metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­trinitrato[2,4,6-tris­­(pyridin-2-yl)-1,3,5-triazine]neodymium(III) dihydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: weidanyi786@163.com

(Received 10 April 2011; accepted 19 April 2011; online 7 May 2011)

In the title compound, [Nd(NO3)3(C18H12N6)(H2O)]·2H2O, the Nd3+ ion is in a distorted bicapped square-anti­prismatic geometry formed by three N atoms from the 2,4,6-tris­(pyridin-2-yl)-1,3,5-triazine (TPTZ) ligand, six O atoms from the three nitrate anions and one O atom from the aqua ligand. The mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds. Two types of ππ stacking inter­actions occur between the TPTZ ligands of adjacent complexes [centroid-to-centroid distances = 3.760 (4) and 3.870 (3) Å].

Related literature

For general background, see: Feng et al. (2010[Feng, X., Zhao, J.-S., Liu, B., Wang, L.-Y., Ng, S., Zhang, G., Wang, J. G., Shi, X.-G. & Liu, Y.-Y. (2010). Cryst. Growth Des. 10, 1399-1408.]); Long et al. (2006[Long, X.-L., Li, Y.-Z., Hu, H., Pan, Y., Bai, J.-F. & You, X.-Z. (2006). Cryst. Growth Des. 6, 1221-1226.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(NO3)3(C18H12N6)(H2O)]·2H2O

  • Mr = 696.65

  • Triclinic, [P \overline 1]

  • a = 9.5799 (5) Å

  • b = 11.9688 (7) Å

  • c = 12.5711 (6) Å

  • α = 115.376 (5)°

  • β = 102.611 (4)°

  • γ = 94.659 (5)°

  • V = 1245.68 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 293 K

  • 0.29 × 0.24 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.785, Tmax = 1.000

  • 9838 measured reflections

  • 5928 independent reflections

  • 5090 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.09

  • 5928 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 1.62 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Selected bond lengths (Å)

Nd—O10 2.437 (3)
Nd—O1 2.502 (4)
Nd—O5 2.514 (3)
Nd—O8 2.514 (4)
Nd—O4 2.551 (4)
Nd—O7 2.564 (3)
Nd—N2 2.590 (3)
Nd—O2 2.615 (4)
Nd—N3 2.641 (4)
Nd—N1 2.659 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10B⋯O5i 0.84 2.03 2.819 (5) 156
O10—H10A⋯O11 0.84 1.84 2.636 (7) 158
O11—H11B⋯O12ii 0.84 1.95 2.785 (8) 172
O11—H11A⋯O12iii 0.84 2.04 2.876 (7) 175
O12—H12A⋯N6 0.84 1.99 2.788 (6) 159
O12—H12B⋯O3iv 0.84 2.18 2.925 (7) 148
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z+1; (iv) -x+1, -y+2, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). Crystal Structure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Lanthanide complexes earned the interest due to the large coordination spheres, unique magnetic and fluorescence properties of lanthanide ions [Feng et al., 2010; Long et al., 2006]. Herein, the title compound was synthesized and its crystal structure is reported.

In the title compound, [Nd(C18H12N6)(NO3)3(H2O)].2H2O (I), the Nd3+ ion is coordinated by three N atoms from TPTZ ligand, six O atoms from three nitrate anions and one O atoms from water molecules to form a distorted bicapped square-antiprismatic geometry (Fig. 1). The average bond lengths of Nd—O and Nd—N are 2.5290 (1) Å and 2.6309 (1) Å, respectively. The complexes are interlinked by O—H···O hydrogen bonds between coordinated water molecules and uncoordinated water molecules, O—H···N hydrogen bonds between N6 and lattice water molecules (Fig. 2), and two types of ππ stacking interactions are between the TPTZ ligand of adjacent complexes [centroid–centroid distances = 3.760 (4) Å, 3.870 (3) Å].

Related literature top

For general background, see: Feng et al. (2010); Long et al. (2006).

Experimental top

All reagents are commercially available and of analytical grade. NdNO3.nH2O 0.0661 g and TPTZ 0.0312 g (0.1 mmol) were dissolved in 10 ml DMF in beaker. The beaker were put into wide mouth bottle, in which were placed 10 ml of ethanol. The wide mouth bottle was sealed and standed at room temperature. The colorless crystal were obtained after several months.

Refinement top

H atoms bonded to C were placed geometrically and treated as riding, with Uiso(H) = 1.2Ueq(C). The water-bound H atoms were located at difference Fourier maps, and refined as riding with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of complex molecule of (I). Displacement ellipsoids are drawn at the 45% probability level. H atoms were omitted for clarity.
[Figure 2] Fig. 2. Crystal structure of (I). H atoms were omitted for clarity, hydrogen bonds are drawn as dashed line.
Aquatrinitrato[2,4,6-tris(pyridin-2-yl)-1,3,5-triazine]neodymium(III) dihydrate top
Crystal data top
[Nd(NO3)3(C18H12N6)(H2O)]·2H2OZ = 2
Mr = 696.65F(000) = 690
Triclinic, P1Dx = 1.857 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5799 (5) ÅCell parameters from 5280 reflections
b = 11.9688 (7) Åθ = 3.1–29.7°
c = 12.5711 (6) ŵ = 2.17 mm1
α = 115.376 (5)°T = 293 K
β = 102.611 (4)°Plate, colourless
γ = 94.659 (5)°0.29 × 0.24 × 0.09 mm
V = 1245.68 (11) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5928 independent reflections
Radiation source: fine-focus sealed tube5090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 29.8°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 912
Tmin = 0.785, Tmax = 1.000k = 1514
9838 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0117P)2 + 3.9883P]
where P = (Fo2 + 2Fc2)/3
5928 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 1.62 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Nd(NO3)3(C18H12N6)(H2O)]·2H2Oγ = 94.659 (5)°
Mr = 696.65V = 1245.68 (11) Å3
Triclinic, P1Z = 2
a = 9.5799 (5) ÅMo Kα radiation
b = 11.9688 (7) ŵ = 2.17 mm1
c = 12.5711 (6) ÅT = 293 K
α = 115.376 (5)°0.29 × 0.24 × 0.09 mm
β = 102.611 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5928 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5090 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 1.000Rint = 0.026
9838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.09Δρmax = 1.62 e Å3
5928 reflectionsΔρmin = 0.98 e Å3
361 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd0.76592 (3)0.84166 (2)0.73838 (2)0.02711 (7)
N10.9322 (4)0.7339 (4)0.5944 (3)0.0361 (9)
N20.6692 (4)0.7758 (3)0.5065 (3)0.0279 (8)
N30.5257 (4)0.9142 (3)0.6656 (3)0.0299 (8)
N40.4875 (4)0.7688 (4)0.3410 (3)0.0337 (8)
N50.6974 (4)0.6837 (4)0.3067 (3)0.0344 (9)
C150.6178 (6)0.6582 (5)0.0673 (4)0.0430 (12)
H15A0.71390.65620.10030.052*
N70.9674 (4)1.0566 (4)0.7547 (4)0.0408 (10)
N80.7168 (4)0.9971 (5)0.9803 (4)0.0427 (10)
N90.5837 (5)0.5887 (4)0.6550 (3)0.0419 (10)
O10.8338 (4)1.0220 (4)0.6964 (3)0.0500 (9)
O21.0163 (4)0.9934 (4)0.8075 (3)0.0474 (9)
O31.0430 (5)1.1464 (4)0.7595 (5)0.0786 (15)
O40.6517 (4)0.8858 (4)0.9142 (3)0.0517 (9)
O50.8056 (4)1.0388 (3)0.9365 (3)0.0440 (8)
O60.6986 (5)1.0642 (4)1.0778 (3)0.0656 (12)
O70.5274 (4)0.6821 (3)0.6647 (3)0.0491 (9)
O80.7219 (4)0.6100 (3)0.6787 (4)0.0572 (10)
O90.5138 (5)0.4864 (4)0.6241 (4)0.0674 (12)
O100.9433 (4)0.7963 (3)0.8783 (3)0.0468 (9)
H10B1.00870.86060.92570.070*
H10A0.93280.74620.90790.070*
O110.9437 (6)0.6039 (4)0.9285 (5)0.0938 (18)
H11B0.92450.52470.89420.141*
H11A0.99680.62440.99930.141*
O120.1290 (4)0.6569 (4)0.1647 (4)0.0613 (11)
H12A0.21510.66330.15990.092*
H12B0.09890.71630.21380.092*
C11.0632 (5)0.7158 (5)0.6386 (5)0.0428 (12)
H11.09890.74630.72300.051*
C21.1485 (6)0.6540 (5)0.5655 (5)0.0500 (14)
H21.23820.64130.59990.060*
C31.0993 (6)0.6118 (5)0.4419 (5)0.0497 (13)
H31.15550.57080.39100.060*
C40.9655 (6)0.6307 (5)0.3939 (5)0.0447 (12)
H40.92980.60290.30990.054*
C50.8850 (5)0.6915 (4)0.4722 (4)0.0306 (9)
C60.7427 (5)0.7185 (4)0.4261 (4)0.0294 (9)
C70.5426 (5)0.8000 (4)0.4596 (4)0.0290 (9)
C80.5690 (5)0.7109 (4)0.2688 (4)0.0309 (9)
C90.4623 (5)0.8728 (4)0.5452 (4)0.0292 (9)
C100.4532 (5)0.9796 (5)0.7425 (4)0.0370 (11)
H100.49581.01040.82620.044*
C110.3170 (5)1.0044 (5)0.7047 (5)0.0423 (12)
H110.26911.04890.76180.051*
C120.2550 (5)0.9625 (5)0.5825 (5)0.0422 (12)
H120.16450.97880.55480.051*
C130.3288 (5)0.8952 (5)0.5006 (4)0.0390 (11)
H130.28900.86560.41680.047*
C140.5196 (5)0.6815 (4)0.1374 (4)0.0366 (11)
N60.3811 (5)0.6860 (4)0.0949 (4)0.0445 (10)
C180.3380 (6)0.6651 (6)0.0216 (5)0.0534 (15)
H180.24120.66600.05370.064*
C170.4276 (7)0.6426 (6)0.0965 (5)0.0608 (17)
H170.39280.63030.17660.073*
C160.5698 (7)0.6383 (6)0.0512 (5)0.0530 (14)
H160.63280.62210.10050.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd0.02569 (12)0.02828 (12)0.02657 (12)0.00553 (9)0.00467 (8)0.01311 (9)
N10.032 (2)0.044 (2)0.035 (2)0.0142 (17)0.0090 (16)0.0199 (18)
N20.0273 (19)0.0285 (19)0.0259 (18)0.0053 (15)0.0061 (14)0.0114 (15)
N30.0289 (19)0.034 (2)0.0307 (19)0.0083 (16)0.0105 (15)0.0170 (16)
N40.033 (2)0.038 (2)0.029 (2)0.0084 (17)0.0063 (15)0.0152 (17)
N50.037 (2)0.037 (2)0.029 (2)0.0107 (17)0.0102 (16)0.0142 (17)
C150.044 (3)0.050 (3)0.036 (3)0.006 (2)0.016 (2)0.019 (2)
N70.034 (2)0.027 (2)0.064 (3)0.0037 (17)0.021 (2)0.020 (2)
N80.038 (2)0.060 (3)0.032 (2)0.015 (2)0.0082 (17)0.023 (2)
N90.049 (3)0.038 (2)0.029 (2)0.003 (2)0.0071 (17)0.0107 (18)
O10.043 (2)0.051 (2)0.059 (2)0.0021 (17)0.0011 (17)0.0373 (19)
O20.0329 (19)0.050 (2)0.064 (2)0.0122 (16)0.0114 (16)0.0313 (19)
O30.053 (3)0.052 (3)0.152 (5)0.009 (2)0.047 (3)0.058 (3)
O40.049 (2)0.054 (2)0.052 (2)0.0007 (19)0.0158 (17)0.025 (2)
O50.050 (2)0.043 (2)0.0332 (18)0.0009 (16)0.0143 (15)0.0129 (16)
O60.065 (3)0.089 (3)0.037 (2)0.020 (2)0.0236 (19)0.020 (2)
O70.036 (2)0.040 (2)0.069 (3)0.0028 (16)0.0130 (17)0.0248 (19)
O80.042 (2)0.036 (2)0.084 (3)0.0082 (17)0.0094 (19)0.023 (2)
O90.087 (3)0.035 (2)0.063 (3)0.020 (2)0.010 (2)0.0170 (19)
O100.047 (2)0.046 (2)0.041 (2)0.0050 (17)0.0052 (15)0.0237 (17)
O110.115 (4)0.056 (3)0.091 (4)0.011 (3)0.029 (3)0.049 (3)
O120.051 (2)0.050 (2)0.074 (3)0.0105 (19)0.019 (2)0.020 (2)
C10.034 (3)0.051 (3)0.046 (3)0.008 (2)0.009 (2)0.025 (2)
C20.032 (3)0.059 (4)0.069 (4)0.018 (3)0.014 (2)0.037 (3)
C30.043 (3)0.050 (3)0.065 (4)0.021 (3)0.028 (3)0.026 (3)
C40.041 (3)0.049 (3)0.045 (3)0.019 (2)0.019 (2)0.017 (2)
C50.030 (2)0.027 (2)0.035 (2)0.0055 (18)0.0106 (18)0.0146 (19)
C60.030 (2)0.026 (2)0.032 (2)0.0041 (17)0.0107 (17)0.0129 (18)
C70.028 (2)0.031 (2)0.031 (2)0.0068 (18)0.0089 (17)0.0178 (19)
C80.034 (2)0.025 (2)0.030 (2)0.0002 (18)0.0083 (17)0.0107 (18)
C90.027 (2)0.030 (2)0.032 (2)0.0063 (17)0.0074 (17)0.0164 (19)
C100.038 (3)0.040 (3)0.036 (3)0.011 (2)0.014 (2)0.018 (2)
C110.040 (3)0.045 (3)0.048 (3)0.020 (2)0.021 (2)0.021 (2)
C120.032 (3)0.051 (3)0.049 (3)0.019 (2)0.012 (2)0.027 (3)
C130.034 (3)0.047 (3)0.037 (3)0.014 (2)0.0076 (19)0.020 (2)
C140.045 (3)0.035 (3)0.028 (2)0.006 (2)0.0084 (19)0.013 (2)
N60.045 (3)0.055 (3)0.034 (2)0.011 (2)0.0089 (18)0.022 (2)
C180.053 (3)0.070 (4)0.038 (3)0.015 (3)0.006 (2)0.028 (3)
C170.076 (4)0.081 (5)0.032 (3)0.023 (4)0.015 (3)0.030 (3)
C160.062 (4)0.061 (4)0.043 (3)0.007 (3)0.023 (3)0.027 (3)
Geometric parameters (Å, º) top
Nd—O102.437 (3)N9—O81.271 (5)
Nd—O12.502 (4)O10—H10B0.8399
Nd—O52.514 (3)O10—H10A0.8400
Nd—O82.514 (4)O11—H11B0.8400
Nd—O42.551 (4)O11—H11A0.8400
Nd—O72.564 (3)O12—H12A0.8405
Nd—N22.590 (3)O12—H12B0.8396
Nd—O22.615 (4)C1—C21.380 (7)
Nd—N32.641 (4)C1—H10.9300
Nd—N12.659 (4)C2—C31.363 (8)
Nd—N82.975 (4)C2—H20.9300
Nd—N92.989 (4)C3—C41.373 (7)
N1—C11.332 (6)C3—H30.9300
N1—C51.346 (6)C4—C51.379 (6)
N2—C61.335 (5)C4—H40.9300
N2—C71.338 (5)C5—C61.478 (6)
N3—C101.328 (6)C7—C91.475 (6)
N3—C91.346 (5)C8—C141.486 (6)
N4—C81.331 (6)C9—C131.376 (6)
N4—C71.337 (5)C10—C111.389 (7)
N5—C61.328 (5)C10—H100.9300
N5—C81.338 (6)C11—C121.363 (7)
C15—C161.366 (7)C11—H110.9300
C15—C141.390 (7)C12—C131.382 (7)
C15—H15A0.9300C12—H120.9300
N7—O31.218 (5)C13—H130.9300
N7—O21.259 (5)C14—N61.332 (6)
N7—O11.261 (5)N6—C181.336 (6)
N8—O61.204 (5)C18—C171.367 (8)
N8—O41.243 (6)C18—H180.9300
N8—O51.283 (5)C17—C161.372 (8)
N9—O91.202 (5)C17—H170.9300
N9—O71.251 (5)C16—H160.9300
O10—Nd—O1120.22 (12)O3—N7—O1121.3 (5)
O10—Nd—O579.00 (12)O2—N7—O1116.0 (4)
O1—Nd—O573.81 (12)O3—N7—Nd176.6 (4)
O10—Nd—O869.07 (12)O2—N7—Nd60.6 (2)
O1—Nd—O8151.33 (13)O1—N7—Nd55.4 (2)
O5—Nd—O8134.08 (13)O6—N8—O4124.0 (5)
O10—Nd—O477.59 (13)O6—N8—O5120.9 (5)
O1—Nd—O4117.41 (13)O4—N8—O5115.1 (4)
O5—Nd—O449.78 (11)O6—N8—Nd177.5 (4)
O8—Nd—O490.63 (13)O4—N8—Nd58.3 (2)
O10—Nd—O7107.37 (12)O5—N8—Nd56.8 (2)
O1—Nd—O7132.39 (12)O9—N9—O7123.3 (5)
O5—Nd—O7116.65 (12)O9—N9—O8122.2 (5)
O8—Nd—O749.34 (12)O7—N9—O8114.4 (4)
O4—Nd—O769.68 (12)O9—N9—Nd177.9 (4)
O10—Nd—N2140.25 (12)O7—N9—Nd58.3 (2)
O1—Nd—N269.56 (11)O8—N9—Nd56.1 (2)
O5—Nd—N2136.67 (11)N7—O1—Nd100.0 (3)
O8—Nd—N286.55 (13)N7—O2—Nd94.6 (3)
O4—Nd—N2135.54 (12)N8—O4—Nd97.2 (3)
O7—Nd—N275.24 (12)N8—O5—Nd97.9 (3)
O10—Nd—O271.11 (12)N9—O7—Nd97.1 (3)
O1—Nd—O249.32 (11)N9—O8—Nd99.0 (3)
O5—Nd—O266.19 (11)Nd—O10—H10B110.4
O8—Nd—O2127.57 (12)Nd—O10—H10A130.4
O4—Nd—O2112.49 (12)H10B—O10—H10A112.7
O7—Nd—O2176.68 (12)H11B—O11—H11A104.5
N2—Nd—O2103.96 (11)H12A—O12—H12B123.0
O10—Nd—N3155.50 (12)N1—C1—C2123.3 (5)
O1—Nd—N371.23 (11)N1—C1—H1118.4
O5—Nd—N384.52 (11)C2—C1—H1118.4
O8—Nd—N3112.20 (12)C3—C2—C1119.0 (5)
O4—Nd—N377.94 (12)C3—C2—H2120.5
O7—Nd—N364.41 (12)C1—C2—H2120.5
N2—Nd—N362.49 (11)C2—C3—C4119.0 (5)
O2—Nd—N3118.21 (11)C2—C3—H3120.5
O10—Nd—N180.40 (12)C4—C3—H3120.5
O1—Nd—N182.91 (13)C3—C4—C5118.9 (5)
O5—Nd—N1134.92 (12)C3—C4—H4120.5
O8—Nd—N171.64 (13)C5—C4—H4120.5
O4—Nd—N1155.61 (12)N1—C5—C4122.8 (4)
O7—Nd—N1107.65 (12)N1—C5—C6115.9 (4)
N2—Nd—N161.87 (11)C4—C5—C6121.2 (4)
O2—Nd—N169.30 (12)N5—C6—N2124.7 (4)
N3—Nd—N1123.80 (11)N5—C6—C5117.1 (4)
O10—Nd—N877.08 (12)N2—C6—C5118.2 (4)
O1—Nd—N896.09 (13)N4—C7—N2124.5 (4)
O5—Nd—N825.30 (11)N4—C7—C9117.4 (4)
O8—Nd—N8112.58 (14)N2—C7—C9118.0 (4)
O4—Nd—N824.49 (12)N4—C8—N5124.9 (4)
O7—Nd—N892.81 (12)N4—C8—C14118.1 (4)
N2—Nd—N8142.56 (11)N5—C8—C14116.9 (4)
O2—Nd—N889.72 (12)N3—C9—C13123.1 (4)
N3—Nd—N880.26 (11)N3—C9—C7116.9 (4)
N1—Nd—N8153.26 (11)C13—C9—C7120.0 (4)
O10—Nd—N987.86 (12)N3—C10—C11123.6 (4)
O1—Nd—N9149.12 (11)N3—C10—H10118.2
O5—Nd—N9128.36 (11)C11—C10—H10118.2
O8—Nd—N924.82 (11)C12—C11—C10118.8 (4)
O4—Nd—N978.69 (12)C12—C11—H11120.6
O7—Nd—N924.53 (11)C10—C11—H11120.6
N2—Nd—N980.62 (11)C11—C12—C13118.8 (4)
O2—Nd—N9152.39 (12)C11—C12—H12120.6
N3—Nd—N988.31 (12)C13—C12—H12120.6
N1—Nd—N990.18 (12)C9—C13—C12118.9 (4)
N8—Nd—N9103.12 (12)C9—C13—H13120.6
C1—N1—C5117.0 (4)C12—C13—H13120.6
C1—N1—Nd121.9 (3)N6—C14—C15123.3 (4)
C5—N1—Nd121.0 (3)N6—C14—C8116.3 (4)
C6—N2—C7115.4 (4)C15—C14—C8120.3 (4)
C6—N2—Nd122.8 (3)C14—N6—C18116.6 (4)
C7—N2—Nd121.8 (3)N6—C18—C17124.0 (5)
C10—N3—C9116.8 (4)N6—C18—H18118.0
C10—N3—Nd122.5 (3)C17—C18—H18118.0
C9—N3—Nd120.2 (3)C18—C17—C16118.6 (5)
C8—N4—C7115.2 (4)C18—C17—H17120.7
C6—N5—C8115.3 (4)C16—C17—H17120.7
C16—C15—C14118.4 (5)C15—C16—C17119.2 (5)
C16—C15—H15A120.8C15—C16—H16120.4
C14—C15—H15A120.8C17—C16—H16120.4
O3—N7—O2122.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O5i0.842.032.819 (5)156
O10—H10A···O110.841.842.636 (7)158
O11—H11B···O12ii0.841.952.785 (8)172
O11—H11A···O12iii0.842.042.876 (7)175
O12—H12A···N60.841.992.788 (6)159
O12—H12B···O3iv0.842.182.925 (7)148
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Nd(NO3)3(C18H12N6)(H2O)]·2H2O
Mr696.65
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5799 (5), 11.9688 (7), 12.5711 (6)
α, β, γ (°)115.376 (5), 102.611 (4), 94.659 (5)
V3)1245.68 (11)
Z2
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.29 × 0.24 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.785, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9838, 5928, 5090
Rint0.026
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.09
No. of reflections5928
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.62, 0.98

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected bond lengths (Å) top
Nd—O102.437 (3)Nd—O72.564 (3)
Nd—O12.502 (4)Nd—N22.590 (3)
Nd—O52.514 (3)Nd—O22.615 (4)
Nd—O82.514 (4)Nd—N32.641 (4)
Nd—O42.551 (4)Nd—N12.659 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O5i0.842.032.819 (5)156
O10—H10A···O110.841.842.636 (7)158
O11—H11B···O12ii0.841.952.785 (8)172
O11—H11A···O12iii0.842.042.876 (7)175
O12—H12A···N60.841.992.788 (6)159
O12—H12B···O3iv0.842.182.925 (7)148
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+2, z+1.
 

Acknowledgements

This work was sponsored by the K. C. Wong Magna Fund of Ningbo University, the Ningbo Municipal Natural Science Foundation (grant No. 2010A610160) and the Subject Object (No. xk1070) of Ningbo University.

References

First citationFeng, X., Zhao, J.-S., Liu, B., Wang, L.-Y., Ng, S., Zhang, G., Wang, J. G., Shi, X.-G. & Liu, Y.-Y. (2010). Cryst. Growth Des. 10, 1399–1408.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLong, X.-L., Li, Y.-Z., Hu, H., Pan, Y., Bai, J.-F. & You, X.-Z. (2006). Cryst. Growth Des. 6, 1221–1226.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). Crystal Structure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds