6)0.0039 (6)0.0030 (6)
C120.0187 (8)0.0236 (8)0.0129 (8)0.0059 (6)0.0035 (6)0.0058 (6)
C130.0128 (7)0.0175 (8)0.0146 (7)0.0006 (6)0.0002 (6)0.0029 (6)
Geometric parameters (Å, º) top
S1—O11.4447 (10)C5—H50.9500
S1—O21.4477 (10)C6—H60.9500
S1—N11.6104 (12)C9—C101.390 (2)
S1—C11.7452 (13)C9—C81.394 (2)
N1—H2N0.889 (15)C9—H90.9500
N1—H1N0.858 (14)C7—C81.5126 (19)
N2—C41.3677 (17)C7—H7A0.9900
N2—C71.4553 (17)C7—H7B0.9900
N2—H3N0.867 (15)C8—C131.392 (2)
C1—C21.3948 (19)C10—C111.392 (2)
C1—C61.399 (2)C10—H100.9500
C2—C31.377 (2)C11—C121.380 (2)
C2—H20.9500C11—H110.9500
C3—C41.411 (2)C12—C131.397 (2)
C3—H30.9500C12—H120.9500
C4—C51.407 (2)C13—H130.9500
C5—C61.3817 (19)
O1—S1—O2117.25 (6)C5—C6—C1119.57 (13)
O1—S1—N1106.02 (6)C5—C6—H6120.2
O2—S1—N1106.81 (6)C1—C6—H6120.2
O1—S1—C1109.28 (6)C10—C9—C8120.77 (14)
O2—S1—C1107.51 (6)C10—C9—H9119.6
N1—S1—C1109.81 (6)C8—C9—H9119.6
S1—N1—H2N113.2 (13)N2—C7—C8110.22 (11)
S1—N1—H1N113.9 (12)N2—C7—H7A109.6
H2N—N1—H1N114.9 (17)C8—C7—H7A109.6
C4—N2—C7123.82 (12)N2—C7—H7B109.6
C4—N2—H3N115.7 (14)C8—C7—H7B109.6
C7—N2—H3N118.6 (14)H7A—C7—H7B108.1
C2—C1—C6119.88 (13)C13—C8—C9119.09 (14)
C2—C1—S1120.14 (11)C13—C8—C7121.35 (13)
C6—C1—S1119.89 (10)C9—C8—C7119.56 (13)
C3—C2—C1120.57 (13)C9—C10—C11119.64 (14)
C3—C2—H2119.7C9—C10—H10120.2
C1—C2—H2119.7C11—C10—H10120.2
C2—C3—C4120.44 (13)C12—C11—C10120.08 (14)
C2—C3—H3119.8C12—C11—H11120.0
C4—C3—H3119.8C10—C11—H11120.0
N2—C4—C5119.81 (13)C11—C12—C13120.27 (15)
N2—C4—C3121.92 (13)C11—C12—H12119.9
C5—C4—C3118.27 (13)C13—C12—H12119.9
C6—C5—C4121.22 (13)C8—C13—C12120.15 (14)
C6—C5—H5119.4C8—C13—H13119.9
C4—C5—H5119.4C12—C13—H13119.9
N1—S1—C1—C243.59 (14)N2—C7—C8—C965.94 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3N···O2i0.87 (2)2.20 (2)3.0264 (16)160 (2)
N1—H2N···O1ii0.89 (2)2.09 (2)2.9613 (16)168 (2)
N1—H1N···O2iii0.86 (1)2.18 (1)3.0281 (16)172 (2)
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H14N2O2S
Mr262.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)7.8426 (1), 10.5549 (11), 14.6694 (3)
V3)1214.30 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.950, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
11460, 2364, 2312
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.06
No. of reflections2364
No. of parameters176
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.30
Absolute structureFlack (1983), 972 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3N···O2i0.867 (15)2.199 (16)3.0264 (16)159.7 (19)
N1—H2N···O1ii0.889 (15)2.085 (15)2.9613 (16)168.3 (18)
N1—H1N···O2iii0.858 (14)2.177 (14)3.0281 (16)171.9 (16)
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1.
 

Footnotes

Current address: School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, England.

Acknowledgements

TG gratefully acknowledges funding by the Austrian Science Fund (FWF), project M1135-N17.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCostanzo, M. J., Jaroskova, L., Gauthier, D. A. & Maryanoff, B. E. (1999). Tetrahedron Asymmetry, 10, 689–703.  CrossRef CAS Google Scholar
First citationDavis, F. A., Boyd, R., Zhou, P., Abdul-Malik, N. F. & Carroll, P. J. (1996). Tetrahedron Lett. 37, 3267–3270.  CrossRef CAS Google Scholar
First citationDenehy, E., White, J. M. & Williams, S. J. (2006). Chem. Commun. pp. 314–316.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoissedet, P. E. C. & Despois, R. L. (1938). US Patent 2 111 768.  Google Scholar
First citationGoissedet, P., Despois, R., Gailliot, P. & Mayer, R. (1936). C. R. Soc. Biol. 121, 1082–1084.  CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHursthouse, M. B., Threlfall, T. L., Coles, S. J. & Ward, S. C. (1998). University of Southampton, Crystal Structure Report Archive. doi:10.3737/ecrystals.chem.soton.ac.uk/158.  Google Scholar
First citationHursthouse, M. B., Threlfall, T. L., Coles, S. J. & Ward, S. C. (1999a). University of Southampton, Crystal Structure Report Archive. doi:10.3737/ecrystals.chem.soton.ac.uk/169.  Google Scholar
First citationHursthouse, M. B., Threlfall, T. L., Coles, S. J. & Ward, S. C. (1999b). University of Southampton, Crystal Structure Report Archive. doi:10.3737/ecrystals.chem.soton.ac.uk/170.  Google Scholar
First citationKubicki, M. & Codding, P. W. (2001). J. Mol. Struct. 561, 65–70.  CrossRef CAS Google Scholar
First citationLong, P. H. & Bliss, E. A. (1939). The Clinical and Experimental Use of Sulfanilamide, Sulfapyridine and Allied Compounds. New York: The Macmillan Company.  Google Scholar
First citationMellon, R. R., Gross, P. & Cooper, F. B. (1938). Sulfanilamide Therapy of Bacterial Infections. Springfield, Illinois & Baltimore: Charles C. Thomas.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: AcademicPress.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToumieux, S., Compain, P., Martin, O. R. & Selkti, M. (2006). Org. Lett. 8, 4493–4496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o179–o181.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1551-o1552
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds