metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m787-m788

Chloridobis(1,10-phenanthroline-κ2N,N′)copper(II) tetra­kis­(nitrato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)terbate(III)

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: dyh@mail.cnu.edu.cn

(Received 4 May 2011; accepted 15 May 2011; online 25 May 2011)

The title complex salt, [CuCl(C12H8N2)2][Tb(NO3)4(C12H8N2)], consists of discrete [CuCl(phen))2]+ cations and [Tb(NO3)4(phen)] anions (phen is 1,10-phenanthroline). The [CuCl(phen))2]+ cation contains a five-coordinate Cu2+ ion, ligated by two bidentate phen ligands and one Cl ion, exhibiting a distorted CuN4Cl trigonal–bipyramidal geometry. In the [Tb(NO3)4(phen)] anion, the Tb3+ ion is coordinated by one chelating phen ligand and four chelating nitrates, forming a distorted TbN2O8 bicapped dodeca­hedral configuration. The anions and cations are assembled into a three-dimensional network by weak C—H⋯Cl and C—H⋯O hydrogen bonds. There is also a significant ππ stacking inter­action, with a centroid–centroid distance of 3.635 (2) Å.

Related literature

For studies on mixed-metal ionic adducts with [CuCl(phen)2]+, see: Beznischenko et al. (2009[Beznischenko, A. O., Makhankova, V. G., Kokozay, V. N., Dyakonenko, V. V., Zubatyuk, R. I., Shishkin, O. V. & Jezierska, J. (2009). Inorg. Chim. Acta, 362, 1307-1314.]); Draper et al. (2004[Draper, N. D., Batchelor, R. J. & Leznoff, D. B. (2004). Cryst. Growth Des. 4, 621-632.]); Yang et al. (2004[Yang, H.-F., Huang, C.-C., Zhang, H.-H., Liu, Y., Lian, Z.-X. & Xiao, G.-C. (2004). Acta Cryst. E60, m291-m293.]). For related structures, see: Frechette et al. (1992[Frechette, M., Butler, I. R., Hynes, R. & Detellier, C. (1992). Inorg. Chem. 31, 1650-1656.]); Kepert et al. (1996[Kepert, D. L., Semenova, L. I., Sobolev, A. N. & White, A. H. (1996). Aust. J. Chem. 49, 1005-1008.]); Niu et al. (1997[Niu, S. Y., Yang, Z. Z., Yang, Q. C., Yang, B., Chao, J. Q., Yang, G. D. & Shen, E. Z. (1997). Polyhedron, 16, 1629-1635.]); Wei et al. (2002[Wei, D. Y., Lin, J. L. & Zheng, Y. Q. (2002). J. Coord. Chem. 55, 1259-1262.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C12H8N2)2][Tb(NO3)4(C12H8N2)]

  • Mr = 1046.56

  • Triclinic, [P \overline 1]

  • a = 10.1556 (1) Å

  • b = 13.4799 (2) Å

  • c = 14.7710 (2) Å

  • α = 81.103 (1)°

  • β = 75.631 (1)°

  • γ = 84.465 (1)°

  • V = 1931.71 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.51 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.12 mm

Data collection
  • Brucker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.620, Tmax = 0.753

  • 25145 measured reflections

  • 8895 independent reflections

  • 6625 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.078

  • S = 1.03

  • 8895 reflections

  • 550 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cl1i 0.93 2.64 3.551 (5) 167
C33—H33⋯O1ii 0.93 2.62 3.287 (5) 130
C2—H2⋯O2 0.93 2.47 3.302 (5) 149
C14—H14⋯O3iii 0.93 2.67 3.350 (5) 131
C26—H26⋯O4iii 0.93 2.57 3.468 (5) 162
C6—H6⋯O5iv 0.93 2.53 3.261 (5) 136
C9—H9⋯O6v 0.93 2.66 3.228 (6) 120
C22—H22⋯O9v 0.93 2.67 3.342 (6) 130
C1—H1⋯O10 0.93 2.58 3.377 (5) 144
C29—H29⋯O11vi 0.93 2.69 3.314 (4) 126
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+2, -z+1; (iii) x+1, y, z; (iv) x, y-1, z; (v) -x+1, -y+1, -z; (vi) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound [CuCl(phen)2][Tb(NO3)4(phen)] is an unexpected product isolated from the reaction system of Tb(NO3)3.6H2O, Cu(ClO4)2.6H2O, 2-(Carboxymethylthio)benzoic acid and 1,10-phenanthroline in methanol solution.

There are few of mixed-metal ionic adducts similar to the title compound containing [CuCl(phen))2]+ ion reported now (Beznischenko, et al., 2009; Draper, et al., 2004; Yang, et al., 2004]. Herein, we report a new ion adduct of Cu(II) complexcation and Tb(III) complexanion, [CuCl(phen)2][Tb(NO3)4(phen)]. The center Cu2+ ion of [CuCl(phen))2]+ is coordinated by two bidentate phen ligands and one Cl- ion, exhibiting a distorted five-coordinated CuN4Cl trigonalbipyramidal geometry. However, the [Tb(NO3)4(phen)]- anion is a distinct structure which is unique to the other lanthanide complexes with phen and NO3-. The center Tb3+ ion is coordinated by one phen and four nitrates, forming a conventional ten-coordinated dicapped dodecahedral configuration. But in the previous literatures, all the ten-coordinated mononuclear lanthanide complex containing phen and nitrate ligands had a universal RE(NO3)3(phen)2 (RE = La, Ce, Pr, Nd, Lu, Gd, Tb) structure (Frechette et al., 1992; Kepert et al., 1996; Niu et al., 1997; Wei et al., 2002). However, the title [Tb(NO3)4(phen)]- anion is the first example of ten-coordinated mononuclear lanthanide complex with one phen and four nitrate ligands. (Fig. 1)

There are several weak nontraditional C—H···O interactions which are significant in the crystal packing. The O(1), O(2), O(3), O(4), O(5), O(6), O(8), O(9), O(10) and O(11) atoms of the nitrates take part in constructing of C—H···O hydrogen bonds. The C(5)—H(5)···Cl(1) and C(26)—H(26)···O(4) hydrogen bonds link the [CuCl(phen))2]+ and [Tb(NO3)4(phen)]- to form infinite cation and anion chains along the a direction, respectively.

Two cation chains join together to generate a double chain by obvious ππ stacking interaction between the 10-member rings of the [CuCl(phen))2]+ from the adjacent cation chains (Cg(1)···Cg(1)a = 3.635 (2) Å: Cg(1) [N(4)—C(22)—C(21)—C(20)—C(19)—C(18)—C(17)—C(16)—C(24)—C(23)]; symmetry code a: -x + 2, -y + 1, -z). Two anion chains attach each other also to generate a double chain similarly by C(33)—H(33)···O(1), C(29)—H(29)···O(11) hydrogen bonds and ππ stacking force between the adjacent anion chains (Cg(2)···Cg(2)b = 3.574 (2) Å: Cg(2) [C(28)—C(29)—C(30)—C(31)—C(35)— C(36)]; symmetry code b: -x + 1, -y, -z + 1). (Fig. 2)

Between the neighboring cation and anion chains, there are six weak intramolecular hydrogen bonds, i.e. C(2)—H(2)···O(2), C(14)—H(14)···O(3), C(6)—H(6)···O(5), C(9)—H(9)···O(6), C(22)—H(22)···O(9) and C(1)—H(1)···O(10), to assemble the cation and anion chains to a three-dimensional network. The 10-member rings of the phen in the [CuCl(phen))2]+ and [Tb(NO3)4(phen)]- from the neighboring cation and anion chains are too close to result in ππ stacking effect (Cg(3)···Cg(4)b = 3.543 (2) Å: Cg(3) [N(2)—C(10)—C(9)— C(8)—C(7)—C(6)—C(5)—C(4)—C(12)—C(11)], Cg(4) [N(5)—C(25)—C(26)—C(27)—C(28)—C(29)—C(30)—C(31)—C(35)—C(36)]) (Fig. 3)

Related literature top

For studies on mixed-metal ionic adducts with [CuCl(phen))2]+, see: Beznischenko et al. (2009); Draper et al. (2004); Yang et al. (2004). For related structures, see: Frechette et al. (1992); Kepert et al. (1996); Niu et al. (1997); Wei et al. (2002).

Experimental top

All the solvents and reagents were of analytical reagent grade and were used without further purification.2-(Carboxymethylthio) benzoic acid (2.0 mmol, 0.424 g)and phen (1.0 mmol, 0.198 g) were mixed in 30 ml me thanol and stirred for half an hour. Then Tb(NO3)3.6H2O (1.0 mmol, 0.453 g) and Cu(ClO)2.6H2O (1.0 mmol, 0.371 g) in 20 ml me thanol solution was added dropwise into the above solution and the mixture was carefully adjusted to pH = 5.5 by adding 0.1 mol/L NaOH methanol solution. The resulting mixture was left to react by stirring for 6 h at 80°C. The filtrate was slowly evaporated at ambient temperature for 3 days and block crystals were crystallized and isolated.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of title compound with the atom-numbering scheme, showing 30% probability displacement ellipsoids. (H atoms are omitted for clarity)
[Figure 2] Fig. 2. The cation and anion infinite chains along a axis formed by the hydrogen bonds and ππ stacking interactions.
[Figure 3] Fig. 3. The packing diagram viewed along the a axis, showing the weak C—H···O hydrogen bonds between the cation and anion chains. (Shown as the black dashed lines).
Chloridobis(1,10-phenanthroline-κ2N,N')copper(II) tetrakis(nitrato-κ2O,O')(1,10-phenanthroline- κ2N,N')terbate(III) top
Crystal data top
[CuCl(C12H8N2)2][Tb(NO3)4(C12H8N2)]Z = 2
Mr = 1046.56F(000) = 1034
Triclinic, P1Dx = 1.799 Mg m3
a = 10.1556 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.4799 (2) ÅCell parameters from 5578 reflections
c = 14.7710 (2) Åθ = 2.7–23.4°
α = 81.103 (1)°µ = 2.51 mm1
β = 75.631 (1)°T = 296 K
γ = 84.465 (1)°Block, dark green
V = 1931.71 (4) Å30.21 × 0.20 × 0.12 mm
Data collection top
Brucker SMART APEX CCD
diffractometer
8895 independent reflections
Radiation source: fine-focus sealed tube6625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.9°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1312
Tmin = 0.620, Tmax = 0.753k = 1717
25145 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.0379P]
where P = (Fo2 + 2Fc2)/3
8895 reflections(Δ/σ)max = 0.002
550 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[CuCl(C12H8N2)2][Tb(NO3)4(C12H8N2)]γ = 84.465 (1)°
Mr = 1046.56V = 1931.71 (4) Å3
Triclinic, P1Z = 2
a = 10.1556 (1) ÅMo Kα radiation
b = 13.4799 (2) ŵ = 2.51 mm1
c = 14.7710 (2) ÅT = 296 K
α = 81.103 (1)°0.21 × 0.20 × 0.12 mm
β = 75.631 (1)°
Data collection top
Brucker SMART APEX CCD
diffractometer
8895 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6625 reflections with I > 2σ(I)
Tmin = 0.620, Tmax = 0.753Rint = 0.040
25145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
8895 reflectionsΔρmin = 0.75 e Å3
550 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.73762 (5)0.32695 (3)0.21343 (3)0.05492 (13)
Cl10.90518 (12)0.23096 (9)0.26516 (10)0.0869 (4)
Tb10.325455 (17)0.785439 (13)0.299634 (12)0.04682 (7)
O10.1163 (3)0.78209 (19)0.43529 (19)0.0603 (7)
O20.1843 (3)0.64464 (19)0.3777 (2)0.0628 (7)
O30.0066 (3)0.6479 (2)0.4951 (2)0.0746 (8)
O40.1129 (3)0.8320 (2)0.2462 (2)0.0656 (7)
O50.2875 (3)0.9059 (2)0.15931 (19)0.0687 (8)
O60.0900 (4)0.9408 (4)0.1263 (2)0.1201 (15)
O70.3373 (3)0.6779 (2)0.1801 (2)0.0780 (9)
O80.5124 (3)0.7643 (3)0.1568 (2)0.0790 (9)
O90.5033 (4)0.6667 (4)0.0564 (3)0.1339 (17)
O100.4917 (3)0.6520 (2)0.3407 (2)0.0651 (7)
O110.3846 (3)0.7333 (2)0.45410 (19)0.0626 (7)
O120.5408 (4)0.6187 (3)0.4772 (3)0.1094 (13)
N10.5261 (3)0.3507 (2)0.2544 (2)0.0503 (7)
N20.6844 (3)0.2138 (2)0.1598 (2)0.0533 (8)
N30.7869 (3)0.4476 (2)0.2587 (2)0.0589 (8)
N40.7720 (3)0.4284 (2)0.0837 (2)0.0523 (8)
N50.5271 (3)0.8834 (2)0.3029 (2)0.0477 (7)
N60.2649 (3)0.9573 (2)0.35658 (19)0.0429 (6)
N70.0995 (3)0.6904 (2)0.4384 (2)0.0526 (8)
N80.1612 (4)0.8941 (3)0.1752 (2)0.0675 (9)
N90.4544 (4)0.7018 (3)0.1283 (3)0.0818 (11)
N100.4742 (4)0.6659 (3)0.4257 (3)0.0650 (9)
C10.4478 (5)0.4173 (3)0.3046 (3)0.0653 (11)
H10.48850.46390.32750.078*
C20.3047 (5)0.4193 (3)0.3240 (3)0.0724 (12)
H20.25220.46660.35960.087*
C30.2437 (5)0.3526 (4)0.2912 (3)0.0700 (12)
H30.14910.35350.30500.084*
C40.3211 (4)0.2829 (3)0.2372 (3)0.0561 (10)
C50.2666 (5)0.2084 (3)0.1998 (3)0.0675 (12)
H50.17270.20720.20940.081*
C60.3466 (5)0.1409 (4)0.1519 (3)0.0717 (13)
H60.30730.09440.12780.086*
C70.4906 (5)0.1377 (3)0.1363 (3)0.0605 (11)
C80.5823 (7)0.0657 (4)0.0913 (3)0.0805 (14)
H80.54950.01570.06740.097*
C90.7168 (7)0.0682 (4)0.0822 (3)0.0847 (15)
H90.77670.01960.05310.102*
C100.7661 (5)0.1440 (3)0.1167 (3)0.0728 (12)
H100.85960.14570.10920.087*
C110.5482 (4)0.2112 (3)0.1704 (2)0.0474 (8)
C120.4641 (4)0.2845 (3)0.2209 (2)0.0457 (8)
C130.7994 (5)0.4538 (4)0.3447 (3)0.0761 (13)
H130.77190.40100.39240.091*
C140.8516 (5)0.5354 (4)0.3664 (3)0.0807 (14)
H140.85950.53680.42760.097*
C150.8917 (5)0.6141 (4)0.2983 (3)0.0744 (13)
H150.92740.66910.31270.089*
C160.8789 (4)0.6116 (3)0.2065 (3)0.0584 (10)
C170.9179 (4)0.6895 (3)0.1299 (3)0.0693 (12)
H170.95260.74690.14040.083*
C180.9057 (5)0.6816 (3)0.0426 (3)0.0711 (12)
H180.92980.73450.00550.085*
C190.8563 (4)0.5937 (3)0.0225 (3)0.0559 (10)
C200.8469 (5)0.5776 (3)0.0671 (3)0.0693 (12)
H200.87510.62600.11880.083*
C210.7973 (5)0.4923 (3)0.0791 (3)0.0696 (12)
H210.78760.48270.13810.083*
C220.7608 (4)0.4188 (3)0.0009 (3)0.0623 (11)
H220.72680.36010.00950.075*
C230.8166 (4)0.5157 (3)0.0966 (3)0.0490 (9)
C240.8265 (4)0.5257 (3)0.1897 (3)0.0519 (9)
C250.6550 (4)0.8495 (3)0.2760 (3)0.0591 (10)
H250.67270.79140.24710.071*
C260.7661 (4)0.8961 (3)0.2885 (3)0.0624 (11)
H260.85440.86860.26940.075*
C270.7423 (4)0.9814 (3)0.3288 (3)0.0561 (10)
H270.81481.01400.33630.067*
C280.6084 (4)1.0210 (3)0.3595 (2)0.0445 (8)
C290.5755 (4)1.1092 (3)0.4046 (2)0.0504 (9)
H290.64491.14290.41520.061*
C300.4456 (4)1.1444 (3)0.4319 (2)0.0511 (9)
H300.42661.20200.46160.061*
C310.3366 (4)1.0959 (2)0.4166 (2)0.0432 (8)
C320.1999 (4)1.1325 (3)0.4406 (2)0.0504 (9)
H320.17651.18970.47060.060*
C330.1023 (4)1.0843 (3)0.4201 (3)0.0522 (9)
H330.01201.10940.43360.063*
C340.1385 (4)0.9968 (3)0.3784 (2)0.0495 (9)
H340.07020.96420.36520.059*
C350.3650 (3)1.0073 (2)0.3732 (2)0.0383 (7)
C360.5032 (3)0.9685 (2)0.3445 (2)0.0398 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0554 (3)0.0529 (3)0.0591 (3)0.0128 (2)0.0175 (2)0.0034 (2)
Cl10.0583 (7)0.0772 (8)0.1325 (11)0.0082 (6)0.0448 (7)0.0025 (7)
Tb10.03933 (10)0.04826 (11)0.05639 (11)0.00717 (7)0.00697 (8)0.02226 (8)
O10.0607 (17)0.0425 (16)0.0709 (17)0.0083 (13)0.0030 (14)0.0136 (12)
O20.0517 (16)0.0542 (16)0.0840 (19)0.0091 (13)0.0035 (15)0.0305 (14)
O30.070 (2)0.072 (2)0.0747 (19)0.0275 (16)0.0032 (16)0.0080 (15)
O40.0483 (16)0.082 (2)0.0670 (18)0.0109 (14)0.0108 (14)0.0119 (15)
O50.0630 (19)0.080 (2)0.0635 (17)0.0186 (16)0.0085 (15)0.0123 (14)
O60.088 (3)0.182 (4)0.079 (2)0.016 (3)0.029 (2)0.018 (2)
O70.065 (2)0.092 (2)0.086 (2)0.0134 (17)0.0075 (18)0.0503 (17)
O80.0526 (17)0.116 (3)0.0743 (19)0.0143 (17)0.0015 (15)0.0485 (18)
O90.097 (3)0.213 (5)0.109 (3)0.002 (3)0.001 (2)0.117 (3)
O100.0594 (17)0.0580 (17)0.082 (2)0.0019 (13)0.0165 (16)0.0275 (14)
O110.0644 (18)0.0603 (17)0.0678 (17)0.0034 (15)0.0151 (15)0.0243 (14)
O120.118 (3)0.106 (3)0.108 (3)0.028 (2)0.053 (3)0.007 (2)
N10.0555 (19)0.0413 (17)0.0535 (18)0.0046 (15)0.0134 (15)0.0035 (14)
N20.054 (2)0.0519 (19)0.0513 (17)0.0056 (16)0.0080 (15)0.0062 (14)
N30.068 (2)0.060 (2)0.0545 (19)0.0167 (17)0.0223 (17)0.0029 (16)
N40.0579 (19)0.0501 (18)0.0532 (18)0.0121 (15)0.0207 (16)0.0029 (14)
N50.0354 (16)0.0458 (17)0.0629 (19)0.0023 (13)0.0077 (14)0.0168 (14)
N60.0401 (16)0.0424 (16)0.0480 (16)0.0043 (13)0.0104 (13)0.0103 (12)
N70.0415 (18)0.056 (2)0.061 (2)0.0089 (16)0.0091 (16)0.0105 (16)
N80.059 (2)0.089 (3)0.053 (2)0.000 (2)0.0087 (19)0.0143 (19)
N90.063 (3)0.115 (3)0.079 (3)0.003 (2)0.015 (2)0.058 (2)
N100.065 (2)0.058 (2)0.077 (3)0.0103 (19)0.022 (2)0.0108 (19)
C10.086 (3)0.041 (2)0.067 (3)0.002 (2)0.017 (2)0.0061 (19)
C20.075 (3)0.060 (3)0.068 (3)0.020 (2)0.002 (2)0.006 (2)
C30.057 (3)0.069 (3)0.075 (3)0.002 (2)0.013 (2)0.012 (2)
C40.055 (2)0.049 (2)0.058 (2)0.0025 (19)0.015 (2)0.0128 (18)
C50.062 (3)0.064 (3)0.080 (3)0.024 (2)0.032 (2)0.016 (2)
C60.087 (4)0.066 (3)0.075 (3)0.030 (3)0.042 (3)0.005 (2)
C70.084 (3)0.055 (2)0.047 (2)0.019 (2)0.021 (2)0.0004 (18)
C80.121 (5)0.069 (3)0.058 (3)0.011 (3)0.024 (3)0.024 (2)
C90.115 (5)0.069 (3)0.064 (3)0.004 (3)0.004 (3)0.024 (2)
C100.073 (3)0.068 (3)0.071 (3)0.005 (2)0.001 (2)0.015 (2)
C110.055 (2)0.045 (2)0.0423 (19)0.0102 (17)0.0125 (17)0.0003 (15)
C120.052 (2)0.039 (2)0.0440 (19)0.0056 (16)0.0143 (17)0.0069 (15)
C130.094 (3)0.082 (3)0.057 (2)0.023 (3)0.025 (2)0.003 (2)
C140.098 (4)0.085 (3)0.076 (3)0.014 (3)0.042 (3)0.020 (3)
C150.075 (3)0.070 (3)0.092 (3)0.010 (2)0.032 (3)0.030 (3)
C160.049 (2)0.056 (2)0.076 (3)0.0036 (19)0.017 (2)0.018 (2)
C170.067 (3)0.046 (2)0.095 (3)0.014 (2)0.014 (3)0.013 (2)
C180.070 (3)0.049 (3)0.088 (3)0.012 (2)0.012 (3)0.003 (2)
C190.053 (2)0.046 (2)0.066 (2)0.0038 (18)0.014 (2)0.0013 (18)
C200.078 (3)0.062 (3)0.063 (3)0.004 (2)0.023 (2)0.015 (2)
C210.085 (3)0.063 (3)0.064 (3)0.006 (2)0.032 (2)0.005 (2)
C220.070 (3)0.061 (3)0.063 (2)0.014 (2)0.028 (2)0.002 (2)
C230.042 (2)0.047 (2)0.056 (2)0.0047 (16)0.0126 (17)0.0020 (17)
C240.046 (2)0.053 (2)0.060 (2)0.0046 (17)0.0166 (18)0.0084 (18)
C250.043 (2)0.050 (2)0.087 (3)0.0002 (18)0.011 (2)0.023 (2)
C260.035 (2)0.059 (3)0.093 (3)0.0011 (18)0.010 (2)0.017 (2)
C270.043 (2)0.058 (3)0.071 (3)0.0160 (18)0.022 (2)0.001 (2)
C280.048 (2)0.044 (2)0.0452 (18)0.0127 (16)0.0180 (17)0.0028 (15)
C290.066 (3)0.042 (2)0.050 (2)0.0185 (19)0.0233 (19)0.0013 (16)
C300.070 (3)0.041 (2)0.048 (2)0.0123 (19)0.0174 (19)0.0093 (15)
C310.056 (2)0.0349 (18)0.0374 (17)0.0040 (16)0.0097 (16)0.0031 (14)
C320.065 (3)0.037 (2)0.0433 (19)0.0012 (18)0.0021 (18)0.0070 (15)
C330.049 (2)0.045 (2)0.054 (2)0.0061 (17)0.0016 (18)0.0038 (17)
C340.037 (2)0.054 (2)0.056 (2)0.0020 (17)0.0083 (17)0.0099 (17)
C350.045 (2)0.0351 (18)0.0350 (16)0.0075 (15)0.0108 (15)0.0021 (13)
C360.0410 (19)0.0366 (18)0.0433 (18)0.0073 (15)0.0129 (15)0.0023 (14)
Geometric parameters (Å, º) top
Cu1—N21.997 (3)C6—H60.9300
Cu1—N32.000 (3)C7—C81.403 (6)
Cu1—N12.090 (3)C7—C111.411 (5)
Cu1—N42.148 (3)C8—C91.342 (7)
Cu1—Cl12.2513 (11)C8—H80.9300
Tb1—O72.427 (3)C9—C101.394 (7)
Tb1—O22.452 (3)C9—H90.9300
Tb1—O102.457 (3)C10—H100.9300
Tb1—O42.472 (3)C11—C121.417 (5)
Tb1—O112.482 (3)C13—C141.379 (6)
Tb1—O82.496 (3)C13—H130.9300
Tb1—O52.513 (3)C14—C151.360 (6)
Tb1—O12.531 (3)C14—H140.9300
Tb1—N62.554 (3)C15—C161.400 (6)
Tb1—N52.556 (3)C15—H150.9300
O1—N71.257 (4)C16—C241.399 (5)
O2—N71.269 (4)C16—C171.425 (6)
O3—N71.217 (4)C17—C181.346 (6)
O4—N81.262 (4)C17—H170.9300
O5—N81.267 (4)C18—C191.429 (6)
O6—N81.213 (4)C18—H180.9300
O7—N91.284 (5)C19—C201.400 (6)
O8—N91.251 (4)C19—C231.406 (5)
O9—N91.202 (4)C20—C211.352 (6)
O10—N101.264 (4)C20—H200.9300
O11—N101.264 (4)C21—C221.399 (5)
O12—N101.210 (4)C21—H210.9300
N1—C11.328 (5)C22—H220.9300
N1—C121.356 (4)C23—C241.430 (5)
N2—C101.324 (5)C25—C261.407 (5)
N2—C111.356 (5)C25—H250.9300
N3—C131.324 (5)C26—C271.350 (5)
N3—C241.363 (4)C26—H260.9300
N4—C221.310 (5)C27—C281.403 (5)
N4—C231.357 (4)C27—H270.9300
N5—C251.319 (4)C28—C361.415 (4)
N5—C361.357 (4)C28—C291.424 (5)
N6—C341.323 (4)C29—C301.343 (5)
N6—C351.362 (4)C29—H290.9300
C1—C21.408 (6)C30—C311.420 (5)
C1—H10.9300C30—H300.9300
C2—C31.347 (6)C31—C321.405 (5)
C2—H20.9300C31—C351.413 (5)
C3—C41.384 (6)C32—C331.353 (5)
C3—H30.9300C32—H320.9300
C4—C121.414 (5)C33—C341.391 (5)
C4—C51.433 (6)C33—H330.9300
C5—C61.327 (6)C34—H340.9300
C5—H50.9300C35—C361.433 (5)
C6—C71.421 (6)
N2—Cu1—N3175.48 (12)C8—C7—C11116.3 (4)
N2—Cu1—N181.02 (13)C8—C7—C6125.6 (4)
N3—Cu1—N197.80 (13)C11—C7—C6118.1 (4)
N2—Cu1—N495.43 (12)C9—C8—C7120.8 (5)
N3—Cu1—N480.40 (12)C9—C8—H8119.6
N1—Cu1—N498.15 (11)C7—C8—H8119.6
N2—Cu1—Cl192.46 (9)C8—C9—C10119.6 (5)
N3—Cu1—Cl191.28 (10)C8—C9—H9120.2
N1—Cu1—Cl1138.48 (8)C10—C9—H9120.2
N4—Cu1—Cl1123.33 (9)N2—C10—C9122.2 (5)
O7—Tb1—O273.98 (10)N2—C10—H10118.9
O7—Tb1—O1079.21 (10)C9—C10—H10118.9
O2—Tb1—O1076.55 (9)N2—C11—C7122.5 (4)
O7—Tb1—O475.88 (10)N2—C11—C12116.7 (3)
O2—Tb1—O477.53 (9)C7—C11—C12120.7 (4)
O10—Tb1—O4148.03 (9)N1—C12—C4123.1 (4)
O7—Tb1—O11126.04 (10)N1—C12—C11117.6 (3)
O2—Tb1—O1174.19 (9)C4—C12—C11119.2 (4)
O10—Tb1—O1151.60 (9)N3—C13—C14122.5 (4)
O4—Tb1—O11135.66 (10)N3—C13—H13118.7
O7—Tb1—O851.71 (10)C14—C13—H13118.7
O2—Tb1—O8120.01 (10)C15—C14—C13120.1 (4)
O10—Tb1—O870.74 (11)C15—C14—H14120.0
O4—Tb1—O8107.45 (10)C13—C14—H14120.0
O11—Tb1—O8116.13 (10)C14—C15—C16119.5 (4)
O7—Tb1—O576.13 (10)C14—C15—H15120.2
O2—Tb1—O5125.16 (9)C16—C15—H15120.2
O10—Tb1—O5139.48 (10)C24—C16—C15117.1 (4)
O4—Tb1—O550.96 (9)C24—C16—C17118.6 (4)
O11—Tb1—O5156.26 (9)C15—C16—C17124.2 (4)
O8—Tb1—O568.75 (10)C18—C17—C16121.4 (4)
O7—Tb1—O1117.94 (10)C18—C17—H17119.3
O2—Tb1—O150.84 (9)C16—C17—H17119.3
O10—Tb1—O1108.47 (9)C17—C18—C19121.4 (4)
O4—Tb1—O167.45 (9)C17—C18—H18119.3
O11—Tb1—O168.22 (9)C19—C18—H18119.3
O8—Tb1—O1169.63 (9)C20—C19—C23116.5 (4)
O5—Tb1—O1111.39 (9)C20—C19—C18124.9 (4)
O7—Tb1—N6149.35 (10)C23—C19—C18118.6 (4)
O2—Tb1—N6119.26 (9)C21—C20—C19120.7 (4)
O10—Tb1—N6129.21 (9)C21—C20—H20119.7
O4—Tb1—N680.28 (9)C19—C20—H20119.7
O11—Tb1—N684.57 (9)C20—C21—C22118.6 (4)
O8—Tb1—N6120.49 (10)C20—C21—H21120.7
O5—Tb1—N673.93 (9)C22—C21—H21120.7
O1—Tb1—N668.42 (8)N4—C22—C21123.3 (4)
O7—Tb1—N5122.08 (10)N4—C22—H22118.3
O2—Tb1—N5145.30 (9)C21—C22—H22118.3
O10—Tb1—N577.03 (9)N4—C23—C19122.7 (3)
O4—Tb1—N5133.72 (9)N4—C23—C24117.6 (3)
O11—Tb1—N571.84 (9)C19—C23—C24119.7 (3)
O8—Tb1—N570.66 (10)N3—C24—C16122.6 (3)
O5—Tb1—N589.50 (9)N3—C24—C23117.1 (3)
O1—Tb1—N5119.54 (9)C16—C24—C23120.3 (3)
N6—Tb1—N564.30 (9)N5—C25—C26123.7 (4)
C1—N1—C12118.0 (3)N5—C25—H25118.2
C13—N3—C24118.1 (3)C26—C25—H25118.2
C22—N4—C23118.2 (3)C27—C26—C25118.9 (4)
C25—N5—C36117.4 (3)C27—C26—H26120.6
C34—N6—C35117.8 (3)C25—C26—H26120.6
O3—N7—O1122.4 (3)C26—C27—C28120.1 (3)
O3—N7—O2121.8 (3)C26—C27—H27120.0
O1—N7—O2115.8 (3)C28—C27—H27120.0
O6—N8—O4121.8 (4)C27—C28—C36117.0 (3)
O6—N8—O5122.2 (4)C27—C28—C29123.1 (3)
O4—N8—O5116.0 (3)C36—C28—C29119.9 (3)
O9—N9—O8122.7 (5)C30—C29—C28120.8 (3)
O9—N9—O7121.5 (4)C30—C29—H29119.6
O8—N9—O7115.8 (4)C28—C29—H29119.6
O12—N10—O11121.3 (4)C29—C30—C31121.5 (3)
O12—N10—O10122.2 (4)C29—C30—H30119.2
O11—N10—O10116.5 (3)C31—C30—H30119.2
N1—C1—C2121.7 (4)C32—C31—C35117.4 (3)
N1—C1—H1119.1C32—C31—C30123.3 (3)
C2—C1—H1119.1C35—C31—C30119.3 (3)
C3—C2—C1120.1 (4)C33—C32—C31119.8 (3)
C3—C2—H2120.0C33—C32—H32120.1
C1—C2—H2120.0C31—C32—H32120.1
C2—C3—C4120.3 (4)C32—C33—C34119.3 (3)
C2—C3—H3119.9C32—C33—H33120.4
C4—C3—H3119.9C34—C33—H33120.4
C3—C4—C12116.8 (4)N6—C34—C33123.5 (3)
C3—C4—C5124.7 (4)N6—C34—H34118.2
C12—C4—C5118.4 (4)C33—C34—H34118.2
C6—C5—C4121.7 (4)N6—C35—C31122.1 (3)
C6—C5—H5119.1N6—C35—C36118.3 (3)
C4—C5—H5119.1C31—C35—C36119.6 (3)
C5—C6—C7121.8 (4)N5—C36—C28123.0 (3)
C5—C6—H6119.1N5—C36—C35118.2 (3)
C7—C6—H6119.1C28—C36—C35118.8 (3)
O7—Tb1—O1—N734.0 (2)O5—Tb1—N5—C3681.5 (2)
O2—Tb1—O1—N70.59 (18)O1—Tb1—N5—C3633.0 (3)
O10—Tb1—O1—N753.4 (2)N6—Tb1—N5—C369.1 (2)
O4—Tb1—O1—N792.7 (2)O7—Tb1—N6—C3466.3 (3)
O11—Tb1—O1—N786.4 (2)O2—Tb1—N6—C3442.6 (3)
O8—Tb1—O1—N730.5 (6)O10—Tb1—N6—C34139.1 (2)
O5—Tb1—O1—N7119.18 (19)O4—Tb1—N6—C3427.1 (2)
N6—Tb1—O1—N7179.2 (2)O11—Tb1—N6—C34111.1 (3)
N5—Tb1—O1—N7138.63 (19)O8—Tb1—N6—C34131.7 (2)
O7—Tb1—O2—N7150.2 (2)O5—Tb1—N6—C3479.1 (3)
O10—Tb1—O2—N7127.4 (2)O1—Tb1—N6—C3442.4 (2)
O4—Tb1—O2—N771.52 (19)N5—Tb1—N6—C34176.5 (3)
O11—Tb1—O2—N773.9 (2)O7—Tb1—N6—C35119.5 (2)
O8—Tb1—O2—N7174.64 (18)O2—Tb1—N6—C35131.6 (2)
O5—Tb1—O2—N790.7 (2)O10—Tb1—N6—C3535.1 (3)
O1—Tb1—O2—N70.58 (17)O4—Tb1—N6—C35158.7 (2)
N6—Tb1—O2—N70.3 (2)O11—Tb1—N6—C3563.1 (2)
N5—Tb1—O2—N786.0 (2)O8—Tb1—N6—C3554.1 (2)
O7—Tb1—O4—N884.2 (2)O5—Tb1—N6—C35106.7 (2)
O2—Tb1—O4—N8160.5 (2)O1—Tb1—N6—C35131.8 (2)
O10—Tb1—O4—N8124.1 (3)N5—Tb1—N6—C359.4 (2)
O11—Tb1—O4—N8148.2 (2)C12—N1—C1—C20.8 (5)
O8—Tb1—O4—N842.7 (3)N1—C1—C2—C30.2 (6)
O5—Tb1—O4—N80.7 (2)C1—C2—C3—C40.9 (6)
O1—Tb1—O4—N8146.9 (2)C2—C3—C4—C121.4 (5)
N6—Tb1—O4—N876.4 (2)C2—C3—C4—C5179.3 (4)
N5—Tb1—O4—N837.0 (3)C3—C4—C5—C6177.1 (4)
O7—Tb1—O5—N883.7 (2)C12—C4—C5—C60.8 (5)
O2—Tb1—O5—N825.1 (3)C4—C5—C6—C71.1 (6)
O10—Tb1—O5—N8137.8 (2)C5—C6—C7—C8176.2 (4)
O4—Tb1—O5—N80.7 (2)C5—C6—C7—C112.3 (6)
O11—Tb1—O5—N8115.6 (3)C11—C7—C8—C90.1 (6)
O8—Tb1—O5—N8137.6 (3)C6—C7—C8—C9178.4 (4)
O1—Tb1—O5—N831.3 (3)C7—C8—C9—C101.0 (7)
N6—Tb1—O5—N889.7 (2)C11—N2—C10—C90.1 (6)
N5—Tb1—O5—N8153.0 (2)C8—C9—C10—N21.0 (7)
O2—Tb1—O7—N9153.2 (3)C10—N2—C11—C70.7 (5)
O10—Tb1—O7—N974.3 (3)C10—N2—C11—C12177.1 (3)
O4—Tb1—O7—N9126.0 (3)C8—C7—C11—N20.7 (5)
O11—Tb1—O7—N997.2 (3)C6—C7—C11—N2179.4 (3)
O8—Tb1—O7—N90.4 (2)C8—C7—C11—C12177.0 (3)
O5—Tb1—O7—N973.3 (3)C6—C7—C11—C121.6 (5)
O1—Tb1—O7—N9179.6 (2)C1—N1—C12—C40.3 (5)
N6—Tb1—O7—N985.9 (3)C1—N1—C12—C11177.7 (3)
N5—Tb1—O7—N97.1 (3)C3—C4—C12—N10.8 (5)
O7—Tb1—O8—N90.4 (2)C5—C4—C12—N1178.9 (3)
O2—Tb1—O8—N930.8 (3)C3—C4—C12—C11176.6 (3)
O10—Tb1—O8—N991.7 (3)C5—C4—C12—C111.5 (5)
O4—Tb1—O8—N954.6 (3)N2—C11—C12—N10.1 (4)
O11—Tb1—O8—N9117.0 (3)C7—C11—C12—N1177.8 (3)
O5—Tb1—O8—N988.4 (3)N2—C11—C12—C4177.6 (3)
O1—Tb1—O8—N94.3 (7)C7—C11—C12—C40.3 (5)
N6—Tb1—O8—N9143.4 (2)C24—N3—C13—C140.5 (7)
N5—Tb1—O8—N9174.3 (3)N3—C13—C14—C150.5 (8)
O7—Tb1—O10—N10157.5 (2)C13—C14—C15—C160.3 (7)
O2—Tb1—O10—N1081.6 (2)C14—C15—C16—C241.1 (6)
O4—Tb1—O10—N10118.2 (2)C14—C15—C16—C17179.8 (4)
O11—Tb1—O10—N101.2 (2)C24—C16—C17—C180.2 (6)
O8—Tb1—O10—N10149.5 (2)C15—C16—C17—C18178.6 (4)
O5—Tb1—O10—N10149.3 (2)C16—C17—C18—C191.7 (7)
O1—Tb1—O10—N1041.4 (2)C17—C18—C19—C20176.6 (4)
N6—Tb1—O10—N1035.4 (3)C17—C18—C19—C231.8 (6)
N5—Tb1—O10—N1075.7 (2)C23—C19—C20—C212.3 (6)
O7—Tb1—O11—N1030.5 (3)C18—C19—C20—C21179.2 (4)
O2—Tb1—O11—N1086.4 (2)C19—C20—C21—C222.6 (7)
O10—Tb1—O11—N101.24 (19)C23—N4—C22—C212.5 (6)
O4—Tb1—O11—N10138.8 (2)C20—C21—C22—N40.1 (7)
O8—Tb1—O11—N1029.7 (2)C22—N4—C23—C192.7 (6)
O5—Tb1—O11—N10126.2 (3)C22—N4—C23—C24179.1 (3)
O1—Tb1—O11—N10140.0 (2)C20—C19—C23—N40.3 (6)
N6—Tb1—O11—N10151.1 (2)C18—C19—C23—N4178.2 (4)
N5—Tb1—O11—N1086.4 (2)C20—C19—C23—C24178.5 (4)
N2—Cu1—N1—C1177.3 (3)C18—C19—C23—C240.0 (6)
N3—Cu1—N1—C17.1 (3)C13—N3—C24—C160.3 (6)
N4—Cu1—N1—C188.5 (3)C13—N3—C24—C23177.8 (4)
Cl1—Cu1—N1—C193.8 (3)C15—C16—C24—N31.1 (6)
N2—Cu1—N1—C123.3 (2)C17—C16—C24—N3179.9 (4)
N3—Cu1—N1—C12172.3 (2)C15—C16—C24—C23177.0 (4)
N4—Cu1—N1—C1290.9 (2)C17—C16—C24—C231.9 (6)
Cl1—Cu1—N1—C1286.8 (2)N4—C23—C24—N31.6 (5)
N1—Cu1—N2—C10176.6 (3)C19—C23—C24—N3179.9 (3)
N4—Cu1—N2—C1086.0 (3)N4—C23—C24—C16176.5 (3)
Cl1—Cu1—N2—C1037.9 (3)C19—C23—C24—C161.7 (5)
N1—Cu1—N2—C113.4 (2)C36—N5—C25—C260.4 (6)
N4—Cu1—N2—C1194.1 (2)N5—C25—C26—C271.2 (6)
Cl1—Cu1—N2—C11142.1 (2)C25—C26—C27—C281.5 (6)
N1—Cu1—N3—C1386.2 (4)C26—C27—C28—C361.1 (5)
N4—Cu1—N3—C13176.8 (4)C26—C27—C28—C29178.5 (3)
Cl1—Cu1—N3—C1353.2 (4)C27—C28—C29—C30179.4 (3)
N1—Cu1—N3—C24102.1 (3)C36—C28—C29—C301.0 (5)
N4—Cu1—N3—C245.1 (3)C28—C29—C30—C310.4 (5)
Cl1—Cu1—N3—C24118.5 (3)C29—C30—C31—C32177.3 (3)
N2—Cu1—N4—C220.4 (4)C29—C30—C31—C351.2 (5)
N3—Cu1—N4—C22177.9 (4)C35—C31—C32—C331.4 (5)
N1—Cu1—N4—C2281.3 (4)C30—C31—C32—C33177.2 (3)
Cl1—Cu1—N4—C2296.9 (4)C31—C32—C33—C342.4 (5)
N2—Cu1—N4—C23177.7 (3)C35—N6—C34—C332.2 (5)
N3—Cu1—N4—C234.1 (2)C32—C33—C34—N60.5 (5)
N1—Cu1—N4—C23100.7 (2)C34—N6—C35—C313.2 (4)
Cl1—Cu1—N4—C2381.1 (3)C34—N6—C35—C36176.3 (3)
O7—Tb1—N5—C2533.4 (3)C32—C31—C35—N61.4 (4)
O2—Tb1—N5—C2576.0 (3)C30—C31—C35—N6180.0 (3)
O10—Tb1—N5—C2534.8 (3)C32—C31—C35—C36178.0 (3)
O4—Tb1—N5—C25135.0 (3)C30—C31—C35—C360.6 (4)
O11—Tb1—N5—C2588.3 (3)C25—N5—C36—C280.1 (5)
O8—Tb1—N5—C2539.1 (3)C25—N5—C36—C35179.2 (3)
O5—Tb1—N5—C25106.7 (3)C27—C28—C36—N50.3 (5)
O1—Tb1—N5—C25138.9 (3)C29—C28—C36—N5179.3 (3)
N6—Tb1—N5—C25179.0 (3)C27—C28—C36—C35178.8 (3)
O7—Tb1—N5—C36154.7 (2)C29—C28—C36—C351.6 (4)
O2—Tb1—N5—C3695.8 (3)N6—C35—C36—N50.5 (4)
O10—Tb1—N5—C36137.0 (2)C31—C35—C36—N5179.9 (3)
O4—Tb1—N5—C3653.1 (3)N6—C35—C36—C28178.7 (3)
O11—Tb1—N5—C3683.6 (2)C31—C35—C36—C280.8 (4)
O8—Tb1—N5—C36149.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl1i0.932.643.551 (5)167
C33—H33···O1ii0.932.623.287 (5)130
C2—H2···O20.932.473.302 (5)149
C14—H14···O3iii0.932.673.350 (5)131
C26—H26···O4iii0.932.573.468 (5)162
C6—H6···O5iv0.932.533.261 (5)136
C9—H9···O6v0.932.663.228 (6)120
C22—H22···O9v0.932.673.342 (6)130
C1—H1···O100.932.583.377 (5)144
C29—H29···O11vi0.932.693.314 (4)126
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y+1, z; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[CuCl(C12H8N2)2][Tb(NO3)4(C12H8N2)]
Mr1046.56
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.1556 (1), 13.4799 (2), 14.7710 (2)
α, β, γ (°)81.103 (1), 75.631 (1), 84.465 (1)
V3)1931.71 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.51
Crystal size (mm)0.21 × 0.20 × 0.12
Data collection
DiffractometerBrucker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.620, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
25145, 8895, 6625
Rint0.040
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.078, 1.03
No. of reflections8895
No. of parameters550
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.75

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl1i0.932.643.551 (5)167
C33—H33···O1ii0.932.623.287 (5)130
C2—H2···O20.932.473.302 (5)149
C14—H14···O3iii0.932.673.350 (5)131
C26—H26···O4iii0.932.573.468 (5)162
C6—H6···O5iv0.932.533.261 (5)136
C9—H9···O6v0.932.663.228 (6)120
C22—H22···O9v0.932.673.342 (6)130
C1—H1···O100.932.583.377 (5)144
C29—H29···O11vi0.932.693.314 (4)126
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y+1, z; (vi) x+1, y+2, z+1.
 

Acknowledgements

We are grateful for support by the Scientific Research Common Program of Beijing Municipal Commission of Education (grant No. KM201010028008).

References

First citationBeznischenko, A. O., Makhankova, V. G., Kokozay, V. N., Dyakonenko, V. V., Zubatyuk, R. I., Shishkin, O. V. & Jezierska, J. (2009). Inorg. Chim. Acta, 362, 1307–1314.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDraper, N. D., Batchelor, R. J. & Leznoff, D. B. (2004). Cryst. Growth Des. 4, 621–632.  CrossRef CAS Google Scholar
First citationFrechette, M., Butler, I. R., Hynes, R. & Detellier, C. (1992). Inorg. Chem. 31, 1650–1656.  CSD CrossRef CAS Web of Science Google Scholar
First citationKepert, D. L., Semenova, L. I., Sobolev, A. N. & White, A. H. (1996). Aust. J. Chem. 49, 1005–1008.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNiu, S. Y., Yang, Z. Z., Yang, Q. C., Yang, B., Chao, J. Q., Yang, G. D. & Shen, E. Z. (1997). Polyhedron, 16, 1629–1635.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, D. Y., Lin, J. L. & Zheng, Y. Q. (2002). J. Coord. Chem. 55, 1259–1262.  CrossRef CAS Google Scholar
First citationYang, H.-F., Huang, C.-C., Zhang, H.-H., Liu, Y., Lian, Z.-X. & Xiao, G.-C. (2004). Acta Cryst. E60, m291–m293.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m787-m788
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds