metal-organic compounds
Aqua(2,2′-diamino-4,4′-bi-1,3-thiazole-κ2N3,N3′)(pyridine-2,6-dicarboxylato-κ3O2,N,O6)zinc tetrahydrate
aDepartment of Chemistry, Shanghai University, People's Republic of China
*Correspondence e-mail: r5744011@yahoo.com.cn
The title compound, [Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O, assumes a distorted octahedral coordination geometry around the Zn2+ cation, formed by a diaminobithiazole (DABT) molecule, a pyridine-2,6-dicarboxylate anion and a water molecule. The pyridine-2,6-dicarboxylate anion chelates to the ZnII atom with a facial configuration. Within the chelating DABT ligand, the two thiazole rings are twisted by a dihedral angle of 14.52 (8)° with respect to each other. O—H⋯O and N—H⋯O hydrogen bonds occur in the crystal structure.
Related literature
For potential applications of transition metal complexes of 2,2′-diamino-4,4′-bi-1,3-thiazole (DABT), see: Sun et al. (1997). For general background to metal complexes with DABT, see: Liu et al. (2003). For related structures, see: Liu & Xu (2004, 2005); Liu et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811015145/ff2006sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811015145/ff2006Isup2.hkl
An aqueous solution (20 ml) containing DABT (1 mmol) and ZnCl2 (1 mmol) was mixed with an aqueous solution (10 ml) of pyridine-2,6-dicarboxylic acid (1 mmol) and NaOH (2 mmol). The mixture was refluxed for 5 h. After cooling to room temperature the solution was filtered. Single crystals of (I) were obtained from the filtrate after 10 d.
H atoms on carbon atoms were placed in calculated positions, with C—H distances = 0.93 Å (aromatic), and were included in the final cycles of
in riding mode with Uiso(H) = 1.2Ueq of the carrier atoms. H atoms of amino group of DABT, coordinated water and lattice water were located in a difference Fourier map and included in the calculations with fixed positional and isotropic displacement parameters Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O) of the carrier atoms.Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines showing the hydrogen bonding within the complex. | |
Fig. 2. The hydrogen bonding diagram with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines indicate the hydrogen bonding. |
[Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O | F(000) = 1064 |
Mr = 518.82 | Dx = 1.750 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3380 reflections |
a = 10.0529 (19) Å | θ = 2.0–25.0° |
b = 7.0833 (13) Å | µ = 1.52 mm−1 |
c = 27.720 (6) Å | T = 295 K |
β = 93.960 (3)° | Prism, yellow |
V = 1969.2 (7) Å3 | 0.25 × 0.20 × 0.15 mm |
Z = 4 |
Bruker SMART APEX diffractometer | 3471 independent reflections |
Radiation source: fine-focus sealed tube | 2238 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
Detector resolution: 10.0 pixels mm-1 | θmax = 25.0°, θmin = 2.4° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −8→8 |
Tmin = 0.701, Tmax = 0.796 | l = −22→32 |
9851 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0374P)2 + 1.648P] where P = (Fo2 + 2Fc2)/3 |
3471 reflections | (Δ/σ)max < 0.001 |
281 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
[Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O | V = 1969.2 (7) Å3 |
Mr = 518.82 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.0529 (19) Å | µ = 1.52 mm−1 |
b = 7.0833 (13) Å | T = 295 K |
c = 27.720 (6) Å | 0.25 × 0.20 × 0.15 mm |
β = 93.960 (3)° |
Bruker SMART APEX diffractometer | 3471 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2238 reflections with I > 2σ(I) |
Tmin = 0.701, Tmax = 0.796 | Rint = 0.074 |
9851 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.40 e Å−3 |
3471 reflections | Δρmin = −0.60 e Å−3 |
281 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.79367 (6) | 0.53096 (9) | 0.32687 (2) | 0.0278 (2) | |
O1 | 0.6001 (3) | 0.3881 (5) | 0.33361 (13) | 0.0323 (9) | |
H1A | 0.6206 | 0.2602 | 0.3443 | 0.031 (15)* | |
H1B | 0.5456 | 0.4465 | 0.3567 | 0.06 (2)* | |
O21 | 0.6938 (3) | 0.8166 (5) | 0.32814 (13) | 0.0322 (9) | |
O22 | 0.6230 (4) | 1.0365 (5) | 0.37777 (13) | 0.0352 (9) | |
O23 | 0.8776 (4) | 0.2804 (5) | 0.36725 (13) | 0.0330 (9) | |
O24 | 0.9366 (4) | 0.1804 (6) | 0.44238 (14) | 0.0460 (11) | |
N11 | 0.7611 (4) | 0.5270 (6) | 0.25153 (14) | 0.0249 (10) | |
N12 | 0.5302 (4) | 0.4822 (7) | 0.23428 (16) | 0.0401 (13) | |
H12A | 0.5190 | 0.4432 | 0.2673 | 0.048* | |
H12B | 0.4789 | 0.4457 | 0.2116 | 0.048* | |
N13 | 0.9917 (4) | 0.5795 (6) | 0.30709 (15) | 0.0270 (11) | |
N14 | 1.1350 (4) | 0.5784 (7) | 0.37784 (17) | 0.0434 (13) | |
H14A | 1.0773 | 0.6054 | 0.3991 | 0.052* | |
H14B | 1.2189 | 0.5943 | 0.3857 | 0.052* | |
N21 | 0.7907 (4) | 0.6039 (6) | 0.39887 (15) | 0.0238 (10) | |
S11 | 0.68935 (14) | 0.5508 (2) | 0.16108 (5) | 0.0368 (4) | |
S12 | 1.23955 (13) | 0.5564 (2) | 0.29119 (5) | 0.0348 (4) | |
C11 | 0.8759 (5) | 0.5611 (7) | 0.22697 (18) | 0.0250 (12) | |
C12 | 0.8558 (5) | 0.5786 (8) | 0.1793 (2) | 0.0333 (14) | |
H12 | 0.9225 | 0.6026 | 0.1585 | 0.040* | |
C13 | 0.6547 (5) | 0.5153 (7) | 0.22092 (18) | 0.0265 (12) | |
C14 | 1.0006 (5) | 0.5681 (7) | 0.25667 (19) | 0.0255 (12) | |
C15 | 1.1253 (5) | 0.5557 (8) | 0.2422 (2) | 0.0323 (13) | |
H15 | 1.1467 | 0.5478 | 0.2102 | 0.039* | |
C16 | 1.1095 (5) | 0.5723 (8) | 0.3291 (2) | 0.0306 (13) | |
C21 | 0.7370 (5) | 0.7687 (7) | 0.41205 (18) | 0.0243 (12) | |
C22 | 0.7300 (6) | 0.8163 (8) | 0.45964 (19) | 0.0348 (14) | |
H22 | 0.6938 | 0.9313 | 0.4682 | 0.042* | |
C23 | 0.7783 (6) | 0.6894 (8) | 0.4950 (2) | 0.0364 (14) | |
H23 | 0.7755 | 0.7193 | 0.5276 | 0.044* | |
C24 | 0.8303 (5) | 0.5195 (7) | 0.4814 (2) | 0.0324 (14) | |
H24 | 0.8614 | 0.4324 | 0.5046 | 0.039* | |
C25 | 0.8355 (5) | 0.4801 (7) | 0.43272 (19) | 0.0270 (12) | |
C26 | 0.6810 (5) | 0.8848 (8) | 0.3697 (2) | 0.0287 (13) | |
C27 | 0.8889 (5) | 0.2973 (7) | 0.4127 (2) | 0.0298 (13) | |
O1W | 0.4314 (4) | 0.5366 (7) | 0.40173 (16) | 0.0453 (11) | |
H1WA | 0.4454 | 0.6614 | 0.4085 | 0.06 (2)* | |
H1WB | 0.4538 | 0.4785 | 0.4256 | 0.08 (3)* | |
O2W | 0.5018 (4) | 1.2043 (6) | 0.45001 (16) | 0.0533 (12) | |
H2WA | 0.5563 | 1.1778 | 0.4303 | 0.06 (2)* | |
H2WB | 0.5413 | 1.1846 | 0.4782 | 0.05 (2)* | |
O3W | 0.9102 (4) | 0.1298 (5) | 0.54438 (17) | 0.0485 (12) | |
H3WA | 0.9229 | 0.1380 | 0.5111 | 0.11 (3)* | |
H3WB | 0.9730 | 0.0390 | 0.5580 | 0.051 (18)* | |
O4W | 0.6334 (4) | 0.1492 (6) | 0.54252 (14) | 0.0465 (11) | |
H4WA | 0.6074 | 0.0351 | 0.5539 | 0.14 (4)* | |
H4WB | 0.7192 | 0.1338 | 0.5388 | 0.05 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.0276 (4) | 0.0333 (4) | 0.0226 (4) | 0.0023 (3) | 0.0028 (3) | 0.0000 (3) |
O1 | 0.034 (2) | 0.032 (2) | 0.031 (2) | 0.0021 (18) | 0.0031 (18) | 0.0038 (18) |
O21 | 0.034 (2) | 0.040 (2) | 0.022 (2) | 0.0082 (18) | −0.0013 (17) | 0.0010 (18) |
O22 | 0.045 (2) | 0.024 (2) | 0.037 (2) | 0.0128 (19) | 0.0054 (19) | 0.0033 (18) |
O23 | 0.037 (2) | 0.028 (2) | 0.035 (2) | 0.0057 (17) | 0.0031 (19) | −0.0012 (18) |
O24 | 0.065 (3) | 0.033 (2) | 0.040 (3) | 0.022 (2) | 0.004 (2) | 0.005 (2) |
N11 | 0.025 (2) | 0.027 (3) | 0.022 (2) | 0.001 (2) | 0.0027 (19) | 0.003 (2) |
N12 | 0.030 (3) | 0.065 (4) | 0.024 (3) | 0.000 (3) | −0.003 (2) | 0.001 (2) |
N13 | 0.022 (2) | 0.031 (3) | 0.028 (3) | −0.0009 (19) | 0.003 (2) | 0.000 (2) |
N14 | 0.023 (3) | 0.073 (4) | 0.035 (3) | −0.003 (2) | 0.004 (2) | −0.002 (3) |
N21 | 0.021 (2) | 0.026 (3) | 0.024 (3) | 0.0024 (19) | 0.0020 (19) | 0.000 (2) |
S11 | 0.0403 (9) | 0.0476 (10) | 0.0221 (8) | 0.0015 (7) | −0.0013 (6) | 0.0025 (7) |
S12 | 0.0238 (7) | 0.0401 (9) | 0.0412 (9) | 0.0012 (6) | 0.0064 (7) | 0.0010 (7) |
C11 | 0.026 (3) | 0.025 (3) | 0.024 (3) | 0.000 (2) | 0.002 (2) | −0.005 (2) |
C12 | 0.036 (3) | 0.038 (4) | 0.027 (3) | −0.002 (3) | 0.008 (3) | 0.002 (3) |
C13 | 0.028 (3) | 0.029 (3) | 0.023 (3) | 0.006 (2) | 0.002 (2) | −0.007 (2) |
C14 | 0.031 (3) | 0.021 (3) | 0.025 (3) | 0.003 (2) | 0.004 (2) | −0.002 (2) |
C15 | 0.036 (3) | 0.035 (3) | 0.027 (3) | 0.000 (3) | 0.011 (3) | 0.003 (3) |
C16 | 0.030 (3) | 0.033 (3) | 0.030 (3) | −0.001 (3) | 0.004 (3) | 0.001 (3) |
C21 | 0.027 (3) | 0.024 (3) | 0.022 (3) | 0.000 (2) | 0.002 (2) | −0.001 (2) |
C22 | 0.044 (4) | 0.031 (3) | 0.029 (3) | 0.013 (3) | 0.004 (3) | −0.003 (3) |
C23 | 0.046 (4) | 0.043 (4) | 0.020 (3) | 0.006 (3) | 0.007 (3) | −0.001 (3) |
C24 | 0.044 (3) | 0.026 (3) | 0.027 (3) | 0.011 (3) | 0.003 (3) | 0.006 (3) |
C25 | 0.027 (3) | 0.025 (3) | 0.029 (3) | 0.000 (2) | 0.004 (2) | 0.006 (3) |
C26 | 0.027 (3) | 0.027 (3) | 0.032 (4) | −0.006 (3) | 0.003 (3) | −0.003 (3) |
C27 | 0.034 (3) | 0.019 (3) | 0.038 (4) | 0.001 (2) | 0.006 (3) | 0.002 (3) |
O1W | 0.045 (3) | 0.046 (3) | 0.044 (3) | 0.007 (2) | 0.001 (2) | −0.001 (2) |
O2W | 0.059 (3) | 0.067 (3) | 0.035 (3) | 0.023 (2) | 0.010 (3) | 0.010 (2) |
O3W | 0.054 (3) | 0.040 (3) | 0.052 (3) | 0.021 (2) | 0.008 (2) | 0.006 (2) |
O4W | 0.050 (3) | 0.050 (3) | 0.040 (3) | 0.004 (2) | 0.006 (2) | −0.002 (2) |
Zn—N21 | 2.064 (4) | S11—C13 | 1.737 (5) |
Zn—N11 | 2.092 (4) | S12—C15 | 1.717 (6) |
Zn—N13 | 2.129 (4) | S12—C16 | 1.736 (5) |
Zn—O1 | 2.213 (3) | C11—C12 | 1.328 (7) |
Zn—O23 | 2.232 (4) | C11—C14 | 1.452 (7) |
Zn—O21 | 2.260 (4) | C12—H12 | 0.9300 |
O1—H1A | 0.9713 | C14—C15 | 1.346 (7) |
O1—H1B | 0.9633 | C15—H15 | 0.9300 |
O21—C26 | 1.264 (6) | C21—C22 | 1.368 (7) |
O22—C26 | 1.250 (6) | C21—C26 | 1.510 (7) |
O23—C27 | 1.264 (6) | C22—C23 | 1.393 (7) |
O24—C27 | 1.239 (6) | C22—H22 | 0.9300 |
N11—C13 | 1.321 (6) | C23—C24 | 1.375 (7) |
N11—C11 | 1.401 (6) | C23—H23 | 0.9300 |
N12—C13 | 1.351 (6) | C24—C25 | 1.382 (7) |
N12—H12A | 0.9708 | C24—H24 | 0.9300 |
N12—H12B | 0.8256 | C25—C27 | 1.521 (7) |
N13—C16 | 1.294 (7) | O1W—H1WA | 0.9122 |
N13—C14 | 1.409 (6) | O1W—H1WB | 0.7978 |
N14—C16 | 1.359 (7) | O2W—H2WA | 0.8216 |
N14—H14A | 0.8749 | O2W—H2WB | 0.8624 |
N14—H14B | 0.8645 | O3W—H3WA | 0.9418 |
N21—C25 | 1.339 (6) | O3W—H3WB | 0.9604 |
N21—C21 | 1.347 (6) | O4W—H4WA | 0.9116 |
S11—C12 | 1.725 (6) | O4W—H4WB | 0.8825 |
N21—Zn—N11 | 163.19 (16) | C11—C12—S11 | 111.1 (4) |
N21—Zn—N13 | 106.55 (16) | C11—C12—H12 | 124.5 |
N11—Zn—N13 | 80.18 (16) | S11—C12—H12 | 124.5 |
N21—Zn—O1 | 87.78 (14) | N11—C13—N12 | 124.0 (5) |
N11—Zn—O1 | 90.03 (15) | N11—C13—S11 | 113.4 (4) |
N13—Zn—O1 | 159.90 (15) | N12—C13—S11 | 122.5 (4) |
N21—Zn—O23 | 75.18 (15) | C15—C14—N13 | 115.0 (5) |
N11—Zn—O23 | 121.17 (15) | C15—C14—C11 | 127.9 (5) |
N13—Zn—O23 | 85.97 (15) | N13—C14—C11 | 117.0 (4) |
O1—Zn—O23 | 84.17 (13) | C14—C15—S12 | 110.5 (4) |
N21—Zn—O21 | 74.03 (14) | C14—C15—H15 | 124.7 |
N11—Zn—O21 | 89.34 (14) | S12—C15—H15 | 124.7 |
N13—Zn—O21 | 106.47 (15) | N13—C16—N14 | 124.8 (5) |
O1—Zn—O21 | 90.79 (14) | N13—C16—S12 | 114.8 (4) |
O23—Zn—O21 | 148.96 (13) | N14—C16—S12 | 120.4 (4) |
Zn—O1—H1A | 106.4 | N21—C21—C22 | 121.6 (5) |
Zn—O1—H1B | 113.8 | N21—C21—C26 | 113.3 (4) |
H1A—O1—H1B | 108.5 | C22—C21—C26 | 125.0 (5) |
C26—O21—Zn | 115.4 (3) | C21—C22—C23 | 118.7 (5) |
C27—O23—Zn | 115.5 (3) | C21—C22—H22 | 120.6 |
C13—N11—C11 | 110.9 (4) | C23—C22—H22 | 120.6 |
C13—N11—Zn | 134.9 (3) | C24—C23—C22 | 119.5 (5) |
C11—N11—Zn | 113.9 (3) | C24—C23—H23 | 120.3 |
C13—N12—H12A | 118.5 | C22—C23—H23 | 120.3 |
C13—N12—H12B | 112.8 | C23—C24—C25 | 119.1 (5) |
H12A—N12—H12B | 121.5 | C23—C24—H24 | 120.5 |
C16—N13—C14 | 110.3 (4) | C25—C24—H24 | 120.5 |
C16—N13—Zn | 135.5 (4) | N21—C25—C24 | 121.2 (5) |
C14—N13—Zn | 111.7 (3) | N21—C25—C27 | 114.3 (5) |
C16—N14—H14A | 126.0 | C24—C25—C27 | 124.5 (5) |
C16—N14—H14B | 111.6 | O22—C26—O21 | 124.7 (5) |
H14A—N14—H14B | 118.9 | O22—C26—C21 | 118.9 (5) |
C25—N21—C21 | 119.9 (4) | O21—C26—C21 | 116.4 (5) |
C25—N21—Zn | 119.2 (3) | O24—C27—O23 | 127.1 (5) |
C21—N21—Zn | 120.8 (3) | O24—C27—C25 | 117.2 (5) |
C12—S11—C13 | 89.5 (3) | O23—C27—C25 | 115.7 (5) |
C15—S12—C16 | 89.3 (3) | H1WA—O1W—H1WB | 107.4 |
C12—C11—N11 | 115.2 (5) | H2WA—O2W—H2WB | 106.1 |
C12—C11—C14 | 128.9 (5) | H3WA—O3W—H3WB | 107.3 |
N11—C11—C14 | 116.0 (4) | H4WA—O4W—H4WB | 103.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O22i | 0.97 | 1.84 | 2.778 (5) | 163 |
O1—H1B···O1W | 0.96 | 1.87 | 2.827 (6) | 174 |
O1W—H1WA···O4Wii | 0.91 | 2.10 | 2.812 (6) | 134 |
O1W—H1WB···O2Wi | 0.80 | 2.10 | 2.775 (6) | 142 |
O2W—H2WA···O22 | 0.82 | 1.93 | 2.692 (6) | 155 |
O2W—H2WB···O4Wiii | 0.86 | 1.97 | 2.830 (6) | 178 |
O3W—H3WA···O24 | 0.94 | 1.94 | 2.880 (6) | 174 |
O3W—H3WB···O24iv | 0.96 | 1.80 | 2.694 (6) | 153 |
O4W—H4WA···O2Wii | 0.91 | 2.02 | 2.863 (6) | 153 |
O4W—H4WB···O3W | 0.88 | 1.92 | 2.783 (6) | 167 |
N12—H12A···O1 | 0.97 | 2.00 | 2.873 (6) | 149 |
N12—H12B···O21v | 0.83 | 2.19 | 2.984 (5) | 161 |
N14—H14A···O3Wvi | 0.88 | 2.44 | 3.043 (6) | 126 |
N14—H14B···O1Wvii | 0.86 | 2.19 | 3.022 (6) | 162 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) −x+2, −y, −z+1; (v) −x+1, y−1/2, −z+1/2; (vi) −x+2, −y+1, −z+1; (vii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O |
Mr | 518.82 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 10.0529 (19), 7.0833 (13), 27.720 (6) |
β (°) | 93.960 (3) |
V (Å3) | 1969.2 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.52 |
Crystal size (mm) | 0.25 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.701, 0.796 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9851, 3471, 2238 |
Rint | 0.074 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.119, 1.03 |
No. of reflections | 3471 |
No. of parameters | 281 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.60 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Zn—N21 | 2.064 (4) | Zn—O1 | 2.213 (3) |
Zn—N11 | 2.092 (4) | Zn—O23 | 2.232 (4) |
Zn—N13 | 2.129 (4) | Zn—O21 | 2.260 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O22i | 0.97 | 1.84 | 2.778 (5) | 163 |
O1—H1B···O1W | 0.96 | 1.87 | 2.827 (6) | 174 |
O1W—H1WA···O4Wii | 0.91 | 2.10 | 2.812 (6) | 134 |
O1W—H1WB···O2Wi | 0.80 | 2.10 | 2.775 (6) | 142 |
O2W—H2WA···O22 | 0.82 | 1.93 | 2.692 (6) | 155 |
O2W—H2WB···O4Wiii | 0.86 | 1.97 | 2.830 (6) | 178 |
O3W—H3WA···O24 | 0.94 | 1.94 | 2.880 (6) | 174 |
O3W—H3WB···O24iv | 0.96 | 1.80 | 2.694 (6) | 153 |
O4W—H4WA···O2Wii | 0.91 | 2.02 | 2.863 (6) | 153 |
O4W—H4WB···O3W | 0.88 | 1.92 | 2.783 (6) | 167 |
N12—H12A···O1 | 0.97 | 2.00 | 2.873 (6) | 149 |
N12—H12B···O21v | 0.83 | 2.19 | 2.984 (5) | 161 |
N14—H14A···O3Wvi | 0.88 | 2.44 | 3.043 (6) | 126 |
N14—H14B···O1Wvii | 0.86 | 2.19 | 3.022 (6) | 162 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) −x+2, −y, −z+1; (v) −x+1, y−1/2, −z+1/2; (vi) −x+2, −y+1, −z+1; (vii) x+1, y, z. |
Acknowledgements
The project was supported by the Foundation of Shanghai University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Liu, B.-X. & Xu, D.-J. (2004). Acta Cryst. C60, m137–m139. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Liu, B.-X., Yu, J.-Y. & Xu, D.-J. (2005). Acta Cryst. E61, m1978–m1980. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, B.-X. & Xu, D.-J. (2005). Acta Cryst. E61, m2011–m2013. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 71–76. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, W. L., Gao, X. S. & Lu, F. C. (1997). J. Appl. Polym. Sci. 64, 2309–2315. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in the field of soft magnetic material (Sun et al., 1997). As part of serial structural investigation of metal complexes with DABT (Liu et al., 2003), the title ZnII complex was recently prepared and its X-ray structure is presented here.
The molecular structure of the title compound is shown in Fig. 1. The complex has a distorted octahedral coordinatation geometry formed by a DABT ligand, a pyridine-2,6-dicarboxylate anion and a coordinated water molecule.
Thiazole rings of DABT are not coplanar as same as in other complexes we have reported, the dihedral angle between the two thiazole rings is 14.51 (8) °. It is similar to the 17.23 (7) ° found in [Cr(C4H5NO4)(C6H6N4S2)(H2O)]Cl.H2O, (Liu & Xu, 2004). The distances of C16—N14 [1.335 (4) Å] and C16—N13[1.324 (4) Å] imply the existence of electron delocalization between thiazole rings and amino groups. This feature of electron delocalization of DABT can be found in some DABT complexes of Mn(II) (Liu & Xu, 2005), Co(II) (Liu et al., 2005), we have reported. The tridentate pyridine-2,6-dicarboxylate anion chelates to the ZnII atom with a facial configuration with the maximum atomic deviation of 0.082 (3) Å (N21) to the main plane defined by C21 C22 C23 C24 C25 C26 C27 N21 O21 O22 O23 O24.
The extensive hydrogen bonding between lattice water molecules, complex and lattice water helps to stabilize the crystal structure as shown in Fig. 2. and Table 1.