metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m749-m750

[μ-1,3-Dioxo-1,3-bis­(pyridin-2-yl)propane-2,2-diido-κ2N,C2:κ2C2,N′]bis­[(1,3-di­phenylpropane-1,3-dionato-κ2O,O′)palladium(II)](PdPd)

aDepartment of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
*Correspondence e-mail: simonamaggini@gmail.com

(Received 3 May 2011; accepted 6 May 2011; online 14 May 2011)

The title compound, [Pd2(C13H8N2O2)(C15H11O2)2], crystallized from a mixture of ethanol and n-hexa­nes. The structure is the first example of β-diketonate in a dianionic κ2C-coordination complex containing a PdII—PdII bond. Both PdII atoms adopt a pseudo square-planar coordination geometry. The mol­ecular packing involves π-inter­actions between the phenyl rings of the 1,3-diphenyl­propane-1,3-dionato ligands with centroid–centroid distances in the range 3.823 (2)–3.868 (2) Å.

Related literature

For related structures with rhodium, see: Herrmann et al. (1981[Herrmann, W. A., Bauer, C., Plank, J., Kalcher, W., Speth, D. & Ziegler, M. L. (1981). Angew. Chem., Int. Ed. 20, 193-196.], 1984[Herrmann, W. A., Kriechbaum, G. W., Bauer, C., Koumbouris, B., Pfisterer, H., Guggolz, E. & Ziegler, M. L. (1984). J. Organomet. Chem. 262, 89-122.]), with mercury, see: McCandlish & Macklin (1975[McCandlish, L. E. & Macklin, J. W. (1975). J. Organomet. Chem. 99, 31-40.]); Bonhomme et al. (1994[Bonhomme, C., Toledano, P. & Livage, J. (1994). Acta Cryst. C50, 1590-1592.]); Toledano et al. (1994[Toledano, P., Bonhomme, C., Henry, M. & Livage, J. (1994). Acta Cryst. C50, 365-367.]) and with germanium, tin and gold, see: Ganis et al. (1988[Ganis, P., Paiaro, G., Pandolfo, L. & Valle, G. (1988). Organometallics, 7, 210-214.]); Djordjevic et al. (2003[Djordjevic, B., Porter, K. A., Nogai, S., Schier, A. & Schmidbaur, H. (2003). Organometallics, 22, 5336-5344.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2(C13H8N2O2)(C15H11O2)2]

  • Mr = 883.49

  • Monoclinic, P 21 /n

  • a = 15.2535 (5) Å

  • b = 10.6912 (4) Å

  • c = 20.9236 (7) Å

  • β = 96.498 (2)°

  • V = 3390.3 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 9.02 mm−1

  • T = 100 K

  • 0.21 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: numerical [SADABS (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])] Tmin = 0.258, Tmax = 0.451

  • 21234 measured reflections

  • 6139 independent reflections

  • 5506 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.07

  • 6139 reflections

  • 478 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—N1 2.017 (3)
Pd1—O6 2.019 (2)
Pd1—C22 2.045 (3)
Pd1—O5 2.076 (2)
Pd1—Pd2 3.1056 (3)
Pd2—O3 2.013 (2)
Pd2—N2 2.016 (3)
Pd2—C22 2.051 (3)
Pd2—O4 2.063 (2)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

β-Diketonates are well known organic ligands, they play an important role in many research fields and applications. They are characterized by their ability to stabilize metallic fragments, form complexes with transition and main group elements in their neutral and anionic form, and assume different types of coordination modes (Herrmann et al.,1981; Herrmann et al., 1984; McCandlish et al., 1975; Bonhomme et al., 1994; Toledano et al., 1994; Ganis, et al., 1988; Djordjevic et al., 2003). There are several examples of β-diketonate complexes containing the ligand in its neutral or monoanionic form, while complexes containing β-diketonates in their dianionic form are rarer and only few of them have been structurally characterized. Here we report the first crystallographic characterization of a κ2C-bonded dianionic β-diketonate complex containing a Pd(II)—Pd(II) close interaction. Likely the rigidity of the bridging 1,3-di(pyridin-2-yl)propane-1,3-dionato ligand and the presence of its two N-donors contribute to stabilize the particular structure favoring a Pd(II)—Pd(II) proximity.

In the structure, the two palladium atoms adopt a pseudo square-planar coordination geometry (O—Pd—O angles of 91.65 (9)° and 91.42 (8)°; C—Pd—N of 82.90 (11)° and 82.49 (11)°. All the Pd—N, Pd—C and Pd—O bond lengths are in accord with their usual range values. The two palladiums present a similar environment, differentiated mostly by the Pd—O distances trans to carbon, which vary from 2.076 (2)Å to 2.063 (2) Å. Each 1,3-diphenylpropane-1,3-dionato ligand chelates one palladium, adopting its enolate form. Contrarily, the 1,3-di(pyridin-2-yl)propane-1,3-dionato possess well defined C=O double and C—C single bonds. The Pd(II)—Pd(II) distance is 3.1056 (3) Å. The Pd—C22—Pd and C22—Pd—Pd angles are respectively: 98.62 (13)° and 40.62 (8)°, 40.77 (8)°. The molecular packing involves π-interactions (centroid-centroid distances 3.823 (2) – 3.868 (2) Å) of the phenyl rings of the 1,3-diphenylpropane-1,3-dionato favored by an alternated up and down molecular disposition.

Related literature top

For related structures with rhodium, see: Herrmann et al. (1981, 1984), with mercury, see: McCandlish & Macklin (1975); Bonhomme et al. (1994); Toledano et al. (1994) and with germanium, tin and gold, see: Ganis et al. (1988); Djordjevic et al. (2003).

Experimental top

Bu4NOH 1M in MeOH (0.2 ml, 0.2 mmol) and [Zn(dppd)2(H2O)2] (dpd = 1,3-diphenylpropane-1,3-dione) (90 mg, 0.16 mmol) were added to a solution of Pd(CH3CN)2Cl2 (0.16 mmol) and 1,3-di(pyridin-2-yl)propane-1,3-dionato (0.16 mmol) in CH2Cl2 (12 ml). The resulting mixture was stirred at room temperature for 1 h. The solvent was removed and the red solid recovered was dissolved in ethanol. Crystals of [Pd(C15H11O2)2(C13H8N2O2)] were obtained by slow diffusion of n-hexanes into the previously prepared ethanol solution. The clear pink block-like crystals formed over a period of two weeks.

Refinement top

All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were placed at their geometrically idealised positions and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Pd2(C15H11O2)2(C13H8N2O2)]. Displacement ellipsoids are drawn at the 50% probability level.
[µ-1,3-Dioxo-1,3-bis(pyridin-2-yl)propane-2,2-diido- κ2N,C2:κ2C2,N']bis[(1,3- diphenylpropane-1,3-dionato- κ2O,O')palladium(II)](PdPd) top
Crystal data top
[Pd2(C13H8N2O2)(C15H11O2)2]F(000) = 1768
Mr = 883.49Dx = 1.731 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 9963 reflections
a = 15.2535 (5) Åθ = 4.3–68.2°
b = 10.6912 (4) ŵ = 9.02 mm1
c = 20.9236 (7) ÅT = 100 K
β = 96.498 (2)°Block-like, clear pink
V = 3390.3 (2) Å30.21 × 0.14 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6139 independent reflections
Radiation source: Enhance (Cu) X-ray Source5506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 69.2°, θmin = 3.4°
Absorption correction: numerical
[SADABS (Bruker, 2004); SORTAV (Blessing, 1995)]
h = 1818
Tmin = 0.258, Tmax = 0.451k = 1212
21234 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0409P)2 + 2.5899P]
where P = (Fo2 + 2Fc2)/3
6139 reflections(Δ/σ)max = 0.002
478 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Pd2(C13H8N2O2)(C15H11O2)2]V = 3390.3 (2) Å3
Mr = 883.49Z = 4
Monoclinic, P21/nCu Kα radiation
a = 15.2535 (5) ŵ = 9.02 mm1
b = 10.6912 (4) ÅT = 100 K
c = 20.9236 (7) Å0.21 × 0.14 × 0.11 mm
β = 96.498 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6139 independent reflections
Absorption correction: numerical
[SADABS (Bruker, 2004); SORTAV (Blessing, 1995)]
5506 reflections with I > 2σ(I)
Tmin = 0.258, Tmax = 0.451Rint = 0.033
21234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.07Δρmax = 0.81 e Å3
6139 reflectionsΔρmin = 0.51 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.570612 (13)0.61433 (2)0.261676 (10)0.01556 (7)
Pd20.606750 (13)0.68131 (2)0.406689 (10)0.01624 (7)
O10.72762 (15)0.3937 (2)0.38650 (11)0.0240 (5)
O20.53896 (15)0.3249 (2)0.35850 (11)0.0241 (5)
O30.72555 (13)0.7416 (2)0.38639 (10)0.0192 (5)
O40.60128 (14)0.8183 (2)0.47560 (11)0.0228 (5)
O50.55041 (14)0.7120 (2)0.17549 (10)0.0195 (5)
O60.44018 (14)0.6156 (2)0.27046 (10)0.0199 (5)
N10.69998 (17)0.5927 (2)0.25269 (12)0.0182 (5)
N20.48873 (17)0.6133 (3)0.42465 (12)0.0192 (6)
C10.6179 (3)1.1108 (3)0.65876 (16)0.0302 (8)
H10.60721.15690.69590.036*
C20.5509 (2)1.0413 (3)0.62577 (16)0.0283 (8)
H20.4941.04060.64010.034*
C30.5660 (2)0.9730 (3)0.57223 (15)0.0239 (7)
H30.51970.92430.55050.029*
C40.6492 (2)0.9746 (3)0.54944 (15)0.0208 (7)
C50.7161 (2)1.0456 (3)0.58301 (15)0.0247 (7)
H50.77291.04790.56850.03*
C60.7005 (3)1.1131 (3)0.63761 (17)0.0310 (8)
H60.74661.16060.66030.037*
C70.6621 (2)0.8976 (3)0.49176 (15)0.0206 (7)
C80.7378 (2)0.9144 (3)0.45997 (15)0.0228 (7)
H80.7740.98440.47270.027*
C90.7652 (2)0.8387 (3)0.41170 (15)0.0196 (7)
C100.8509 (2)0.8657 (3)0.38645 (15)0.0177 (6)
C110.9201 (2)0.9295 (3)0.42223 (15)0.0209 (7)
H110.91170.96390.4630.025*
C121.0011 (2)0.9427 (3)0.39847 (16)0.0235 (7)
H121.0480.98520.42330.028*
C131.0137 (2)0.8946 (3)0.33912 (16)0.0220 (7)
H131.06940.90330.32330.026*
C140.9450 (2)0.8333 (3)0.30213 (15)0.0211 (7)
H140.95330.80170.26080.025*
C150.8647 (2)0.8188 (3)0.32613 (15)0.0199 (7)
H150.81810.77620.30110.024*
C160.4325 (2)0.6731 (3)0.45877 (15)0.0235 (7)
H160.44390.75770.47090.028*
C170.3579 (2)0.6143 (4)0.47686 (16)0.0264 (8)
H170.31770.6590.49980.032*
C180.3431 (2)0.4908 (4)0.46119 (15)0.0267 (8)
H180.29380.44820.47490.032*
C190.4006 (2)0.4283 (3)0.42515 (15)0.0225 (7)
H190.39110.34310.41340.027*
C200.4722 (2)0.4936 (3)0.40686 (14)0.0191 (6)
C210.5399 (2)0.4372 (3)0.36911 (14)0.0181 (6)
C220.60569 (19)0.5277 (3)0.34791 (13)0.0163 (6)
C230.69515 (19)0.4714 (3)0.34852 (14)0.0171 (6)
C240.7462 (2)0.5184 (3)0.29614 (14)0.0188 (6)
C250.8322 (2)0.4823 (3)0.29069 (16)0.0240 (7)
H250.86320.42940.3220.029*
C260.8717 (2)0.5249 (3)0.23869 (16)0.0250 (7)
H260.93030.50040.23340.03*
C270.8257 (2)0.6037 (3)0.19421 (16)0.0247 (7)
H270.85280.63570.15890.03*
C280.7392 (2)0.6351 (3)0.20222 (15)0.0215 (7)
H280.70690.68770.17140.026*
C290.2731 (2)0.5563 (3)0.29292 (16)0.0245 (7)
H290.32030.50810.31370.029*
C300.1895 (2)0.5464 (3)0.31316 (16)0.0259 (7)
H300.17980.49160.34740.031*
C310.1207 (2)0.6166 (3)0.28318 (17)0.0259 (7)
H310.06380.61090.29720.031*
C320.1347 (2)0.6949 (3)0.23298 (17)0.0259 (7)
H320.08710.74230.21210.031*
C330.2177 (2)0.7047 (3)0.21288 (16)0.0226 (7)
H330.22670.7590.17830.027*
C340.2884 (2)0.6356 (3)0.24288 (15)0.0188 (6)
C350.3805 (2)0.6491 (3)0.22559 (15)0.0184 (6)
C360.3939 (2)0.6962 (3)0.16506 (15)0.0194 (6)
H360.34260.70930.13560.023*
C370.4753 (2)0.7263 (3)0.14297 (15)0.0191 (6)
C380.4770 (2)0.7789 (3)0.07671 (15)0.0204 (7)
C390.4025 (2)0.8285 (3)0.04050 (16)0.0241 (7)
H390.34790.83020.05830.029*
C400.4067 (2)0.8753 (3)0.02085 (16)0.0269 (8)
H400.35570.91040.04440.032*
C410.4861 (2)0.8705 (3)0.04777 (16)0.0272 (8)
H410.48920.90050.09020.033*
C420.5604 (2)0.8218 (3)0.01227 (17)0.0276 (8)
H420.61480.81960.03040.033*
C430.5565 (2)0.7762 (3)0.04929 (16)0.0241 (7)
H430.6080.7430.0730.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01383 (12)0.02008 (13)0.01257 (12)0.00005 (8)0.00055 (8)0.00060 (8)
Pd20.01407 (12)0.02168 (13)0.01308 (12)0.00017 (8)0.00203 (8)0.00249 (9)
O10.0213 (11)0.0311 (13)0.0199 (12)0.0073 (10)0.0032 (9)0.0035 (10)
O20.0229 (11)0.0264 (13)0.0232 (12)0.0018 (10)0.0029 (9)0.0004 (10)
O30.0168 (10)0.0227 (12)0.0187 (11)0.0024 (9)0.0050 (8)0.0040 (9)
O40.0198 (11)0.0286 (13)0.0203 (11)0.0013 (9)0.0040 (9)0.0092 (10)
O50.0202 (11)0.0232 (11)0.0150 (11)0.0014 (9)0.0011 (8)0.0029 (9)
O60.0155 (10)0.0269 (12)0.0170 (11)0.0025 (9)0.0009 (8)0.0008 (9)
N10.0175 (13)0.0222 (14)0.0149 (13)0.0015 (11)0.0015 (10)0.0029 (11)
N20.0158 (13)0.0289 (15)0.0129 (13)0.0014 (11)0.0015 (10)0.0014 (11)
C10.047 (2)0.0281 (19)0.0159 (16)0.0071 (16)0.0066 (15)0.0057 (14)
C20.0357 (19)0.0303 (19)0.0203 (17)0.0065 (16)0.0087 (14)0.0013 (14)
C30.0300 (17)0.0233 (18)0.0185 (16)0.0021 (14)0.0020 (13)0.0007 (13)
C40.0253 (16)0.0195 (16)0.0176 (15)0.0045 (13)0.0025 (12)0.0002 (13)
C50.0258 (17)0.0284 (18)0.0193 (16)0.0024 (14)0.0002 (13)0.0034 (14)
C60.038 (2)0.030 (2)0.0240 (18)0.0035 (16)0.0026 (15)0.0070 (15)
C70.0226 (16)0.0219 (16)0.0168 (15)0.0066 (13)0.0000 (12)0.0014 (13)
C80.0239 (16)0.0250 (17)0.0194 (16)0.0000 (14)0.0017 (13)0.0033 (14)
C90.0208 (15)0.0211 (16)0.0165 (15)0.0016 (13)0.0001 (12)0.0039 (13)
C100.0189 (15)0.0179 (16)0.0162 (15)0.0009 (12)0.0012 (12)0.0006 (12)
C110.0277 (17)0.0185 (16)0.0164 (15)0.0016 (13)0.0017 (13)0.0012 (13)
C120.0234 (16)0.0188 (16)0.0272 (17)0.0046 (13)0.0021 (13)0.0010 (14)
C130.0195 (16)0.0208 (17)0.0261 (17)0.0002 (13)0.0051 (13)0.0054 (13)
C140.0235 (16)0.0228 (17)0.0181 (16)0.0003 (13)0.0065 (13)0.0017 (13)
C150.0220 (16)0.0188 (16)0.0180 (16)0.0000 (13)0.0018 (12)0.0012 (12)
C160.0219 (16)0.0314 (19)0.0170 (16)0.0048 (14)0.0020 (13)0.0012 (14)
C170.0188 (16)0.044 (2)0.0166 (16)0.0075 (15)0.0031 (13)0.0035 (15)
C180.0157 (15)0.048 (2)0.0165 (16)0.0025 (15)0.0012 (12)0.0085 (15)
C190.0194 (15)0.0304 (18)0.0172 (15)0.0025 (14)0.0007 (12)0.0074 (14)
C200.0176 (14)0.0273 (18)0.0113 (14)0.0000 (13)0.0029 (11)0.0024 (13)
C210.0185 (14)0.0243 (18)0.0107 (14)0.0001 (13)0.0023 (11)0.0022 (12)
C220.0172 (14)0.0214 (16)0.0100 (13)0.0015 (12)0.0008 (11)0.0022 (12)
C230.0176 (14)0.0175 (15)0.0157 (15)0.0023 (12)0.0001 (12)0.0027 (13)
C240.0176 (15)0.0225 (17)0.0165 (15)0.0019 (13)0.0023 (12)0.0038 (13)
C250.0211 (16)0.0264 (18)0.0241 (17)0.0005 (14)0.0000 (13)0.0033 (14)
C260.0177 (15)0.0325 (19)0.0259 (17)0.0007 (14)0.0078 (13)0.0083 (15)
C270.0230 (17)0.0317 (19)0.0208 (17)0.0059 (14)0.0084 (13)0.0067 (14)
C280.0222 (16)0.0266 (18)0.0154 (15)0.0046 (13)0.0014 (12)0.0008 (13)
C290.0219 (16)0.0284 (18)0.0221 (17)0.0016 (14)0.0025 (13)0.0041 (14)
C300.0213 (16)0.0319 (19)0.0245 (17)0.0017 (14)0.0030 (13)0.0059 (15)
C310.0181 (16)0.035 (2)0.0253 (18)0.0021 (14)0.0044 (13)0.0020 (15)
C320.0197 (16)0.0307 (19)0.0266 (18)0.0063 (14)0.0005 (13)0.0015 (15)
C330.0233 (16)0.0261 (18)0.0182 (16)0.0020 (14)0.0013 (13)0.0016 (13)
C340.0182 (15)0.0215 (16)0.0165 (15)0.0002 (13)0.0011 (12)0.0049 (13)
C350.0182 (15)0.0158 (15)0.0206 (16)0.0018 (12)0.0006 (12)0.0043 (12)
C360.0197 (15)0.0205 (16)0.0171 (15)0.0011 (13)0.0016 (12)0.0007 (13)
C370.0232 (16)0.0152 (15)0.0184 (15)0.0006 (12)0.0000 (12)0.0023 (12)
C380.0259 (16)0.0157 (15)0.0189 (15)0.0030 (13)0.0002 (12)0.0024 (13)
C390.0275 (17)0.0224 (17)0.0221 (17)0.0021 (14)0.0013 (13)0.0041 (14)
C400.0344 (19)0.0234 (18)0.0209 (17)0.0038 (15)0.0056 (14)0.0004 (14)
C410.043 (2)0.0223 (18)0.0153 (16)0.0079 (15)0.0007 (15)0.0002 (13)
C420.0348 (19)0.0265 (18)0.0226 (17)0.0059 (15)0.0083 (14)0.0014 (14)
C430.0271 (17)0.0235 (17)0.0208 (16)0.0020 (14)0.0014 (13)0.0005 (14)
Geometric parameters (Å, º) top
Pd1—N12.017 (3)C16—H160.95
Pd1—O62.019 (2)C17—C181.374 (5)
Pd1—C222.045 (3)C17—H170.95
Pd1—O52.076 (2)C18—C191.391 (5)
Pd1—Pd23.1056 (3)C18—H180.95
Pd2—O32.013 (2)C19—C201.386 (4)
Pd2—N22.016 (3)C19—H190.95
Pd2—C222.051 (3)C20—C211.496 (4)
Pd2—O42.063 (2)C21—C221.496 (4)
O1—C231.216 (4)C22—C231.490 (4)
O2—C211.221 (4)C23—C241.501 (4)
O3—C91.285 (4)C24—C251.384 (4)
O4—C71.274 (4)C25—C261.380 (5)
O5—C371.273 (4)C25—H250.95
O6—C351.283 (4)C26—C271.386 (5)
N1—C241.345 (4)C26—H260.95
N1—C281.350 (4)C27—C281.390 (5)
N2—C161.338 (4)C27—H270.95
N2—C201.348 (4)C28—H280.95
C1—C61.382 (5)C29—C341.387 (5)
C1—C21.384 (5)C29—C301.392 (5)
C1—H10.95C29—H290.95
C2—C31.378 (5)C30—C311.382 (5)
C2—H20.95C30—H300.95
C3—C41.406 (5)C31—C321.378 (5)
C3—H30.95C31—H310.95
C4—C51.395 (5)C32—C331.383 (5)
C4—C71.492 (4)C32—H320.95
C5—C61.394 (5)C33—C341.397 (5)
C5—H50.95C33—H330.95
C6—H60.95C34—C351.496 (4)
C7—C81.408 (5)C35—C361.399 (4)
C8—C91.394 (5)C36—C371.410 (4)
C8—H80.95C36—H360.95
C9—C101.493 (4)C37—C381.499 (4)
C10—C151.396 (4)C38—C391.397 (5)
C10—C111.400 (4)C38—C431.399 (5)
C11—C121.390 (5)C39—C401.386 (5)
C11—H110.95C39—H390.95
C12—C131.378 (5)C40—C411.393 (5)
C12—H120.95C40—H400.95
C13—C141.394 (5)C41—C421.385 (5)
C13—H130.95C41—H410.95
C14—C151.385 (5)C42—C431.385 (5)
C14—H140.95C42—H420.95
C15—H150.95C43—H430.95
C16—C171.389 (5)
N1—Pd1—O6173.80 (10)C17—C18—C19119.6 (3)
N1—Pd1—C2282.49 (11)C17—C18—H18120.2
O6—Pd1—C2294.87 (10)C19—C18—H18120.2
N1—Pd1—O591.56 (9)C20—C19—C18118.2 (3)
O6—Pd1—O591.42 (8)C20—C19—H19120.9
C22—Pd1—O5172.94 (10)C18—C19—H19120.9
N1—Pd1—Pd292.87 (7)N2—C20—C19122.0 (3)
O6—Pd1—Pd288.70 (6)N2—C20—C21114.2 (3)
C22—Pd1—Pd240.77 (8)C19—C20—C21123.7 (3)
O5—Pd1—Pd2136.47 (6)O2—C21—C22125.2 (3)
O3—Pd2—N2177.23 (10)O2—C21—C20119.8 (3)
O3—Pd2—C2294.36 (10)C22—C21—C20115.0 (3)
N2—Pd2—C2282.90 (11)C23—C22—C21112.4 (3)
O3—Pd2—O491.65 (9)C23—C22—Pd1109.8 (2)
N2—Pd2—O491.04 (10)C21—C22—Pd1115.92 (19)
C22—Pd2—O4171.58 (11)C23—C22—Pd2111.9 (2)
O3—Pd2—Pd186.11 (6)C21—C22—Pd2107.45 (19)
N2—Pd2—Pd192.03 (7)Pd1—C22—Pd298.62 (13)
C22—Pd2—Pd140.62 (8)O1—C23—C22125.9 (3)
O4—Pd2—Pd1146.06 (7)O1—C23—C24120.0 (3)
C9—O3—Pd2124.4 (2)C22—C23—C24114.1 (3)
C7—O4—Pd2124.9 (2)N1—C24—C25122.6 (3)
C37—O5—Pd1124.1 (2)N1—C24—C23114.5 (3)
C35—O6—Pd1124.1 (2)C25—C24—C23122.8 (3)
C24—N1—C28118.8 (3)C26—C25—C24118.4 (3)
C24—N1—Pd1116.6 (2)C26—C25—H25120.8
C28—N1—Pd1124.0 (2)C24—C25—H25120.8
C16—N2—C20119.3 (3)C25—C26—C27119.8 (3)
C16—N2—Pd2124.5 (2)C25—C26—H26120.1
C20—N2—Pd2115.7 (2)C27—C26—H26120.1
C6—C1—C2119.9 (3)C26—C27—C28118.8 (3)
C6—C1—H1120.1C26—C27—H27120.6
C2—C1—H1120.1C28—C27—H27120.6
C3—C2—C1120.6 (3)N1—C28—C27121.6 (3)
C3—C2—H2119.7N1—C28—H28119.2
C1—C2—H2119.7C27—C28—H28119.2
C2—C3—C4120.6 (3)C34—C29—C30121.0 (3)
C2—C3—H3119.7C34—C29—H29119.5
C4—C3—H3119.7C30—C29—H29119.5
C5—C4—C3118.2 (3)C31—C30—C29119.7 (3)
C5—C4—C7123.5 (3)C31—C30—H30120.2
C3—C4—C7118.3 (3)C29—C30—H30120.2
C6—C5—C4120.7 (3)C32—C31—C30120.1 (3)
C6—C5—H5119.6C32—C31—H31120
C4—C5—H5119.6C30—C31—H31120
C1—C6—C5120.0 (3)C31—C32—C33120.2 (3)
C1—C6—H6120C31—C32—H32119.9
C5—C6—H6120C33—C32—H32119.9
O4—C7—C8124.8 (3)C32—C33—C34120.7 (3)
O4—C7—C4115.0 (3)C32—C33—H33119.6
C8—C7—C4120.1 (3)C34—C33—H33119.6
C9—C8—C7126.7 (3)C29—C34—C33118.3 (3)
C9—C8—H8116.7C29—C34—C35119.0 (3)
C7—C8—H8116.7C33—C34—C35122.6 (3)
O3—C9—C8127.0 (3)O6—C35—C36126.8 (3)
O3—C9—C10113.6 (3)O6—C35—C34113.8 (3)
C8—C9—C10119.4 (3)C36—C35—C34119.4 (3)
C15—C10—C11118.5 (3)C35—C36—C37127.1 (3)
C15—C10—C9118.5 (3)C35—C36—H36116.4
C11—C10—C9122.8 (3)C37—C36—H36116.4
C12—C11—C10120.3 (3)O5—C37—C36124.7 (3)
C12—C11—H11119.8O5—C37—C38115.5 (3)
C10—C11—H11119.8C36—C37—C38119.8 (3)
C13—C12—C11120.3 (3)C39—C38—C43118.4 (3)
C13—C12—H12119.8C39—C38—C37123.1 (3)
C11—C12—H12119.8C43—C38—C37118.5 (3)
C12—C13—C14120.2 (3)C40—C39—C38121.2 (3)
C12—C13—H13119.9C40—C39—H39119.4
C14—C13—H13119.9C38—C39—H39119.4
C15—C14—C13119.5 (3)C39—C40—C41119.7 (3)
C15—C14—H14120.3C39—C40—H40120.2
C13—C14—H14120.3C41—C40—H40120.2
C14—C15—C10121.1 (3)C42—C41—C40119.6 (3)
C14—C15—H15119.4C42—C41—H41120.2
C10—C15—H15119.4C40—C41—H41120.2
N2—C16—C17121.6 (3)C43—C42—C41120.8 (3)
N2—C16—H16119.2C43—C42—H42119.6
C17—C16—H16119.2C41—C42—H42119.6
C18—C17—C16119.2 (3)C42—C43—C38120.3 (3)
C18—C17—H17120.4C42—C43—H43119.8
C16—C17—H17120.4C38—C43—H43119.8
N1—Pd1—Pd2—O326.32 (10)C18—C19—C20—C21178.9 (3)
O6—Pd1—Pd2—O3159.68 (9)N2—C20—C21—O2169.4 (3)
C22—Pd1—Pd2—O3101.33 (14)C19—C20—C21—O27.6 (4)
O5—Pd1—Pd2—O368.98 (11)N2—C20—C21—C229.8 (4)
N1—Pd1—Pd2—N2151.63 (11)C19—C20—C21—C22173.2 (3)
O6—Pd1—Pd2—N222.37 (10)O2—C21—C22—C2334.5 (4)
C22—Pd1—Pd2—N276.62 (15)C20—C21—C22—C23144.7 (3)
O5—Pd1—Pd2—N2113.07 (11)O2—C21—C22—Pd192.8 (3)
N1—Pd1—Pd2—C2275.01 (15)C20—C21—C22—Pd188.0 (3)
O6—Pd1—Pd2—C2298.99 (14)O2—C21—C22—Pd2158.0 (2)
O5—Pd1—Pd2—C22170.31 (15)C20—C21—C22—Pd221.1 (3)
N1—Pd1—Pd2—O4113.48 (13)N1—Pd1—C22—C2313.8 (2)
O6—Pd1—Pd2—O472.51 (13)O6—Pd1—C22—C23160.6 (2)
C22—Pd1—Pd2—O4171.50 (16)Pd2—Pd1—C22—C23117.1 (3)
O5—Pd1—Pd2—O418.18 (14)N1—Pd1—C22—C21142.4 (2)
C22—Pd2—O3—C9178.0 (2)O6—Pd1—C22—C2131.9 (2)
O4—Pd2—O3—C93.9 (2)Pd2—Pd1—C22—C21114.3 (3)
Pd1—Pd2—O3—C9142.2 (2)N1—Pd1—C22—Pd2103.31 (12)
O3—Pd2—O4—C72.2 (3)O6—Pd1—C22—Pd282.32 (11)
N2—Pd2—O4—C7177.1 (3)O3—Pd2—C22—C2336.6 (2)
Pd1—Pd2—O4—C787.7 (3)N2—Pd2—C22—C23143.0 (2)
N1—Pd1—O5—C37160.3 (2)Pd1—Pd2—C22—C23115.5 (3)
O6—Pd1—O5—C3714.3 (2)O3—Pd2—C22—C21160.42 (19)
Pd2—Pd1—O5—C37103.9 (2)N2—Pd2—C22—C2119.19 (19)
C22—Pd1—O6—C35172.5 (2)Pd1—Pd2—C22—C21120.7 (2)
O5—Pd1—O6—C3510.7 (2)O3—Pd2—C22—Pd178.84 (11)
Pd2—Pd1—O6—C35147.2 (2)N2—Pd2—C22—Pd1101.55 (12)
C22—Pd1—N1—C2411.0 (2)C21—C22—C23—O134.0 (4)
O5—Pd1—N1—C24172.8 (2)Pd1—C22—C23—O1164.5 (3)
Pd2—Pd1—N1—C2450.5 (2)Pd2—C22—C23—O187.0 (3)
C22—Pd1—N1—C28177.4 (3)C21—C22—C23—C24145.8 (3)
O5—Pd1—N1—C281.2 (3)Pd1—C22—C23—C2415.2 (3)
Pd2—Pd1—N1—C28137.9 (2)Pd2—C22—C23—C2493.2 (3)
C22—Pd2—N2—C16172.3 (3)C28—N1—C24—C250.8 (5)
O4—Pd2—N2—C1613.6 (3)Pd1—N1—C24—C25171.3 (2)
Pd1—Pd2—N2—C16132.6 (2)C28—N1—C24—C23177.1 (3)
C22—Pd2—N2—C2015.8 (2)Pd1—N1—C24—C235.0 (3)
O4—Pd2—N2—C20158.4 (2)O1—C23—C24—N1172.6 (3)
Pd1—Pd2—N2—C2055.4 (2)C22—C23—C24—N17.2 (4)
C6—C1—C2—C30.7 (5)O1—C23—C24—C253.7 (5)
C1—C2—C3—C41.2 (5)C22—C23—C24—C25176.5 (3)
C2—C3—C4—C51.0 (5)N1—C24—C25—C260.3 (5)
C2—C3—C4—C7179.2 (3)C23—C24—C25—C26176.2 (3)
C3—C4—C5—C60.1 (5)C24—C25—C26—C271.1 (5)
C7—C4—C5—C6178.3 (3)C25—C26—C27—C281.8 (5)
C2—C1—C6—C50.2 (5)C24—N1—C28—C270.1 (5)
C4—C5—C6—C10.4 (5)Pd1—N1—C28—C27171.4 (2)
Pd2—O4—C7—C88.1 (4)C26—C27—C28—N11.3 (5)
Pd2—O4—C7—C4171.0 (2)C34—C29—C30—C310.2 (5)
C5—C4—C7—O4165.2 (3)C29—C30—C31—C320.8 (5)
C3—C4—C7—O412.9 (4)C30—C31—C32—C330.8 (5)
C5—C4—C7—C814.0 (5)C31—C32—C33—C340.1 (5)
C3—C4—C7—C8167.8 (3)C30—C29—C34—C330.4 (5)
O4—C7—C8—C98.8 (5)C30—C29—C34—C35176.2 (3)
C4—C7—C8—C9170.3 (3)C32—C33—C34—C290.5 (5)
Pd2—O3—C9—C84.7 (5)C32—C33—C34—C35176.0 (3)
Pd2—O3—C9—C10177.73 (19)Pd1—O6—C35—C363.6 (4)
C7—C8—C9—O31.6 (6)Pd1—O6—C35—C34177.06 (19)
C7—C8—C9—C10175.8 (3)C29—C34—C35—O619.8 (4)
O3—C9—C10—C1522.7 (4)C33—C34—C35—O6156.6 (3)
C8—C9—C10—C15159.5 (3)C29—C34—C35—C36160.7 (3)
O3—C9—C10—C11153.3 (3)C33—C34—C35—C3622.8 (5)
C8—C9—C10—C1124.5 (5)O6—C35—C36—C375.9 (5)
C15—C10—C11—C121.5 (5)C34—C35—C36—C37173.5 (3)
C9—C10—C11—C12174.5 (3)Pd1—O5—C37—C3610.6 (4)
C10—C11—C12—C130.8 (5)Pd1—O5—C37—C38169.15 (19)
C11—C12—C13—C140.6 (5)C35—C36—C37—O51.7 (5)
C12—C13—C14—C151.4 (5)C35—C36—C37—C38178.6 (3)
C13—C14—C15—C100.7 (5)O5—C37—C38—C39164.2 (3)
C11—C10—C15—C140.7 (5)C36—C37—C38—C3916.0 (5)
C9—C10—C15—C14175.4 (3)O5—C37—C38—C4317.0 (4)
C20—N2—C16—C170.6 (5)C36—C37—C38—C43162.8 (3)
Pd2—N2—C16—C17171.0 (2)C43—C38—C39—C400.6 (5)
N2—C16—C17—C182.2 (5)C37—C38—C39—C40179.5 (3)
C16—C17—C18—C192.8 (5)C38—C39—C40—C411.4 (5)
C17—C18—C19—C200.7 (5)C39—C40—C41—C421.5 (5)
C16—N2—C20—C192.8 (4)C40—C41—C42—C430.9 (5)
Pd2—N2—C20—C19169.6 (2)C41—C42—C43—C380.1 (5)
C16—N2—C20—C21179.9 (3)C39—C38—C43—C420.0 (5)
Pd2—N2—C20—C217.5 (3)C37—C38—C43—C42178.8 (3)
C18—C19—C20—N22.1 (4)

Experimental details

Crystal data
Chemical formula[Pd2(C13H8N2O2)(C15H11O2)2]
Mr883.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)15.2535 (5), 10.6912 (4), 20.9236 (7)
β (°) 96.498 (2)
V3)3390.3 (2)
Z4
Radiation typeCu Kα
µ (mm1)9.02
Crystal size (mm)0.21 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionNumerical
[SADABS (Bruker, 2004); SORTAV (Blessing, 1995)]
Tmin, Tmax0.258, 0.451
No. of measured, independent and
observed [I > 2σ(I)] reflections
21234, 6139, 5506
Rint0.033
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.07
No. of reflections6139
No. of parameters478
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.51

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Selected bond lengths (Å) top
Pd1—N12.017 (3)Pd2—O32.013 (2)
Pd1—O62.019 (2)Pd2—N22.016 (3)
Pd1—C222.045 (3)Pd2—C222.051 (3)
Pd1—O52.076 (2)Pd2—O42.063 (2)
Pd1—Pd23.1056 (3)
 

Footnotes

Present address: Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universitá degli Studi di Trento, Via Mesiano 77, 38123 Trento, Italy.

Acknowledgements

SM thanks the Fulbright Program for funding received through the Fulbright Scholar grant 2008/2009, Professor Lucia Carlucci of the University of Milan, and the University of North Carolina, in particular Professor Michel Gagné, for hospitality, use of the facilities, materials and analyses.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBonhomme, C., Toledano, P. & Livage, J. (1994). Acta Cryst. C50, 1590–1592.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDjordjevic, B., Porter, K. A., Nogai, S., Schier, A. & Schmidbaur, H. (2003). Organometallics, 22, 5336–5344.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGanis, P., Paiaro, G., Pandolfo, L. & Valle, G. (1988). Organometallics, 7, 210–214.  CrossRef CAS Google Scholar
First citationHerrmann, W. A., Bauer, C., Plank, J., Kalcher, W., Speth, D. & Ziegler, M. L. (1981). Angew. Chem., Int. Ed. 20, 193–196.  Google Scholar
First citationHerrmann, W. A., Kriechbaum, G. W., Bauer, C., Koumbouris, B., Pfisterer, H., Guggolz, E. & Ziegler, M. L. (1984). J. Organomet. Chem. 262, 89–122.  CrossRef CAS Google Scholar
First citationMcCandlish, L. E. & Macklin, J. W. (1975). J. Organomet. Chem. 99, 31–40.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToledano, P., Bonhomme, C., Henry, M. & Livage, J. (1994). Acta Cryst. C50, 365–367.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m749-m750
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds