metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

LiYbCl4(THF)4

aInstitute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic, and CEITEC BUT, Technicka 3058/10, 616 00, Czech Republic, and bCentro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr., Toluca-Atlacomulco Km 14.5, Toluca, Estado de México, 50200, México
*Correspondence e-mail: vjancik@unam.mx

(Received 30 March 2011; accepted 16 April 2011; online 7 May 2011)

The title compound, di-μ-chlorido-dichlorido-1κ2Cl-tetra­kis­(tetra­hydro­furan)-1κ2O,2κ2O-lithiumytterbium(III), [LiYbCl4(C4H8O)4], was prepared by the reaction of YbCl3(THF)3 with LiCl in THF (THF is tetra­hydro­furan). The central motif of the structure is a Yb(μ-Cl)2Li ring. The Yb atom is hexa­coordinated to four Cl atoms and two THF mol­ecules oriented in a trans fashion. The Li atom has a tetra­hedral environment and is coordinated to two Cl atoms and two THF mol­ecules. No inter­molecular inter­actions other than van der Waals forces were observed. Two of the THF mol­ecules are disordered over two positions.

Related literature

For the isotypic yttrium compound, see Mingqing et al. (1986[Mingqing, C., Guang, W., Shanming, Z., Zuen, H., Wenjie, Q. & Wenling, W. (1986). Wuji Huaxue Xuebao, 2, 102-104.]). For similar lithium compounds with other trivalent cations, see: Chitsaz et al. (2001[Chitsaz, S., Iravani, E., Pauls, J. & Neumüller, B. (2001). Z. Naturforsch. Teil B, 56, 759-764.]) for VIII; Neumüller et al. (1996[Neumüller, B., Hashmatpour, F. & Dehnicke, K. (1996). Z. Naturforsch. Teil B, 51, 602-60044.]) for TiIII; McGuinness et al. (2006[McGuinness, D. S., Brown, D. B., Tooze, R. P., Hess, F. M., Dixon, J. T. & Slawin, A. M. Z. (2006). Organometallics, 25, 3605-3610.]) for CrIII.

[Scheme 1]

Experimental

Crystal data
  • [LiYbCl4(C4H8O)4]

  • Mr = 610.20

  • Monoclinic, C 2/c

  • a = 20.9150 (14) Å

  • b = 10.1565 (7) Å

  • c = 21.8810 (14) Å

  • β = 91.376 (1)°

  • V = 4646.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.50 mm−1

  • T = 100 K

  • 0.37 × 0.16 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.430, Tmax = 0.543

  • 17457 measured reflections

  • 4040 independent reflections

  • 3804 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.050

  • S = 1.22

  • 4040 reflections

  • 302 parameters

  • 388 restraints

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −1.81 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: GRETEP (Laugier & Bochu, 2003[Laugier, J. & Bochu, B. (2003). LMGP Suite. Suite of programs for the interpretation of X-ray experiments. ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46, 38042 Saint Martin d'Héres, France.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Lanthanide compounds containing small ligands can easily form adducts or complex structures with electron donating ligands such as oxygen, halogenides etc. It is well known, that in presence of a Lewis acid such as lithium, mixed metal complexes can be formed. Thus, the reaction of YbCl3(THF)3 with LiCl in THF resulted in the formation of LiYbCl4(THF)4 as the only product (Scheme 1). Two types of chlorine atoms can be observed in the molecule: two terminal ones, which are coordinated to the ytterbium atom, whereas the other two are bridging the ytterbium and lithium atoms. The coordination spheres of the metals are completed by four THF molecules (two per metal) resulting in a hexacoordinated octahedral environment on the ytterbium atom and tetrahedral coordination on the lithium atom. The THF molecules on the ytterbium center are oriented trans to each other with an angle of 179.0 (5)° (for the major position of O1). The values for the cis Cl—Yb—Cl angles show high variation (82.95 (3) – 99.06 (3)°) due to the coordination of Cl1 and Cl2 to the lithium center, which results also in 172.39 (3)° and 171.11 (3)° trans Cl—Yb—Cl angles. The tetrahedron arround the lithium atom is also disordered with the angles ranging from 94.9 (2) to 114.2 (3)°. The molecular structure of LiYbCl4(THF)4 is depicted in Figure 1.

Related literature top

For the isomorphous yttrium compound, see Mingqing et al. (1986). For similar lithium compounds with other trivalent cations, see: Chitsaz et al. (2001) for VIII; Neumuller et al. (1996) for TiIII; McGuinness et al. (2006) for CrIII.

Experimental top

YbCl3(THF)3 (200 mg, 0.4 mmol) and LiCl (25.7 mg, 0.6 mmol) were mixed as solids in a schlenk flask and THF (10 ml) was added at ambient temperature. The mixture was stirred for 4 h. During this time, both components dissolved completely. The resulting solution was filtered and the solvent evaporated under vacuum to dryness. The product was obtained in a form of transparent colourless crystals in 86% yield. Single crystals were obtained from a saturated THF solution at -30 °C.

Refinement top

The hydrogen atoms were placed at calculated positions (H—CMethylene = 0.99 Å) and were refined with Uij set to 1.2 of the parent carbon atom. The SIMU, DELU and SAME restraints in SHELXL97 were used in the refinement of the two disordered THF molecules (O1—C4 and O1a—C4a: occupancies 63 (2):37 (2), O3—C12 and O3a—C12a: occupancies 65 (2):35). The maximum/minimum of the difference electron density is found 1.10 and 1.31Å, respectively, from Li1.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: GRETEP (Laugier & Bochu, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of LiYbCl4(THF)4 with thermal ellipsoids at 50% probability. All hydrogen atoms have been omitted for clarity. Transparent parts belong to the minor orientation of the disordered THF molecules.
[Figure 2] Fig. 2. , Preparation of LiYbCl4(THF)4.
di-µ-chlorido-dichlorido-1κ2Cl-tetrakis(tetrahydrofuran)- 1κ2O,2κ2O-lithiumytterbium(III) top
Crystal data top
[LiYbCl4(C4H8O)4]F(000) = 2408
Mr = 610.20Dx = 1.744 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 9956 reflections
a = 20.9150 (14) Åθ = 2.2–25.0°
b = 10.1565 (7) ŵ = 4.50 mm1
c = 21.8810 (14) ÅT = 100 K
β = 91.376 (1)°Prism, colourless
V = 4646.7 (5) Å30.37 × 0.16 × 0.14 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4040 independent reflections
Radiation source: fine-focus sealed tube3804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.333 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.430, Tmax = 0.543l = 2526
17457 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0069P)2 + 33.1382P]
where P = (Fo2 + 2Fc2)/3
4040 reflections(Δ/σ)max = 0.001
302 parametersΔρmax = 1.06 e Å3
388 restraintsΔρmin = 1.81 e Å3
Crystal data top
[LiYbCl4(C4H8O)4]V = 4646.7 (5) Å3
Mr = 610.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.9150 (14) ŵ = 4.50 mm1
b = 10.1565 (7) ÅT = 100 K
c = 21.8810 (14) Å0.37 × 0.16 × 0.14 mm
β = 91.376 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4040 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3804 reflections with I > 2σ(I)
Tmin = 0.430, Tmax = 0.543Rint = 0.020
17457 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023388 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0069P)2 + 33.1382P]
where P = (Fo2 + 2Fc2)/3
4040 reflectionsΔρmax = 1.06 e Å3
302 parametersΔρmin = 1.81 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Yb10.133434 (8)0.593279 (16)0.364780 (7)0.01390 (6)
Li10.1330 (3)0.9443 (7)0.3598 (3)0.0212 (14)
Cl10.21554 (4)0.78897 (10)0.36461 (4)0.0200 (2)
Cl20.04911 (4)0.78493 (9)0.35817 (4)0.0197 (2)
Cl30.22670 (5)0.43634 (10)0.37626 (5)0.0259 (2)
Cl40.04294 (5)0.42804 (10)0.36458 (4)0.0205 (2)
O10.1404 (6)0.591 (2)0.2613 (3)0.0222 (17)0.633 (19)
C10.0864 (5)0.586 (3)0.2182 (5)0.0238 (14)0.633 (19)
H1A0.06260.67010.21840.029*0.633 (19)
H1B0.05690.51380.22890.029*0.633 (19)
C20.1150 (4)0.5616 (12)0.1559 (3)0.0250 (16)0.633 (19)
H2A0.10850.46890.14330.030*0.633 (19)
H2B0.09450.61950.12470.030*0.633 (19)
C30.1828 (4)0.5909 (13)0.1622 (4)0.0313 (19)0.633 (19)
H3A0.19200.67820.14420.038*0.633 (19)
H3B0.20800.52380.14060.038*0.633 (19)
C40.2004 (5)0.5907 (13)0.2291 (4)0.0283 (19)0.633 (19)
H4A0.22580.51140.23980.034*0.633 (19)
H4B0.22590.66980.23990.034*0.633 (19)
O1A0.1374 (11)0.578 (4)0.2622 (5)0.023 (2)0.367 (19)
C1A0.0833 (8)0.585 (4)0.2190 (8)0.024 (2)0.367 (19)
H1A10.05180.65080.23250.028*0.367 (19)
H1A20.06180.49820.21550.028*0.367 (19)
C2A0.1111 (6)0.625 (2)0.1583 (6)0.027 (2)0.367 (19)
H2A10.09830.56100.12600.033*0.367 (19)
H2A20.09550.71310.14610.033*0.367 (19)
C3A0.1810 (6)0.6256 (19)0.1670 (7)0.027 (2)0.367 (19)
H3A10.19720.71720.16830.032*0.367 (19)
H3A20.20160.57860.13310.032*0.367 (19)
C4A0.1956 (9)0.557 (2)0.2273 (8)0.026 (2)0.367 (19)
H4A10.20360.46170.22100.031*0.367 (19)
H4A20.23330.59630.24840.031*0.367 (19)
O20.12665 (11)0.5996 (3)0.46880 (11)0.0162 (5)
O40.13057 (13)1.0584 (3)0.42837 (12)0.0201 (6)
C50.06770 (16)0.6233 (4)0.50160 (17)0.0188 (8)
H5A0.05900.54990.53000.023*
H5B0.03090.63290.47270.023*
C60.07979 (17)0.7510 (4)0.53669 (18)0.0235 (9)
H6A0.05570.82460.51750.028*
H6B0.06650.74200.57960.028*
C70.15103 (17)0.7754 (4)0.53396 (18)0.0222 (9)
H7A0.16930.79580.57500.027*
H7B0.16030.84930.50600.027*
C80.17804 (16)0.6469 (4)0.50985 (16)0.0185 (8)
H8A0.21790.66210.48740.022*
H8B0.18670.58360.54350.022*
O30.1302 (6)1.0384 (7)0.2846 (2)0.0238 (14)0.65 (3)
C90.1282 (7)0.9709 (9)0.2256 (4)0.0283 (17)0.65 (3)
H9A0.11260.87940.22950.034*0.65 (3)
H9B0.17060.97040.20660.034*0.65 (3)
C100.0797 (7)1.0583 (9)0.1892 (4)0.0330 (17)0.65 (3)
H10A0.08541.05020.14460.040*0.65 (3)
H10B0.03501.03620.19900.040*0.65 (3)
C110.0979 (8)1.1940 (8)0.2121 (4)0.0320 (17)0.65 (3)
H11A0.13691.22650.19220.038*0.65 (3)
H11B0.06271.25770.20480.038*0.65 (3)
C120.1097 (6)1.1718 (8)0.2783 (4)0.0249 (16)0.65 (3)
H12A0.14311.23250.29430.030*0.65 (3)
H12B0.07001.18660.30110.030*0.65 (3)
O3A0.1437 (8)1.0361 (14)0.2847 (4)0.021 (2)*0.35 (3)
C9A0.1190 (13)0.9661 (13)0.2316 (9)0.031 (3)*0.35 (3)
H9C0.08210.91100.24300.038*0.35 (3)
H9D0.15250.90780.21540.038*0.35 (3)
C10A0.0989 (12)1.0617 (16)0.1847 (6)0.032 (3)*0.35 (3)
H10C0.05211.05680.17710.038*0.35 (3)
H10D0.12061.04370.14580.038*0.35 (3)
C11A0.1174 (12)1.1948 (13)0.2088 (6)0.027 (3)*0.35 (3)
H11C0.08331.26020.19980.033*0.35 (3)
H11D0.15771.22540.19070.033*0.35 (3)
C12A0.1259 (12)1.1742 (15)0.2772 (6)0.026 (3)*0.35 (3)
H12C0.15991.23230.29410.031*0.35 (3)
H12D0.08561.19320.29840.031*0.35 (3)
C130.07086 (19)1.1028 (4)0.45334 (18)0.0230 (9)
H13A0.03971.02970.45510.028*
H13B0.05211.17490.42830.028*
C140.0885 (2)1.1506 (5)0.51643 (19)0.0295 (10)
H14A0.09321.07650.54560.035*
H14B0.05641.21340.53170.035*
C150.1523 (2)1.2180 (5)0.5061 (2)0.0284 (10)
H15A0.17891.21980.54410.034*
H15B0.14611.30930.49120.034*
C160.18227 (19)1.1318 (4)0.45774 (19)0.0241 (9)
H16A0.20431.18680.42740.029*
H16B0.21381.07090.47680.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.01507 (9)0.01596 (9)0.01064 (8)0.00031 (7)0.00027 (6)0.00006 (7)
Li10.025 (3)0.023 (3)0.016 (3)0.001 (3)0.001 (3)0.004 (3)
Cl10.0172 (5)0.0218 (5)0.0209 (5)0.0027 (4)0.0016 (4)0.0032 (4)
Cl20.0172 (5)0.0192 (5)0.0226 (5)0.0024 (4)0.0014 (4)0.0012 (4)
Cl30.0242 (5)0.0266 (6)0.0268 (5)0.0070 (4)0.0018 (4)0.0045 (4)
Cl40.0217 (5)0.0181 (5)0.0218 (5)0.0037 (4)0.0001 (4)0.0014 (4)
O10.016 (2)0.039 (4)0.012 (2)0.004 (3)0.0000 (18)0.000 (2)
C10.021 (3)0.037 (3)0.014 (3)0.006 (3)0.004 (2)0.001 (3)
C20.032 (3)0.031 (4)0.012 (2)0.004 (3)0.001 (2)0.003 (3)
C30.032 (3)0.045 (5)0.017 (3)0.012 (3)0.007 (2)0.003 (3)
C40.019 (3)0.047 (5)0.019 (3)0.010 (3)0.006 (2)0.008 (3)
O1A0.018 (4)0.039 (5)0.012 (3)0.004 (4)0.002 (3)0.004 (3)
C1A0.021 (3)0.037 (4)0.013 (4)0.005 (4)0.003 (3)0.001 (4)
C2A0.030 (3)0.039 (5)0.013 (3)0.005 (4)0.001 (3)0.004 (4)
C3A0.028 (3)0.038 (5)0.014 (3)0.001 (4)0.010 (3)0.008 (4)
C4A0.021 (3)0.040 (5)0.017 (4)0.003 (4)0.003 (3)0.008 (4)
O20.0151 (13)0.0200 (14)0.0135 (13)0.0018 (11)0.0001 (10)0.0004 (11)
O40.0185 (14)0.0201 (15)0.0217 (14)0.0017 (11)0.0018 (11)0.0065 (12)
C50.0158 (19)0.024 (2)0.0162 (19)0.0029 (16)0.0027 (15)0.0007 (16)
C60.019 (2)0.028 (2)0.023 (2)0.0008 (18)0.0028 (17)0.0055 (18)
C70.021 (2)0.025 (2)0.020 (2)0.0004 (18)0.0045 (16)0.0040 (17)
C80.016 (2)0.026 (2)0.0131 (18)0.0010 (16)0.0050 (15)0.0023 (16)
O30.033 (3)0.019 (2)0.0188 (19)0.007 (2)0.0012 (18)0.0023 (15)
C90.045 (4)0.023 (3)0.018 (3)0.001 (3)0.009 (3)0.003 (2)
C100.036 (4)0.035 (3)0.028 (3)0.004 (3)0.008 (3)0.002 (2)
C110.037 (4)0.027 (3)0.032 (3)0.000 (3)0.007 (3)0.008 (2)
C120.028 (4)0.018 (2)0.029 (3)0.003 (3)0.003 (3)0.002 (2)
C130.021 (2)0.026 (2)0.022 (2)0.0020 (18)0.0034 (16)0.0034 (18)
C140.029 (2)0.038 (3)0.021 (2)0.005 (2)0.0057 (18)0.004 (2)
C150.028 (2)0.031 (2)0.027 (2)0.001 (2)0.0027 (18)0.0097 (19)
C160.020 (2)0.023 (2)0.030 (2)0.0005 (17)0.0008 (17)0.0033 (18)
Geometric parameters (Å, º) top
Yb1—O1A2.254 (12)C6—C71.513 (5)
Yb1—O12.273 (7)C6—H6A0.9900
Yb1—O22.285 (2)C6—H6B0.9900
Yb1—Cl32.5270 (10)C7—C81.522 (5)
Yb1—Cl42.5294 (10)C7—H7A0.9900
Yb1—Cl12.6266 (10)C7—H7B0.9900
Yb1—Cl22.6283 (9)C8—H8A0.9900
Li1—O41.898 (7)C8—H8B0.9900
Li1—O31.904 (7)O3—C121.426 (9)
Li1—O3A1.907 (8)O3—C91.460 (9)
Li1—Cl12.338 (7)C9—C101.553 (14)
Li1—Cl22.387 (7)C9—H9A0.9900
O1—C41.453 (5)C9—H9B0.9900
O1—C11.455 (5)C10—C111.512 (11)
C1—C21.522 (7)C10—H10A0.9900
C1—H1A0.9900C10—H10B0.9900
C1—H1B0.9900C11—C121.482 (10)
C2—C31.453 (7)C11—H11A0.9900
C2—H2A0.9900C11—H11B0.9900
C2—H2B0.9900C12—H12A0.9900
C3—C41.501 (6)C12—H12B0.9900
C3—H3A0.9900O3A—C9A1.448 (10)
C3—H3B0.9900O3A—C12A1.459 (10)
C4—H4A0.9900C9A—C10A1.466 (10)
C4—H4B0.9900C9A—H9C0.9900
O1A—C1A1.459 (7)C9A—H9D0.9900
O1A—C4A1.468 (7)C10A—C11A1.499 (10)
C1A—C2A1.517 (8)C10A—H10C0.9900
C1A—H1A10.9900C10A—H10D0.9900
C1A—H1A20.9900C11A—C12A1.517 (10)
C2A—C3A1.472 (8)C11A—H11C0.9900
C2A—H2A10.9900C11A—H11D0.9900
C2A—H2A20.9900C12A—H12C0.9900
C3A—C4A1.517 (8)C12A—H12D0.9900
C3A—H3A10.9900C13—C141.501 (6)
C3A—H3A20.9900C13—H13A0.9900
C4A—H4A10.9900C13—H13B0.9900
C4A—H4A20.9900C14—C151.521 (6)
O2—C51.461 (4)C14—H14A0.9900
O2—C81.465 (4)C14—H14B0.9900
O4—C131.447 (5)C15—C161.521 (6)
O4—C161.451 (5)C15—H15A0.9900
C5—C61.526 (5)C15—H15B0.9900
C5—H5A0.9900C16—H16A0.9900
C5—H5B0.9900C16—H16B0.9900
O1A—Yb1—O13.7 (13)C16—O4—Li1129.1 (3)
O1A—Yb1—O2177.2 (9)O2—C5—C6104.8 (3)
O1—Yb1—O2179.0 (5)O2—C5—H5A110.8
O1A—Yb1—Cl390.5 (8)C6—C5—H5A110.8
O1—Yb1—Cl391.4 (4)O2—C5—H5B110.8
O2—Yb1—Cl389.14 (7)C6—C5—H5B110.8
O1A—Yb1—Cl489.8 (8)H5A—C5—H5B108.9
O1—Yb1—Cl493.3 (4)C7—C6—C5105.7 (3)
O2—Yb1—Cl487.48 (6)C7—C6—H6A110.6
Cl3—Yb1—Cl499.06 (3)C5—C6—H6A110.6
O1A—Yb1—Cl190.7 (8)C7—C6—H6B110.6
O1—Yb1—Cl187.1 (4)C5—C6—H6B110.6
O2—Yb1—Cl192.09 (7)H6A—C6—H6B108.7
Cl3—Yb1—Cl188.53 (3)C6—C7—C8104.3 (3)
Cl4—Yb1—Cl1172.39 (3)C6—C7—H7A110.9
O1A—Yb1—Cl292.2 (8)C8—C7—H7A110.9
O1—Yb1—Cl290.7 (5)C6—C7—H7B110.9
O2—Yb1—Cl288.64 (7)C8—C7—H7B110.9
Cl3—Yb1—Cl2171.11 (3)H7A—C7—H7B108.9
Cl4—Yb1—Cl289.44 (3)O2—C8—C7102.7 (3)
Cl1—Yb1—Cl282.95 (3)O2—C8—H8A111.2
O1A—Yb1—Li192.3 (9)C7—C8—H8A111.2
O1—Yb1—Li188.9 (5)O2—C8—H8B111.2
O2—Yb1—Li190.12 (12)C7—C8—H8B111.2
Cl3—Yb1—Li1129.40 (11)H8A—C8—H8B109.1
Cl4—Yb1—Li1131.45 (11)C12—O3—C9111.0 (5)
Cl1—Yb1—Li140.95 (11)C12—O3—Li1124.3 (6)
Cl2—Yb1—Li142.01 (11)C9—O3—Li1121.8 (6)
O4—Li1—O3112.1 (4)O3—C9—C10100.9 (9)
O4—Li1—O3A112.8 (6)O3—C9—H9A111.6
O3—Li1—O3A8.5 (6)C10—C9—H9A111.6
O4—Li1—Cl1114.2 (3)O3—C9—H9B111.6
O3—Li1—Cl1112.7 (4)C10—C9—H9B111.6
O3A—Li1—Cl1105.5 (6)H9A—C9—H9B109.4
O4—Li1—Cl2113.1 (3)C11—C10—C9101.2 (6)
O3—Li1—Cl2108.6 (4)C11—C10—H10A111.5
O3A—Li1—Cl2114.8 (6)C9—C10—H10A111.5
Cl1—Li1—Cl294.9 (2)C11—C10—H10B111.5
O4—Li1—Yb1125.9 (3)C9—C10—H10B111.5
O3—Li1—Yb1121.9 (4)H10A—C10—H10B109.3
O3A—Li1—Yb1121.0 (6)C12—C11—C10102.7 (6)
Cl1—Li1—Yb147.41 (12)C12—C11—H11A111.2
Cl2—Li1—Yb147.47 (12)C10—C11—H11A111.2
Li1—Cl1—Yb191.65 (17)C12—C11—H11B111.2
Li1—Cl2—Yb190.52 (17)C10—C11—H11B111.2
C4—O1—C1110.6 (4)H11A—C11—H11B109.1
C4—O1—Yb1124.0 (7)O3—C12—C11106.3 (6)
C1—O1—Yb1125.3 (7)O3—C12—H12A110.5
O1—C1—C2105.7 (4)C11—C12—H12A110.5
O1—C1—H1A110.6O3—C12—H12B110.5
C2—C1—H1A110.6C11—C12—H12B110.5
O1—C1—H1B110.6H12A—C12—H12B108.7
C2—C1—H1B110.6C9A—O3A—C12A107.2 (7)
H1A—C1—H1B108.7C9A—O3A—Li1113.9 (11)
C3—C2—C1106.5 (4)C12A—O3A—Li1122.2 (11)
C3—C2—H2A110.4O3A—C9A—C10A109.1 (6)
C1—C2—H2A110.4O3A—C9A—H9C109.9
C3—C2—H2B110.4C10A—C9A—H9C109.9
C1—C2—H2B110.4O3A—C9A—H9D109.9
H2A—C2—H2B108.6C10A—C9A—H9D109.9
C2—C3—C4108.0 (4)H9C—C9A—H9D108.3
C2—C3—H3A110.1C9A—C10A—C11A106.4 (6)
C4—C3—H3A110.1C9A—C10A—H10C110.4
C2—C3—H3B110.1C11A—C10A—H10C110.4
C4—C3—H3B110.1C9A—C10A—H10D110.4
H3A—C3—H3B108.4C11A—C10A—H10D110.4
O1—C4—C3106.1 (4)H10C—C10A—H10D108.6
O1—C4—H4A110.5C10A—C11A—C12A104.3 (7)
C3—C4—H4A110.5C10A—C11A—H11C110.9
O1—C4—H4B110.5C12A—C11A—H11C110.9
C3—C4—H4B110.5C10A—C11A—H11D110.9
H4A—C4—H4B108.7C12A—C11A—H11D110.9
C1A—O1A—C4A108.1 (6)H11C—C11A—H11D108.9
C1A—O1A—Yb1126.5 (13)O3A—C12A—C11A105.5 (6)
C4A—O1A—Yb1125.4 (12)O3A—C12A—H12C110.6
O1A—C1A—C2A105.8 (5)C11A—C12A—H12C110.6
O1A—C1A—H1A1110.6O3A—C12A—H12D110.6
C2A—C1A—H1A1110.6C11A—C12A—H12D110.6
O1A—C1A—H1A2110.6H12C—C12A—H12D108.8
C2A—C1A—H1A2110.6O4—C13—C14104.6 (3)
H1A1—C1A—H1A2108.7O4—C13—H13A110.8
C3A—C2A—C1A106.8 (4)C14—C13—H13A110.8
C3A—C2A—H2A1110.4O4—C13—H13B110.8
C1A—C2A—H2A1110.4C14—C13—H13B110.8
C3A—C2A—H2A2110.4H13A—C13—H13B108.9
C1A—C2A—H2A2110.4C13—C14—C15101.9 (3)
H2A1—C2A—H2A2108.6C13—C14—H14A111.4
C2A—C3A—C4A106.7 (5)C15—C14—H14A111.4
C2A—C3A—H3A1110.4C13—C14—H14B111.4
C4A—C3A—H3A1110.4C15—C14—H14B111.4
C2A—C3A—H3A2110.4H14A—C14—H14B109.2
C4A—C3A—H3A2110.4C14—C15—C16102.8 (3)
H3A1—C3A—H3A2108.6C14—C15—H15A111.2
O1A—C4A—C3A103.5 (6)C16—C15—H15A111.2
O1A—C4A—H4A1111.1C14—C15—H15B111.2
C3A—C4A—H4A1111.1C16—C15—H15B111.2
O1A—C4A—H4A2111.1H15A—C15—H15B109.1
C3A—C4A—H4A2111.1O4—C16—C15106.8 (3)
H4A1—C4A—H4A2109.0O4—C16—H16A110.4
C5—O2—C8105.1 (2)C15—C16—H16A110.4
C5—O2—Yb1124.6 (2)O4—C16—H16B110.4
C8—O2—Yb1123.9 (2)C15—C16—H16B110.4
C13—O4—C16108.3 (3)H16A—C16—H16B108.6
C13—O4—Li1121.9 (3)

Experimental details

Crystal data
Chemical formula[LiYbCl4(C4H8O)4]
Mr610.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)20.9150 (14), 10.1565 (7), 21.8810 (14)
β (°) 91.376 (1)
V3)4646.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)4.50
Crystal size (mm)0.37 × 0.16 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.430, 0.543
No. of measured, independent and
observed [I > 2σ(I)] reflections
17457, 4040, 3804
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.050, 1.22
No. of reflections4040
No. of parameters302
No. of restraints388
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0069P)2 + 33.1382P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.06, 1.81

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), GRETEP (Laugier & Bochu, 2003), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The financial support of MSMT (grant No. MSM0021630501), CONACyT (grant No. 79531) and DGAPA-UNAM (PAPIIT grant No. IN205108) is gratefully acknowledged.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChitsaz, S., Iravani, E., Pauls, J. & Neumüller, B. (2001). Z. Naturforsch. Teil B, 56, 759–764.  CAS Google Scholar
First citationLaugier, J. & Bochu, B. (2003). LMGP Suite. Suite of programs for the interpretation of X-ray experiments. ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46, 38042 Saint Martin d'Héres, France.  Google Scholar
First citationMcGuinness, D. S., Brown, D. B., Tooze, R. P., Hess, F. M., Dixon, J. T. & Slawin, A. M. Z. (2006). Organometallics, 25, 3605–3610.  CrossRef CAS Google Scholar
First citationMingqing, C., Guang, W., Shanming, Z., Zuen, H., Wenjie, Q. & Wenling, W. (1986). Wuji Huaxue Xuebao, 2, 102–104.  Google Scholar
First citationNeumüller, B., Hashmatpour, F. & Dehnicke, K. (1996). Z. Naturforsch. Teil B, 51, 602–60044.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds