organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(N′-benzoyl­thio­ureido)-4-chloro­benzene

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia
*Correspondence e-mail: bohari@ukm.my

(Received 20 April 2011; accepted 20 April 2011; online 7 May 2011)

In the title compound, C22H17ClN4O2S2, both benzoyl groups are trans to the thiono group across their C—N bonds. The two methyl­ene carbamothioyl formamide fragments of the benzoyl­thio­urea side arms make a dihedral angle of 87.00 (10)°. The mol­ecule is stabilized by intra­molecular N—H⋯O, N—H⋯S and C—H⋯·S hydrogen bonds. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯S inter­molecular hydrogen bonds into zigzag chains along the a axis.

Related literature

For the structure of related bis­carbomothioyl thio­urea compounds, see: Thiam et al. (2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]); Yusof et al. (2008[Yusof, M. S. M., Ayob, N. A. C., Kadir, M. A. & Yamin, B. M. (2008). Acta Cryst. E64, o937.]); Woei Hung & Kassim (2010[Woei Hung, W. & Kassim, M. B. (2010). Acta Cryst. E66, o3182.]). For bond length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17ClN4O2S2

  • Mr = 468.97

  • Triclinic, [P \overline 1]

  • a = 9.637 (4) Å

  • b = 10.820 (4) Å

  • c = 11.370 (4) Å

  • α = 84.443 (8)°

  • β = 68.706 (8)°

  • γ = 86.551 (9)°

  • V = 1099.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 298 K

  • 0.49 × 0.16 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.965

  • 12132 measured reflections

  • 4083 independent reflections

  • 3107 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.173

  • S = 1.08

  • 4083 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S2 0.86 2.86 3.443 (4) 127
N2—H2A⋯O1 0.86 1.91 2.621 (5) 140
N3—H3A⋯O2 0.86 1.96 2.642 (3) 135
C10—H10A⋯S1 0.93 2.61 3.173 (5) 120
N1—H1A⋯O2i 0.86 2.51 3.328 (5) 159
N4—H4A⋯S2ii 0.86 2.81 3.476 (4) 136
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bis-carbonoyl thiourea compounds are relatively less reported than their mono-carbonoyl thiourea derivatives. The title compound contains two benzoyl thioureido groups connected by 4-chlorobenzene bridge at 1, 2 position (Fig.1). The C7—O1 and C16—O2 bond lengths in the both side arms of 1.220 (5) and 1.230 (5) Å, respectively, are slightly longer than the normal C=O double bonds (1.200 Å) and comparable to those in 1,2-bis(N'-benzoylthioureido)benzene (Thiam et al. 2008) and 1-benzoyl-3-[4-(3-benzoylthioureido)-phenyl]thiourea (Woei Hung & Kassim 2010). Other bond lengths and angles are in normal ranges (Allen, 2002). Both methylene carbamothioyl formamide, S1/O1/N1/N2/C6/C7/C8/C9 and S2/O2/N3/N4/C14/C15/C16 fragments of the benzoyl thiourea side arms are planar with maximum deviation of 0.060 (3)Å for O1 atom and make dihedral angles of 87.00 (10)°. The dihedral angle between (C1—C6) and (C17—C22) benzene rings is 86.4 (2)° to each other. There are four intramolecular hydrogen bonds forming three pseudo-six-membered ring [S1···H10A—C10—C9—N2—C8], [O1···H2A—N2—C8—N1—C7] and [O2···H3A—N3—C15—N4—C16] and one pseudo-seven-membered ring [S2···H2A—N2—C9—C14—N3—C15] as compared to two intramolecular hydrogen bonds observed in 1,2-bis(N'-benzoylthioureido) benzene (Thiam et al. 2008) and 1,2-bis[N'-(2,2-dimethylpropionyl)thioureido] cyclohexane (Yusof et al. 2008). In the crystal structure, the molecules are linked by N1—H1A···O2 and N4—H4A···S2 intermolecular hydrogen bonds (symmetry codes as in Table 2) into a zigzag chains along the a axis.

Related literature top

For the structure of related biscarbomothioyl thiourea compounds, see: Thiam et al. (2008); Yusof et al. (2008); Woei Hung & Kassim (2010). For bond length data, see: Allen (2002).

Experimental top

To a stirring acetone solution (75 ml) of benzoyl chloride (0.04 mol) and ammonium thiocyanate (0.04 mol). 4-chlorobenzene-1,2-diamine (0.02 mol) in 40 ml of acetone was added dropwise. The solution mixture was refluxed for 1 h. The resulting solution was poured into a beaker containing some ice cubes. The white precipitate was filtered off and washed with distilled water and cold ethanol before dried under vacuum. Good quality crystals were obtained by recrystallization from ethanol.

Refinement top

H atoms on the parent carbon and nitrogen atoms were positioned geometrically with C—H= 0.93Å and N—H = 0.86 Å, constrained to ride on their parent atoms with Uiso(H)=xUeq(parent atom) where x=1.2 for both CH and NH groups. There are highest peak of 0.88Å from H12A and deepest hole 0.91Å from S1.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the a-axis. Hydrogen bonds are shown by dashed lines.
1-Benzoyl-3-[2-(N'-benzoylthioureido)-5-chlorophenyl]thiourea top
Crystal data top
C22H17ClN4O2S2Z = 2
Mr = 468.97F(000) = 484
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Melting point = 458.5–459.5 K
a = 9.637 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.820 (4) ÅCell parameters from 2481 reflections
c = 11.370 (4) Åθ = 1.8–25.5°
α = 84.443 (8)°µ = 0.39 mm1
β = 68.706 (8)°T = 298 K
γ = 86.551 (9)°Plate, colourless
V = 1099.1 (7) Å30.49 × 0.16 × 0.09 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4083 independent reflections
Radiation source: fine-focus sealed tube3107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 1.8°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1313
Tmin = 0.928, Tmax = 0.965l = 1313
12132 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0812P)2 + 0.6319P]
where P = (Fo2 + 2Fc2)/3
4083 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C22H17ClN4O2S2γ = 86.551 (9)°
Mr = 468.97V = 1099.1 (7) Å3
Triclinic, P1Z = 2
a = 9.637 (4) ÅMo Kα radiation
b = 10.820 (4) ŵ = 0.39 mm1
c = 11.370 (4) ÅT = 298 K
α = 84.443 (8)°0.49 × 0.16 × 0.09 mm
β = 68.706 (8)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4083 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3107 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.965Rint = 0.042
12132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.08Δρmax = 0.79 e Å3
4083 reflectionsΔρmin = 0.30 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16623 (15)0.60564 (10)0.11914 (13)0.0845 (4)
S10.13518 (13)0.32671 (13)0.50891 (12)0.0882 (5)
S20.50891 (11)0.17508 (8)0.38266 (10)0.0524 (3)
O10.1820 (3)0.0277 (3)0.5716 (3)0.0866 (11)
O20.3898 (3)0.1381 (2)0.2029 (3)0.0570 (7)
N10.0285 (3)0.1455 (3)0.6212 (3)0.0504 (7)
H1A0.11420.15570.67950.060*
N20.1368 (3)0.2180 (3)0.4276 (3)0.0486 (7)
H2A0.19390.16300.44820.058*
N30.3678 (3)0.1001 (2)0.2425 (2)0.0400 (6)
H3A0.34000.04030.21220.048*
N40.4966 (3)0.0519 (2)0.3218 (3)0.0439 (7)
H4A0.54800.06950.36950.053*
C10.0621 (5)0.1393 (4)0.7813 (4)0.0604 (10)
H1B0.14080.16730.71270.072*
C20.0101 (6)0.2134 (4)0.8932 (5)0.0743 (13)
H2B0.05310.29190.89940.089*
C30.1036 (6)0.1724 (5)0.9943 (5)0.0819 (14)
H3B0.13910.22341.06910.098*
C40.1669 (5)0.0552 (5)0.9864 (4)0.0759 (13)
H4B0.24280.02671.05670.091*
C50.1177 (4)0.0195 (4)0.8750 (4)0.0577 (10)
H5A0.16140.09780.86950.069*
C60.0031 (4)0.0226 (3)0.7712 (3)0.0496 (9)
C70.0582 (4)0.0508 (3)0.6474 (3)0.0497 (9)
C80.0013 (4)0.2288 (3)0.5134 (3)0.0466 (8)
C90.2023 (4)0.2824 (3)0.3077 (3)0.0415 (8)
C100.1586 (4)0.4028 (3)0.2774 (4)0.0526 (9)
H10A0.08480.44610.33780.063*
C110.2265 (4)0.4562 (3)0.1565 (4)0.0530 (9)
C120.3378 (5)0.3993 (3)0.0662 (4)0.0594 (10)
H12A0.38110.43810.01470.071*
C130.3855 (4)0.2818 (3)0.0974 (3)0.0514 (9)
H13A0.46310.24150.03710.062*
C140.3192 (4)0.2239 (3)0.2167 (3)0.0394 (7)
C150.4541 (3)0.0725 (3)0.3110 (3)0.0393 (7)
C160.4686 (4)0.1497 (3)0.2677 (3)0.0403 (7)
C170.5404 (3)0.2712 (3)0.2888 (3)0.0392 (7)
C220.6633 (4)0.2819 (3)0.3250 (4)0.0526 (9)
H18A0.70520.21120.33720.063*
C210.7232 (5)0.3984 (4)0.3429 (4)0.0673 (11)
H19A0.80560.40620.36750.081*
C200.6622 (5)0.5012 (4)0.3248 (4)0.0693 (12)
H20A0.70350.57910.33700.083*
C190.5408 (5)0.4921 (3)0.2890 (4)0.0642 (11)
H21A0.49970.56340.27730.077*
C180.4797 (4)0.3769 (3)0.2702 (3)0.0488 (8)
H22A0.39780.37020.24500.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1099 (10)0.0483 (6)0.0988 (9)0.0119 (6)0.0510 (7)0.0225 (6)
S10.0625 (7)0.1060 (10)0.0712 (7)0.0420 (7)0.0088 (6)0.0230 (7)
S20.0667 (6)0.0323 (4)0.0726 (6)0.0039 (4)0.0429 (5)0.0049 (4)
O10.0605 (18)0.0737 (19)0.087 (2)0.0224 (15)0.0032 (16)0.0421 (16)
O20.0740 (17)0.0382 (13)0.0780 (18)0.0112 (12)0.0508 (15)0.0109 (12)
N10.0401 (15)0.0577 (18)0.0452 (16)0.0099 (13)0.0098 (13)0.0052 (14)
N20.0436 (16)0.0429 (16)0.0534 (17)0.0123 (12)0.0160 (14)0.0093 (13)
N30.0491 (16)0.0318 (13)0.0444 (15)0.0029 (11)0.0241 (13)0.0024 (11)
N40.0546 (17)0.0326 (14)0.0528 (17)0.0124 (12)0.0305 (14)0.0064 (12)
C10.066 (2)0.054 (2)0.065 (2)0.0002 (18)0.030 (2)0.0100 (19)
C20.091 (3)0.063 (3)0.076 (3)0.015 (2)0.044 (3)0.026 (2)
C30.089 (3)0.101 (4)0.060 (3)0.031 (3)0.038 (3)0.032 (3)
C40.063 (3)0.112 (4)0.049 (2)0.011 (3)0.019 (2)0.006 (2)
C50.051 (2)0.075 (3)0.051 (2)0.0052 (19)0.0231 (18)0.0013 (19)
C60.046 (2)0.054 (2)0.054 (2)0.0110 (16)0.0269 (18)0.0067 (17)
C70.045 (2)0.046 (2)0.055 (2)0.0010 (15)0.0170 (17)0.0080 (16)
C80.050 (2)0.0447 (19)0.0452 (19)0.0094 (15)0.0195 (16)0.0017 (15)
C90.0456 (19)0.0334 (16)0.0503 (19)0.0009 (14)0.0255 (16)0.0061 (14)
C100.055 (2)0.0405 (19)0.064 (2)0.0103 (16)0.0271 (19)0.0000 (17)
C110.066 (2)0.0375 (18)0.063 (2)0.0026 (17)0.037 (2)0.0152 (17)
C120.079 (3)0.049 (2)0.051 (2)0.0070 (19)0.028 (2)0.0135 (18)
C130.064 (2)0.047 (2)0.043 (2)0.0006 (17)0.0201 (17)0.0017 (16)
C140.0483 (19)0.0310 (15)0.0449 (18)0.0024 (14)0.0254 (15)0.0014 (14)
C150.0402 (17)0.0361 (17)0.0398 (17)0.0047 (13)0.0139 (14)0.0004 (13)
C160.0415 (18)0.0323 (16)0.0465 (18)0.0039 (13)0.0158 (15)0.0037 (14)
C170.0429 (18)0.0331 (16)0.0410 (17)0.0066 (13)0.0148 (14)0.0059 (13)
C220.052 (2)0.0411 (19)0.069 (2)0.0076 (16)0.0261 (19)0.0121 (17)
C210.064 (3)0.060 (2)0.087 (3)0.024 (2)0.040 (2)0.010 (2)
C200.094 (3)0.036 (2)0.085 (3)0.020 (2)0.045 (3)0.0045 (19)
C190.086 (3)0.0315 (18)0.081 (3)0.0004 (18)0.039 (2)0.0004 (18)
C180.053 (2)0.0397 (18)0.055 (2)0.0037 (15)0.0214 (17)0.0054 (15)
Geometric parameters (Å, º) top
Cl1—C111.750 (3)C4—H4B0.9300
S1—C81.651 (3)C5—C61.385 (5)
S2—C151.653 (3)C5—H5A0.9300
O1—C71.220 (4)C6—C71.482 (5)
O2—C161.229 (4)C9—C141.391 (5)
N1—C71.363 (4)C9—C101.395 (4)
N1—C81.399 (4)C10—C111.375 (5)
N1—H1A0.8600C10—H10A0.9300
N2—C81.322 (4)C11—C121.351 (6)
N2—C91.409 (4)C12—C131.384 (5)
N2—H2A0.8600C12—H12A0.9300
N3—C151.335 (4)C13—C141.376 (5)
N3—C141.431 (4)C13—H13A0.9300
N3—H3A0.8600C16—C171.488 (4)
N4—C161.361 (4)C17—C181.382 (5)
N4—C151.390 (4)C17—C221.384 (5)
N4—H4A0.8600C22—C211.383 (5)
C1—C21.379 (6)C22—H18A0.9300
C1—C61.390 (5)C21—C201.355 (6)
C1—H1B0.9300C21—H19A0.9300
C2—C31.358 (7)C20—C191.367 (6)
C2—H2B0.9300C20—H20A0.9300
C3—C41.383 (7)C19—C181.377 (5)
C3—H3B0.9300C19—H21A0.9300
C4—C51.376 (6)C18—H22A0.9300
C7—N1—C8129.6 (3)C11—C10—C9118.8 (3)
C7—N1—H1A115.2C11—C10—H10A120.6
C8—N1—H1A115.2C9—C10—H10A120.6
C8—N2—C9130.2 (3)C12—C11—C10123.1 (3)
C8—N2—H2A114.9C12—C11—Cl1118.8 (3)
C9—N2—H2A114.9C10—C11—Cl1118.0 (3)
C15—N3—C14123.5 (3)C11—C12—C13118.3 (3)
C15—N3—H3A118.2C11—C12—H12A120.9
C14—N3—H3A118.2C13—C12—H12A120.9
C16—N4—C15129.3 (3)C14—C13—C12120.6 (3)
C16—N4—H4A115.4C14—C13—H13A119.7
C15—N4—H4A115.4C12—C13—H13A119.7
C2—C1—C6119.9 (4)C13—C14—C9120.5 (3)
C2—C1—H1B120.0C13—C14—N3118.5 (3)
C6—C1—H1B120.0C9—C14—N3120.9 (3)
C3—C2—C1120.3 (4)N3—C15—N4115.9 (3)
C3—C2—H2B119.8N3—C15—S2124.3 (2)
C1—C2—H2B119.8N4—C15—S2119.8 (2)
C2—C3—C4120.2 (4)O2—C16—N4121.8 (3)
C2—C3—H3B119.9O2—C16—C17121.5 (3)
C4—C3—H3B119.9N4—C16—C17116.7 (3)
C5—C4—C3120.3 (4)C18—C17—C22119.6 (3)
C5—C4—H4B119.9C18—C17—C16117.3 (3)
C3—C4—H4B119.9C22—C17—C16123.1 (3)
C4—C5—C6119.7 (4)C21—C22—C17119.4 (3)
C4—C5—H5A120.2C21—C22—H18A120.3
C6—C5—H5A120.2C17—C22—H18A120.3
C5—C6—C1119.5 (4)C20—C21—C22120.3 (4)
C5—C6—C7123.8 (3)C20—C21—H19A119.9
C1—C6—C7116.6 (3)C22—C21—H19A119.9
O1—C7—N1121.0 (3)C21—C20—C19120.9 (3)
O1—C7—C6121.4 (3)C21—C20—H20A119.5
N1—C7—C6117.6 (3)C19—C20—H20A119.5
N2—C8—N1114.9 (3)C20—C19—C18119.7 (4)
N2—C8—S1128.4 (3)C20—C19—H21A120.1
N1—C8—S1116.7 (3)C18—C19—H21A120.1
C14—C9—C10118.6 (3)C19—C18—C17120.0 (3)
C14—C9—N2118.1 (3)C19—C18—H22A120.0
C10—C9—N2123.2 (3)C17—C18—H22A120.0
C6—C1—C2—C30.8 (6)C12—C13—C14—C90.4 (5)
C1—C2—C3—C40.9 (7)C12—C13—C14—N3177.1 (3)
C2—C3—C4—C51.8 (7)C10—C9—C14—C132.9 (5)
C3—C4—C5—C61.0 (6)N2—C9—C14—C13178.9 (3)
C4—C5—C6—C10.7 (5)C10—C9—C14—N3179.5 (3)
C4—C5—C6—C7179.7 (3)N2—C9—C14—N32.2 (4)
C2—C1—C6—C51.6 (6)C15—N3—C14—C13105.1 (4)
C2—C1—C6—C7179.4 (4)C15—N3—C14—C978.2 (4)
C8—N1—C7—O10.0 (6)C14—N3—C15—N4177.1 (3)
C8—N1—C7—C6179.8 (3)C14—N3—C15—S23.7 (4)
C5—C6—C7—O1159.2 (4)C16—N4—C15—N33.3 (5)
C1—C6—C7—O119.8 (5)C16—N4—C15—S2177.5 (3)
C5—C6—C7—N120.6 (5)C15—N4—C16—O23.9 (5)
C1—C6—C7—N1160.4 (3)C15—N4—C16—C17175.0 (3)
C9—N2—C8—N1177.6 (3)O2—C16—C17—C1820.7 (5)
C9—N2—C8—S12.3 (6)N4—C16—C17—C18160.4 (3)
C7—N1—C8—N24.2 (5)O2—C16—C17—C22159.0 (3)
C7—N1—C8—S1175.7 (3)N4—C16—C17—C2219.8 (5)
C8—N2—C9—C14154.5 (3)C18—C17—C22—C210.4 (5)
C8—N2—C9—C1027.3 (6)C16—C17—C22—C21179.9 (3)
C14—C9—C10—C113.8 (5)C17—C22—C21—C200.2 (6)
N2—C9—C10—C11178.1 (3)C22—C21—C20—C190.1 (7)
C9—C10—C11—C122.4 (6)C21—C20—C19—C180.3 (7)
C9—C10—C11—Cl1178.2 (3)C20—C19—C18—C170.6 (6)
C10—C11—C12—C130.1 (6)C22—C17—C18—C190.6 (5)
Cl1—C11—C12—C13179.3 (3)C16—C17—C18—C19179.6 (3)
C11—C12—C13—C141.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S20.862.863.443 (4)127
N2—H2A···O10.861.912.621 (5)140
N2—H2A···N30.862.462.791 (4)103
N3—H3A···O20.861.962.642 (3)135
C10—H10A···S10.932.613.173 (5)120
N1—H1A···O2i0.862.513.328 (5)159
N4—H4A···S2ii0.862.813.476 (4)136
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H17ClN4O2S2
Mr468.97
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.637 (4), 10.820 (4), 11.370 (4)
α, β, γ (°)84.443 (8), 68.706 (8), 86.551 (9)
V3)1099.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.49 × 0.16 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.928, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
12132, 4083, 3107
Rint0.042
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.173, 1.08
No. of reflections4083
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S20.862.863.443 (4)127
N2—H2A···O10.861.912.621 (5)140
N3—H3A···O20.861.962.642 (3)135
C10—H10A···S10.932.613.173 (5)120
N1—H1A···O2i0.862.513.328 (5)159
N4—H4A···S2ii0.862.813.476 (4)136
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for financial support (grant No. UKM-GUP-NBT-08–27–110) and research facilities. Study leave granted to UMO from the Universiti Malaysia Terengganu is very much appreciated.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWoei Hung, W. & Kassim, M. B. (2010). Acta Cryst. E66, o3182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Ayob, N. A. C., Kadir, M. A. & Yamin, B. M. (2008). Acta Cryst. E64, o937.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds