organic compounds
S,S′-(Pyridazine-3,6-diyl)dithiouronium dichloride methanol monosolvate
aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, 100125 Tashkent, Uzbekistan
*Correspondence e-mail: samat_talipov@yahoo.com
In the title compound, C6H10N6S22+·2Cl−·CH3OH, the pyridazine ring is almost planar, the greatest deviation from the mean plane being 0.025 (2) Å for one of the ring N atoms. The two thiouronium substituents are tilted out of this plane by 60.87 (6) and 57.94 (7)°. The thiouronium cations and the chloride anions are linked by strong N—H⋯Cl hydrogen bonds. The methanol solvent molecule interacts with both the chloride ion (through an O—H⋯Cl hydrogen bond) and the cation (through an N—H⋯O hydrogen bond), resulting in a three-dimensional supramolecular arrangement.
Related literature
For pharmacological applications of pyridazine derivatives, see: Cignarella & Barlocco (2002). For details of the preparation, see: Kumagai (1960); Steck & Brundage (1959).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe &Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536811018514/fj2416sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811018514/fj2416Isup2.hkl
The title compound has been obtained as an intermediate substance of the synthesis of 3,6-dithiopyridazine involving the reaction of 3,6-dichloropyridazine with thiourea in methanol solution and was isolated before alkaline treatment (Steck & Brundage, 1959); (Kumagai, 1960). The colourless plate-type single crystals are stable in the air.
All H-atoms, except H-atoms involved in H-bonding, were positioned geometrically and allowed to ride on their parent atoms, with C—H=0.95 Å and Uiso = 1.2–1.5 Ueq (parent atom). The rest H-atoms were located in a difference map and fully refined
Data collection: X-AREA (Stoe &Cie, 2002); cell
X-AREA (Stoe &Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Perspective view of the title compound, showing 50% probability displacement ellipsoids for the non-H atoms. Dashed lines represent hydrogen bond. | |
Fig. 2. Packing diagram of the title compound viewed down the a axis. The weak hydrogen bonds are shown as dashed lines. H-atoms are omited for clarity |
C6H10N6S22+·2Cl−·CH4O | Z = 2 |
Mr = 333.26 | F(000) = 344 |
Triclinic, P1 | Dx = 1.566 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.7457 (2) Å | Cell parameters from 32534 reflections |
b = 9.0234 (3) Å | θ = 1.7–29.6° |
c = 13.0165 (4) Å | µ = 0.75 mm−1 |
α = 104.148 (2)° | T = 293 K |
β = 98.066 (2)° | Plate, colourless |
γ = 108.695 (2)° | 0.45 × 0.10 × 0.05 mm |
V = 706.81 (4) Å3 |
Stoe IPDS 2 diffractometer | 3234 independent reflections |
Radiation source: sealed X-ray tube, long-fine focus | 2765 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.071 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.5°, θmin = 2.5° |
rotation method scans | h = −8→8 |
Absorption correction: integration (X-RED; Stoe & Cie, 2002) | k = −11→11 |
Tmin = 0.739, Tmax = 0.959 | l = 0→16 |
3234 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0481P)2 + 0.1092P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3234 reflections | Δρmax = 0.27 e Å−3 |
201 parameters | Δρmin = −0.33 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.055 (4) |
C6H10N6S22+·2Cl−·CH4O | γ = 108.695 (2)° |
Mr = 333.26 | V = 706.81 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.7457 (2) Å | Mo Kα radiation |
b = 9.0234 (3) Å | µ = 0.75 mm−1 |
c = 13.0165 (4) Å | T = 293 K |
α = 104.148 (2)° | 0.45 × 0.10 × 0.05 mm |
β = 98.066 (2)° |
Stoe IPDS 2 diffractometer | 3234 independent reflections |
Absorption correction: integration (X-RED; Stoe & Cie, 2002) | 2765 reflections with I > 2σ(I) |
Tmin = 0.739, Tmax = 0.959 | Rint = 0.071 |
3234 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.27 e Å−3 |
3234 reflections | Δρmin = −0.33 e Å−3 |
201 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.46287 (7) | 0.17255 (5) | 0.64021 (3) | 0.03256 (12) | |
Cl2 | 0.10144 (7) | 0.26455 (6) | 0.02016 (4) | 0.03622 (12) | |
O1G | 0.5002 (2) | −0.10500 (17) | 0.13659 (11) | 0.0364 (3) | |
C1G | 0.7040 (4) | 0.0147 (3) | 0.1460 (2) | 0.0570 (6) | |
H1G1 | 0.7251 | 0.1146 | 0.2013 | 0.085* | |
H1G2 | 0.7098 | 0.0358 | 0.0775 | 0.085* | |
H1G3 | 0.8152 | −0.0251 | 0.1658 | 0.085* | |
H1G | 0.518 (5) | −0.132 (4) | 0.197 (2) | 0.059 (8)* | |
H4B | 0.434 (4) | 0.053 (3) | 0.357 (2) | 0.048 (7)* | |
H5A | 0.436 (4) | 0.388 (3) | 0.780 (2) | 0.037 (6)* | |
H6B | 0.410 (4) | 0.684 (3) | 0.992 (2) | 0.040 (6)* | |
H3A | 0.201 (4) | 0.137 (3) | 0.138 (2) | 0.046 (6)* | |
H4A | 0.441 (5) | 0.205 (4) | 0.439 (2) | 0.059 (8)* | |
H5B | 0.581 (4) | 0.541 (3) | 0.880 (2) | 0.047 (7)* | |
H3B | 0.330 (4) | 0.032 (3) | 0.169 (2) | 0.056 (8)* | |
H6A | 0.183 (5) | 0.646 (3) | 0.947 (2) | 0.049 (7)* | |
S1 | 0.22215 (7) | 0.35351 (5) | 0.32279 (3) | 0.02800 (11) | |
S2 | 0.02098 (7) | 0.37603 (6) | 0.77378 (3) | 0.03286 (12) | |
C4 | 0.0693 (2) | 0.36263 (19) | 0.64195 (12) | 0.0231 (3) | |
N1 | 0.2518 (2) | 0.48701 (16) | 0.53011 (11) | 0.0265 (3) | |
N2 | 0.2047 (2) | 0.49603 (17) | 0.62795 (11) | 0.0284 (3) | |
C3 | −0.0424 (3) | 0.2143 (2) | 0.55821 (13) | 0.0277 (3) | |
H3 | −0.1409 | 0.1249 | 0.5703 | 0.033* | |
C1 | 0.1553 (2) | 0.34686 (18) | 0.44932 (12) | 0.0220 (3) | |
N6 | 0.2904 (3) | 0.6233 (2) | 0.93770 (13) | 0.0357 (3) | |
C6 | 0.2824 (3) | 0.50356 (19) | 0.85521 (13) | 0.0261 (3) | |
C2 | −0.0002 (3) | 0.2071 (2) | 0.45784 (13) | 0.0271 (3) | |
H2 | −0.0716 | 0.1135 | 0.3979 | 0.033* | |
N3 | 0.2723 (3) | 0.1075 (2) | 0.18987 (12) | 0.0352 (3) | |
N5 | 0.4521 (3) | 0.4721 (2) | 0.83639 (13) | 0.0335 (3) | |
N4 | 0.3980 (3) | 0.1435 (2) | 0.37169 (13) | 0.0308 (3) | |
C5 | 0.3058 (2) | 0.18519 (19) | 0.29330 (13) | 0.0232 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0377 (2) | 0.0308 (2) | 0.0310 (2) | 0.01700 (17) | 0.00766 (16) | 0.00711 (15) |
Cl2 | 0.0359 (2) | 0.0417 (2) | 0.0307 (2) | 0.01407 (18) | 0.00600 (16) | 0.01193 (17) |
O1G | 0.0373 (7) | 0.0351 (7) | 0.0328 (7) | 0.0125 (5) | 0.0048 (5) | 0.0066 (5) |
C1G | 0.0417 (12) | 0.0504 (13) | 0.0699 (16) | 0.0099 (10) | 0.0192 (11) | 0.0091 (11) |
S1 | 0.0392 (2) | 0.0296 (2) | 0.0249 (2) | 0.02017 (17) | 0.01270 (15) | 0.01233 (15) |
S2 | 0.0286 (2) | 0.0409 (2) | 0.02151 (19) | 0.00569 (17) | 0.00775 (15) | 0.00506 (16) |
C4 | 0.0239 (7) | 0.0251 (7) | 0.0206 (7) | 0.0111 (6) | 0.0049 (5) | 0.0048 (6) |
N1 | 0.0314 (7) | 0.0223 (6) | 0.0244 (6) | 0.0086 (5) | 0.0073 (5) | 0.0064 (5) |
N2 | 0.0342 (7) | 0.0230 (6) | 0.0238 (6) | 0.0080 (5) | 0.0072 (5) | 0.0031 (5) |
C3 | 0.0261 (7) | 0.0244 (7) | 0.0266 (8) | 0.0038 (6) | 0.0067 (6) | 0.0050 (6) |
C1 | 0.0227 (7) | 0.0237 (7) | 0.0213 (7) | 0.0114 (6) | 0.0048 (5) | 0.0066 (5) |
N6 | 0.0434 (9) | 0.0308 (7) | 0.0275 (7) | 0.0142 (7) | 0.0051 (7) | 0.0009 (6) |
C6 | 0.0317 (8) | 0.0237 (7) | 0.0216 (7) | 0.0090 (6) | 0.0048 (6) | 0.0075 (6) |
C2 | 0.0259 (7) | 0.0240 (7) | 0.0228 (7) | 0.0042 (6) | 0.0030 (6) | 0.0003 (6) |
N3 | 0.0454 (9) | 0.0423 (8) | 0.0237 (7) | 0.0263 (7) | 0.0087 (6) | 0.0063 (6) |
N5 | 0.0305 (8) | 0.0345 (8) | 0.0320 (7) | 0.0130 (6) | 0.0045 (6) | 0.0044 (6) |
N4 | 0.0393 (8) | 0.0321 (7) | 0.0255 (7) | 0.0203 (6) | 0.0062 (6) | 0.0077 (6) |
C5 | 0.0230 (7) | 0.0230 (7) | 0.0243 (7) | 0.0081 (5) | 0.0085 (5) | 0.0074 (6) |
O1G—C1G | 1.417 (3) | C1—C2 | 1.398 (2) |
O1G—H1G | 0.89 (3) | N6—C6 | 1.305 (2) |
C1G—H1G1 | 0.9600 | N6—H6B | 0.90 (3) |
C1G—H1G2 | 0.9600 | N6—H6A | 0.83 (3) |
C1G—H1G3 | 0.9600 | C6—N5 | 1.305 (2) |
S1—C5 | 1.7603 (16) | C2—H2 | 0.9300 |
S1—C1 | 1.7775 (15) | N3—C5 | 1.306 (2) |
S2—C6 | 1.7709 (17) | N3—H3A | 0.92 (3) |
S2—C4 | 1.7738 (15) | N3—H3B | 0.89 (3) |
C4—N2 | 1.329 (2) | N5—H5A | 0.89 (2) |
C4—C3 | 1.399 (2) | N5—H5B | 0.90 (3) |
N1—C1 | 1.326 (2) | N4—C5 | 1.315 (2) |
N1—N2 | 1.3450 (19) | N4—H4B | 0.91 (3) |
C3—C2 | 1.366 (2) | N4—H4A | 0.86 (3) |
C3—H3 | 0.9300 | ||
C1G—O1G—H1G | 103.6 (19) | C6—N6—H6A | 122.6 (19) |
O1G—C1G—H1G1 | 109.5 | H6B—N6—H6A | 114 (2) |
O1G—C1G—H1G2 | 109.5 | N6—C6—N5 | 123.12 (17) |
H1G1—C1G—H1G2 | 109.5 | N6—C6—S2 | 115.38 (14) |
O1G—C1G—H1G3 | 109.5 | N5—C6—S2 | 121.38 (13) |
H1G1—C1G—H1G3 | 109.5 | C3—C2—C1 | 116.94 (14) |
H1G2—C1G—H1G3 | 109.5 | C3—C2—H2 | 121.5 |
C5—S1—C1 | 100.19 (7) | C1—C2—H2 | 121.5 |
C6—S2—C4 | 99.98 (8) | C5—N3—H3A | 120.2 (16) |
N2—C4—C3 | 123.90 (14) | C5—N3—H3B | 120.0 (18) |
N2—C4—S2 | 117.88 (11) | H3A—N3—H3B | 120 (2) |
C3—C4—S2 | 118.18 (12) | C6—N5—H5A | 119.1 (15) |
C1—N1—N2 | 118.93 (13) | C6—N5—H5B | 117.8 (16) |
C4—N2—N1 | 119.05 (13) | H5A—N5—H5B | 123 (2) |
C2—C3—C4 | 116.86 (15) | C5—N4—H4B | 121.2 (17) |
C2—C3—H3 | 121.6 | C5—N4—H4A | 122 (2) |
C4—C3—H3 | 121.6 | H4B—N4—H4A | 116 (3) |
N1—C1—C2 | 124.05 (14) | N3—C5—N4 | 123.08 (15) |
N1—C1—S1 | 114.57 (11) | N3—C5—S1 | 115.75 (13) |
C2—C1—S1 | 121.20 (12) | N4—C5—S1 | 121.17 (12) |
C6—N6—H6B | 123.2 (15) | ||
C6—S2—C4—N2 | −37.51 (14) | C5—S1—C1—N1 | 126.26 (12) |
C6—S2—C4—C3 | 144.58 (13) | C5—S1—C1—C2 | −58.54 (14) |
C3—C4—N2—N1 | −5.3 (2) | C4—S2—C6—N6 | 134.58 (13) |
S2—C4—N2—N1 | 176.96 (11) | C4—S2—C6—N5 | −49.21 (15) |
C1—N1—N2—C4 | 2.6 (2) | C4—C3—C2—C1 | 1.9 (2) |
N2—C4—C3—C2 | 2.9 (2) | N1—C1—C2—C3 | −4.5 (2) |
S2—C4—C3—C2 | −179.32 (13) | S1—C1—C2—C3 | −179.24 (12) |
N2—N1—C1—C2 | 2.3 (2) | C1—S1—C5—N3 | 149.37 (13) |
N2—N1—C1—S1 | 177.35 (11) | C1—S1—C5—N4 | −31.32 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1G—H1G···Cl1i | 0.89 (3) | 2.22 (3) | 3.1038 (15) | 171 (3) |
N3—H3A···Cl2 | 0.92 (3) | 2.28 (3) | 3.1746 (17) | 166 (2) |
N3—H3B···O1G | 0.89 (3) | 1.95 (3) | 2.839 (2) | 171 (3) |
N4—H4A···Cl1 | 0.86 (3) | 2.70 (3) | 3.3950 (16) | 139 (2) |
N4—H4B···Cl1i | 0.91 (3) | 2.36 (3) | 3.2522 (15) | 167 (2) |
N5—H5A···Cl1 | 0.89 (2) | 2.39 (2) | 3.2614 (16) | 170 (2) |
N5—H5B···Cl2ii | 0.90 (3) | 2.25 (3) | 3.1413 (17) | 173 (2) |
N6—H6A···Cl2iii | 0.83 (3) | 2.36 (3) | 3.1878 (19) | 175 (3) |
N6—H6B···O1Giv | 0.90 (3) | 2.17 (2) | 2.891 (2) | 136 (2) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y+1, z+1. |
Experimental details
Crystal data | |
Chemical formula | C6H10N6S22+·2Cl−·CH4O |
Mr | 333.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.7457 (2), 9.0234 (3), 13.0165 (4) |
α, β, γ (°) | 104.148 (2), 98.066 (2), 108.695 (2) |
V (Å3) | 706.81 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.75 |
Crystal size (mm) | 0.45 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Stoe IPDS 2 diffractometer |
Absorption correction | Integration (X-RED; Stoe & Cie, 2002) |
Tmin, Tmax | 0.739, 0.959 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3234, 3234, 2765 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.075, 1.03 |
No. of reflections | 3234 |
No. of parameters | 201 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.33 |
Computer programs: X-AREA (Stoe &Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1G—H1G···Cl1i | 0.89 (3) | 2.22 (3) | 3.1038 (15) | 171 (3) |
N3—H3A···Cl2 | 0.92 (3) | 2.28 (3) | 3.1746 (17) | 166 (2) |
N3—H3B···O1G | 0.89 (3) | 1.95 (3) | 2.839 (2) | 171 (3) |
N4—H4A···Cl1 | 0.86 (3) | 2.70 (3) | 3.3950 (16) | 139 (2) |
N4—H4B···Cl1i | 0.91 (3) | 2.36 (3) | 3.2522 (15) | 167 (2) |
N5—H5A···Cl1 | 0.89 (2) | 2.39 (2) | 3.2614 (16) | 170 (2) |
N5—H5B···Cl2ii | 0.90 (3) | 2.25 (3) | 3.1413 (17) | 173 (2) |
N6—H6A···Cl2iii | 0.83 (3) | 2.36 (3) | 3.1878 (19) | 175 (3) |
N6—H6B···O1Giv | 0.90 (3) | 2.17 (2) | 2.891 (2) | 136 (2) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y+1, z+1. |
Acknowledgements
This work was performed within the Cluster of Excellence "Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering (ADDE)" that is financially supported by the European Union (European Regional Development fund) and by the Ministry of Science and Art of Saxony (SMWK). LI is grateful to the DFG for a travel grant.
References
Cignarella, G. & Barlocco, D. J. (2002). Heterocycl. Chem. 39, 545–550. CrossRef CAS Google Scholar
Kumagai, M. (1960). Nippon Kagaku Zasshi, 81, 1604–1611. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Steck, E. A. & Brundage, R. P. (1959). J. Am. Chem. Soc. 81, 6511–6514. CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA, X-RED and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridazine derivatives are important compounds for pharmacological applications, among them 3,6-dithiopyridazine being a secondary substance of the title compound (Cignarella & Barlocco, 2002).
In the title compound (Fig. 1), the pyridazine ring is almost planar, with maximal deviation from the mean plane 0.025 (2) Å. Dihedral angles between the pyridazine plane and thiourea substitutes are different (S2 C6 N5 N6 - 60.87 (6)° and S1 C5 N3 N4 - 57.94 (7)°).
The structure is formed by a (C6H10N6S2)2+ cation and two Cl- anions, connected through strong N—H···Cl- hydrogen bonds [H3A···Cl2 = 2.28 (3) Å, N3—H3A···Cl2 = 166 (2)°; H4A···Cll = 2.70 (3) Å, N4—H4A···Cl1 = 139 (2)°; H5A···Cl1 = 2.39 (3) Å, N5—H5A···Cl1 = 170 (2)°], and one solvate CH3OH molecule bonded to the anion through a hydrogen bond [H3B···O1G = 2.839 (2) Å, N3—H3B···O1G = 171 (3)°]. Intermolecular hydrogen bonds link the Cl- anions and the solvate MeOH molecule to two additional cations (Table 1) resulting in a three-dimensional supramolecular arrangement (Fig.2).