metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m683-m684

Aqua­(2,2′-di­amino-4,4′-bi-1,3-thia­zole-κ2N3,N3′)(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)zinc tetra­hydrate

aDepartment of Chemistry, Shanghai University, People's Republic of China
*Correspondence e-mail: r5744011@yahoo.com.cn

(Received 6 April 2011; accepted 21 April 2011; online 7 May 2011)

The title compound, [Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O, assumes a distorted octa­hedral coordination geometry around the Zn2+ cation, formed by a diamino­bithia­zole (DABT) mol­ecule, a pyridine-2,6-dicarboxyl­ate anion and a water mol­ecule. The pyridine-2,6-dicarboxyl­ate anion chelates to the ZnII atom with a facial configuration. Within the chelating DABT ligand, the two thia­zole rings are twisted by a dihedral angle of 14.52 (8)° with respect to each other. O—H⋯O and N—H⋯O hydrogen bonds occur in the crystal structure.

Related literature

For potential applications of transition metal complexes of 2,2′-diamino-4,4′-bi-1,3-thia­zole (DABT), see: Sun et al. (1997[Sun, W. L., Gao, X. S. & Lu, F. C. (1997). J. Appl. Polym. Sci. 64, 2309-2315.]). For general background to metal complexes with DABT, see: Liu et al. (2003[Liu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 71-76.]). For related structures, see: Liu & Xu (2004[Liu, B.-X. & Xu, D.-J. (2004). Acta Cryst. C60, m137-m139.], 2005[Liu, B.-X. & Xu, D.-J. (2005). Acta Cryst. E61, m2011-m2013.]); Liu et al. (2005[Liu, B.-X., Yu, J.-Y. & Xu, D.-J. (2005). Acta Cryst. E61, m1978-m1980.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O

  • Mr = 518.82

  • Monoclinic, P 21 /c

  • a = 10.0529 (19) Å

  • b = 7.0833 (13) Å

  • c = 27.720 (6) Å

  • β = 93.960 (3)°

  • V = 1969.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.701, Tmax = 0.796

  • 9851 measured reflections

  • 3471 independent reflections

  • 2238 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.119

  • S = 1.03

  • 3471 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Zn—N21 2.064 (4)
Zn—N11 2.092 (4)
Zn—N13 2.129 (4)
Zn—O1 2.213 (3)
Zn—O23 2.232 (4)
Zn—O21 2.260 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O22i 0.97 1.84 2.778 (5) 163
O1—H1B⋯O1W 0.96 1.87 2.827 (6) 174
O1W—H1WA⋯O4Wii 0.91 2.10 2.812 (6) 134
O1W—H1WB⋯O2Wi 0.80 2.10 2.775 (6) 142
O2W—H2WA⋯O22 0.82 1.93 2.692 (6) 155
O2W—H2WB⋯O4Wiii 0.86 1.97 2.830 (6) 178
O3W—H3WA⋯O24 0.94 1.94 2.880 (6) 174
O3W—H3WB⋯O24iv 0.96 1.80 2.694 (6) 153
O4W—H4WA⋯O2Wii 0.91 2.02 2.863 (6) 153
O4W—H4WB⋯O3W 0.88 1.92 2.783 (6) 167
N12—H12A⋯O1 0.97 2.00 2.873 (6) 149
N12—H12B⋯O21v 0.83 2.19 2.984 (5) 161
N14—H14A⋯O3Wvi 0.88 2.44 3.043 (6) 126
N14—H14B⋯O1Wvii 0.86 2.19 3.022 (6) 162
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) -x+2, -y, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+2, -y+1, -z+1; (vii) x+1, y, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in the field of soft magnetic material (Sun et al., 1997). As part of serial structural investigation of metal complexes with DABT (Liu et al., 2003), the title ZnII complex was recently prepared and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The complex has a distorted octahedral coordinatation geometry formed by a DABT ligand, a pyridine-2,6-dicarboxylate anion and a coordinated water molecule.

Thiazole rings of DABT are not coplanar as same as in other complexes we have reported, the dihedral angle between the two thiazole rings is 14.51 (8) °. It is similar to the 17.23 (7) ° found in [Cr(C4H5NO4)(C6H6N4S2)(H2O)]Cl.H2O, (Liu & Xu, 2004). The distances of C16—N14 [1.335 (4) Å] and C16—N13[1.324 (4) Å] imply the existence of electron delocalization between thiazole rings and amino groups. This feature of electron delocalization of DABT can be found in some DABT complexes of Mn(II) (Liu & Xu, 2005), Co(II) (Liu et al., 2005), we have reported. The tridentate pyridine-2,6-dicarboxylate anion chelates to the ZnII atom with a facial configuration with the maximum atomic deviation of 0.082 (3) Å (N21) to the main plane defined by C21 C22 C23 C24 C25 C26 C27 N21 O21 O22 O23 O24.

The extensive hydrogen bonding between lattice water molecules, complex and lattice water helps to stabilize the crystal structure as shown in Fig. 2. and Table 1.

Related literature top

For potential applications of transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT), see Sun et al. (1997). For general background to metal complexes with DABT, see Liu et al. (2003). For related structures, see: Liu & Xu (2004, 2005); Liu et al. (2005).

Experimental top

An aqueous solution (20 ml) containing DABT (1 mmol) and ZnCl2 (1 mmol) was mixed with an aqueous solution (10 ml) of pyridine-2,6-dicarboxylic acid (1 mmol) and NaOH (2 mmol). The mixture was refluxed for 5 h. After cooling to room temperature the solution was filtered. Single crystals of (I) were obtained from the filtrate after 10 d.

Refinement top

H atoms on carbon atoms were placed in calculated positions, with C—H distances = 0.93 Å (aromatic), and were included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq of the carrier atoms. H atoms of amino group of DABT, coordinated water and lattice water were located in a difference Fourier map and included in the structure factor calculations with fixed positional and isotropic displacement parameters Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O) of the carrier atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines showing the hydrogen bonding within the complex.
[Figure 2] Fig. 2. The hydrogen bonding diagram with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines indicate the hydrogen bonding.
Aqua(2,2'-diamino-4,4'-bi-1,3-thiazole-κ2N3,N3')(pyridine- 2,6-dicarboxylato-κ3O2,N,O6)zinc tetrahydrate top
Crystal data top
[Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2OF(000) = 1064
Mr = 518.82Dx = 1.750 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3380 reflections
a = 10.0529 (19) Åθ = 2.0–25.0°
b = 7.0833 (13) ŵ = 1.52 mm1
c = 27.720 (6) ÅT = 295 K
β = 93.960 (3)°Prism, yellow
V = 1969.2 (7) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3471 independent reflections
Radiation source: fine-focus sealed tube2238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 88
Tmin = 0.701, Tmax = 0.796l = 2232
9851 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0374P)2 + 1.648P]
where P = (Fo2 + 2Fc2)/3
3471 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2OV = 1969.2 (7) Å3
Mr = 518.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0529 (19) ŵ = 1.52 mm1
b = 7.0833 (13) ÅT = 295 K
c = 27.720 (6) Å0.25 × 0.20 × 0.15 mm
β = 93.960 (3)°
Data collection top
Bruker SMART APEX
diffractometer
3471 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2238 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.796Rint = 0.074
9851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
3471 reflectionsΔρmin = 0.60 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.79367 (6)0.53096 (9)0.32687 (2)0.0278 (2)
O10.6001 (3)0.3881 (5)0.33361 (13)0.0323 (9)
H1A0.62060.26020.34430.031 (15)*
H1B0.54560.44650.35670.06 (2)*
O210.6938 (3)0.8166 (5)0.32814 (13)0.0322 (9)
O220.6230 (4)1.0365 (5)0.37777 (13)0.0352 (9)
O230.8776 (4)0.2804 (5)0.36725 (13)0.0330 (9)
O240.9366 (4)0.1804 (6)0.44238 (14)0.0460 (11)
N110.7611 (4)0.5270 (6)0.25153 (14)0.0249 (10)
N120.5302 (4)0.4822 (7)0.23428 (16)0.0401 (13)
H12A0.51900.44320.26730.048*
H12B0.47890.44570.21160.048*
N130.9917 (4)0.5795 (6)0.30709 (15)0.0270 (11)
N141.1350 (4)0.5784 (7)0.37784 (17)0.0434 (13)
H14A1.07730.60540.39910.052*
H14B1.21890.59430.38570.052*
N210.7907 (4)0.6039 (6)0.39887 (15)0.0238 (10)
S110.68935 (14)0.5508 (2)0.16108 (5)0.0368 (4)
S121.23955 (13)0.5564 (2)0.29119 (5)0.0348 (4)
C110.8759 (5)0.5611 (7)0.22697 (18)0.0250 (12)
C120.8558 (5)0.5786 (8)0.1793 (2)0.0333 (14)
H120.92250.60260.15850.040*
C130.6547 (5)0.5153 (7)0.22092 (18)0.0265 (12)
C141.0006 (5)0.5681 (7)0.25667 (19)0.0255 (12)
C151.1253 (5)0.5557 (8)0.2422 (2)0.0323 (13)
H151.14670.54780.21020.039*
C161.1095 (5)0.5723 (8)0.3291 (2)0.0306 (13)
C210.7370 (5)0.7687 (7)0.41205 (18)0.0243 (12)
C220.7300 (6)0.8163 (8)0.45964 (19)0.0348 (14)
H220.69380.93130.46820.042*
C230.7783 (6)0.6894 (8)0.4950 (2)0.0364 (14)
H230.77550.71930.52760.044*
C240.8303 (5)0.5195 (7)0.4814 (2)0.0324 (14)
H240.86140.43240.50460.039*
C250.8355 (5)0.4801 (7)0.43272 (19)0.0270 (12)
C260.6810 (5)0.8848 (8)0.3697 (2)0.0287 (13)
C270.8889 (5)0.2973 (7)0.4127 (2)0.0298 (13)
O1W0.4314 (4)0.5366 (7)0.40173 (16)0.0453 (11)
H1WA0.44540.66140.40850.06 (2)*
H1WB0.45380.47850.42560.08 (3)*
O2W0.5018 (4)1.2043 (6)0.45001 (16)0.0533 (12)
H2WA0.55631.17780.43030.06 (2)*
H2WB0.54131.18460.47820.05 (2)*
O3W0.9102 (4)0.1298 (5)0.54438 (17)0.0485 (12)
H3WA0.92290.13800.51110.11 (3)*
H3WB0.97300.03900.55800.051 (18)*
O4W0.6334 (4)0.1492 (6)0.54252 (14)0.0465 (11)
H4WA0.60740.03510.55390.14 (4)*
H4WB0.71920.13380.53880.05 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0276 (4)0.0333 (4)0.0226 (4)0.0023 (3)0.0028 (3)0.0000 (3)
O10.034 (2)0.032 (2)0.031 (2)0.0021 (18)0.0031 (18)0.0038 (18)
O210.034 (2)0.040 (2)0.022 (2)0.0082 (18)0.0013 (17)0.0010 (18)
O220.045 (2)0.024 (2)0.037 (2)0.0128 (19)0.0054 (19)0.0033 (18)
O230.037 (2)0.028 (2)0.035 (2)0.0057 (17)0.0031 (19)0.0012 (18)
O240.065 (3)0.033 (2)0.040 (3)0.022 (2)0.004 (2)0.005 (2)
N110.025 (2)0.027 (3)0.022 (2)0.001 (2)0.0027 (19)0.003 (2)
N120.030 (3)0.065 (4)0.024 (3)0.000 (3)0.003 (2)0.001 (2)
N130.022 (2)0.031 (3)0.028 (3)0.0009 (19)0.003 (2)0.000 (2)
N140.023 (3)0.073 (4)0.035 (3)0.003 (2)0.004 (2)0.002 (3)
N210.021 (2)0.026 (3)0.024 (3)0.0024 (19)0.0020 (19)0.000 (2)
S110.0403 (9)0.0476 (10)0.0221 (8)0.0015 (7)0.0013 (6)0.0025 (7)
S120.0238 (7)0.0401 (9)0.0412 (9)0.0012 (6)0.0064 (7)0.0010 (7)
C110.026 (3)0.025 (3)0.024 (3)0.000 (2)0.002 (2)0.005 (2)
C120.036 (3)0.038 (4)0.027 (3)0.002 (3)0.008 (3)0.002 (3)
C130.028 (3)0.029 (3)0.023 (3)0.006 (2)0.002 (2)0.007 (2)
C140.031 (3)0.021 (3)0.025 (3)0.003 (2)0.004 (2)0.002 (2)
C150.036 (3)0.035 (3)0.027 (3)0.000 (3)0.011 (3)0.003 (3)
C160.030 (3)0.033 (3)0.030 (3)0.001 (3)0.004 (3)0.001 (3)
C210.027 (3)0.024 (3)0.022 (3)0.000 (2)0.002 (2)0.001 (2)
C220.044 (4)0.031 (3)0.029 (3)0.013 (3)0.004 (3)0.003 (3)
C230.046 (4)0.043 (4)0.020 (3)0.006 (3)0.007 (3)0.001 (3)
C240.044 (3)0.026 (3)0.027 (3)0.011 (3)0.003 (3)0.006 (3)
C250.027 (3)0.025 (3)0.029 (3)0.000 (2)0.004 (2)0.006 (3)
C260.027 (3)0.027 (3)0.032 (4)0.006 (3)0.003 (3)0.003 (3)
C270.034 (3)0.019 (3)0.038 (4)0.001 (2)0.006 (3)0.002 (3)
O1W0.045 (3)0.046 (3)0.044 (3)0.007 (2)0.001 (2)0.001 (2)
O2W0.059 (3)0.067 (3)0.035 (3)0.023 (2)0.010 (3)0.010 (2)
O3W0.054 (3)0.040 (3)0.052 (3)0.021 (2)0.008 (2)0.006 (2)
O4W0.050 (3)0.050 (3)0.040 (3)0.004 (2)0.006 (2)0.002 (2)
Geometric parameters (Å, º) top
Zn—N212.064 (4)S11—C131.737 (5)
Zn—N112.092 (4)S12—C151.717 (6)
Zn—N132.129 (4)S12—C161.736 (5)
Zn—O12.213 (3)C11—C121.328 (7)
Zn—O232.232 (4)C11—C141.452 (7)
Zn—O212.260 (4)C12—H120.9300
O1—H1A0.9713C14—C151.346 (7)
O1—H1B0.9633C15—H150.9300
O21—C261.264 (6)C21—C221.368 (7)
O22—C261.250 (6)C21—C261.510 (7)
O23—C271.264 (6)C22—C231.393 (7)
O24—C271.239 (6)C22—H220.9300
N11—C131.321 (6)C23—C241.375 (7)
N11—C111.401 (6)C23—H230.9300
N12—C131.351 (6)C24—C251.382 (7)
N12—H12A0.9708C24—H240.9300
N12—H12B0.8256C25—C271.521 (7)
N13—C161.294 (7)O1W—H1WA0.9122
N13—C141.409 (6)O1W—H1WB0.7978
N14—C161.359 (7)O2W—H2WA0.8216
N14—H14A0.8749O2W—H2WB0.8624
N14—H14B0.8645O3W—H3WA0.9418
N21—C251.339 (6)O3W—H3WB0.9604
N21—C211.347 (6)O4W—H4WA0.9116
S11—C121.725 (6)O4W—H4WB0.8825
N21—Zn—N11163.19 (16)C11—C12—S11111.1 (4)
N21—Zn—N13106.55 (16)C11—C12—H12124.5
N11—Zn—N1380.18 (16)S11—C12—H12124.5
N21—Zn—O187.78 (14)N11—C13—N12124.0 (5)
N11—Zn—O190.03 (15)N11—C13—S11113.4 (4)
N13—Zn—O1159.90 (15)N12—C13—S11122.5 (4)
N21—Zn—O2375.18 (15)C15—C14—N13115.0 (5)
N11—Zn—O23121.17 (15)C15—C14—C11127.9 (5)
N13—Zn—O2385.97 (15)N13—C14—C11117.0 (4)
O1—Zn—O2384.17 (13)C14—C15—S12110.5 (4)
N21—Zn—O2174.03 (14)C14—C15—H15124.7
N11—Zn—O2189.34 (14)S12—C15—H15124.7
N13—Zn—O21106.47 (15)N13—C16—N14124.8 (5)
O1—Zn—O2190.79 (14)N13—C16—S12114.8 (4)
O23—Zn—O21148.96 (13)N14—C16—S12120.4 (4)
Zn—O1—H1A106.4N21—C21—C22121.6 (5)
Zn—O1—H1B113.8N21—C21—C26113.3 (4)
H1A—O1—H1B108.5C22—C21—C26125.0 (5)
C26—O21—Zn115.4 (3)C21—C22—C23118.7 (5)
C27—O23—Zn115.5 (3)C21—C22—H22120.6
C13—N11—C11110.9 (4)C23—C22—H22120.6
C13—N11—Zn134.9 (3)C24—C23—C22119.5 (5)
C11—N11—Zn113.9 (3)C24—C23—H23120.3
C13—N12—H12A118.5C22—C23—H23120.3
C13—N12—H12B112.8C23—C24—C25119.1 (5)
H12A—N12—H12B121.5C23—C24—H24120.5
C16—N13—C14110.3 (4)C25—C24—H24120.5
C16—N13—Zn135.5 (4)N21—C25—C24121.2 (5)
C14—N13—Zn111.7 (3)N21—C25—C27114.3 (5)
C16—N14—H14A126.0C24—C25—C27124.5 (5)
C16—N14—H14B111.6O22—C26—O21124.7 (5)
H14A—N14—H14B118.9O22—C26—C21118.9 (5)
C25—N21—C21119.9 (4)O21—C26—C21116.4 (5)
C25—N21—Zn119.2 (3)O24—C27—O23127.1 (5)
C21—N21—Zn120.8 (3)O24—C27—C25117.2 (5)
C12—S11—C1389.5 (3)O23—C27—C25115.7 (5)
C15—S12—C1689.3 (3)H1WA—O1W—H1WB107.4
C12—C11—N11115.2 (5)H2WA—O2W—H2WB106.1
C12—C11—C14128.9 (5)H3WA—O3W—H3WB107.3
N11—C11—C14116.0 (4)H4WA—O4W—H4WB103.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O22i0.971.842.778 (5)163
O1—H1B···O1W0.961.872.827 (6)174
O1W—H1WA···O4Wii0.912.102.812 (6)134
O1W—H1WB···O2Wi0.802.102.775 (6)142
O2W—H2WA···O220.821.932.692 (6)155
O2W—H2WB···O4Wiii0.861.972.830 (6)178
O3W—H3WA···O240.941.942.880 (6)174
O3W—H3WB···O24iv0.961.802.694 (6)153
O4W—H4WA···O2Wii0.912.022.863 (6)153
O4W—H4WB···O3W0.881.922.783 (6)167
N12—H12A···O10.972.002.873 (6)149
N12—H12B···O21v0.832.192.984 (5)161
N14—H14A···O3Wvi0.882.443.043 (6)126
N14—H14B···O1Wvii0.862.193.022 (6)162
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+2, y, z+1; (v) x+1, y1/2, z+1/2; (vi) x+2, y+1, z+1; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O
Mr518.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.0529 (19), 7.0833 (13), 27.720 (6)
β (°) 93.960 (3)
V3)1969.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.701, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
9851, 3471, 2238
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.119, 1.03
No. of reflections3471
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.60

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn—N212.064 (4)Zn—O12.213 (3)
Zn—N112.092 (4)Zn—O232.232 (4)
Zn—N132.129 (4)Zn—O212.260 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O22i0.971.842.778 (5)163
O1—H1B···O1W0.961.872.827 (6)174
O1W—H1WA···O4Wii0.912.102.812 (6)134
O1W—H1WB···O2Wi0.802.102.775 (6)142
O2W—H2WA···O220.821.932.692 (6)155
O2W—H2WB···O4Wiii0.861.972.830 (6)178
O3W—H3WA···O240.941.942.880 (6)174
O3W—H3WB···O24iv0.961.802.694 (6)153
O4W—H4WA···O2Wii0.912.022.863 (6)153
O4W—H4WB···O3W0.881.922.783 (6)167
N12—H12A···O10.972.002.873 (6)149
N12—H12B···O21v0.832.192.984 (5)161
N14—H14A···O3Wvi0.882.443.043 (6)126
N14—H14B···O1Wvii0.862.193.022 (6)162
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+2, y, z+1; (v) x+1, y1/2, z+1/2; (vi) x+2, y+1, z+1; (vii) x+1, y, z.
 

Acknowledgements

The project was supported by the Foundation of Shanghai University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiu, B.-X. & Xu, D.-J. (2004). Acta Cryst. C60, m137–m139.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, B.-X., Yu, J.-Y. & Xu, D.-J. (2005). Acta Cryst. E61, m1978–m1980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, B.-X. & Xu, D.-J. (2005). Acta Cryst. E61, m2011–m2013.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 71–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W. L., Gao, X. S. & Lu, F. C. (1997). J. Appl. Polym. Sci. 64, 2309–2315.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m683-m684
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds