organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

S,S′-(Pyridazine-3,6-di­yl)di­thio­uronium dichloride methanol monosolvate

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, 100125 Tashkent, Uzbekistan
*Correspondence e-mail: samat_talipov@yahoo.com

(Received 5 May 2011; accepted 16 May 2011; online 20 May 2011)

In the title compound, C6H10N6S22+·2Cl·CH3OH, the pyrid­azine ring is almost planar, the greatest deviation from the mean plane being 0.025 (2) Å for one of the ring N atoms. The two thiouronium substituents are tilted out of this plane by 60.87 (6) and 57.94 (7)°. The thiouronium cations and the chloride anions are linked by strong N—H⋯Cl hydrogen bonds. The methanol solvent mol­ecule inter­acts with both the chloride ion (through an O—H⋯Cl hydrogen bond) and the cation (through an N—H⋯O hydrogen bond), resulting in a three-dimensional supra­molecular arrangement.

Related literature

For pharmacological applications of pyridazine derivatives, see: Cignarella & Barlocco (2002[Cignarella, G. & Barlocco, D. J. (2002). Heterocycl. Chem. 39, 545-550.]). For details of the preparation, see: Kumagai (1960[Kumagai, M. (1960). Nippon Kagaku Zasshi, 81, 1604-1611.]); Steck & Brundage (1959[Steck, E. A. & Brundage, R. P. (1959). J. Am. Chem. Soc. 81, 6511-6514.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N6S22+·2Cl·CH4O

  • Mr = 333.26

  • Triclinic, [P \overline 1]

  • a = 6.7457 (2) Å

  • b = 9.0234 (3) Å

  • c = 13.0165 (4) Å

  • α = 104.148 (2)°

  • β = 98.066 (2)°

  • γ = 108.695 (2)°

  • V = 706.81 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 293 K

  • 0.45 × 0.10 × 0.05 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.739, Tmax = 0.959

  • 3234 measured reflections

  • 3234 independent reflections

  • 2765 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.03

  • 3234 reflections

  • 201 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1G—H1G⋯Cl1i 0.89 (3) 2.22 (3) 3.1038 (15) 171 (3)
N3—H3A⋯Cl2 0.92 (3) 2.28 (3) 3.1746 (17) 166 (2)
N3—H3B⋯O1G 0.89 (3) 1.95 (3) 2.839 (2) 171 (3)
N4—H4A⋯Cl1 0.86 (3) 2.70 (3) 3.3950 (16) 139 (2)
N4—H4B⋯Cl1i 0.91 (3) 2.36 (3) 3.2522 (15) 167 (2)
N5—H5A⋯Cl1 0.89 (2) 2.39 (2) 3.2614 (16) 170 (2)
N5—H5B⋯Cl2ii 0.90 (3) 2.25 (3) 3.1413 (17) 173 (2)
N6—H6A⋯Cl2iii 0.83 (3) 2.36 (3) 3.1878 (19) 175 (3)
N6—H6B⋯O1Giv 0.90 (3) 2.17 (2) 2.891 (2) 136 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) x, y+1, z+1.

Data collection: X-AREA (Stoe &Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Pyridazine derivatives are important compounds for pharmacological applications, among them 3,6-dithiopyridazine being a secondary substance of the title compound (Cignarella & Barlocco, 2002).

In the title compound (Fig. 1), the pyridazine ring is almost planar, with maximal deviation from the mean plane 0.025 (2) Å. Dihedral angles between the pyridazine plane and thiourea substitutes are different (S2 C6 N5 N6 - 60.87 (6)° and S1 C5 N3 N4 - 57.94 (7)°).

The structure is formed by a (C6H10N6S2)2+ cation and two Cl- anions, connected through strong N—H···Cl- hydrogen bonds [H3A···Cl2 = 2.28 (3) Å, N3—H3A···Cl2 = 166 (2)°; H4A···Cll = 2.70 (3) Å, N4—H4A···Cl1 = 139 (2)°; H5A···Cl1 = 2.39 (3) Å, N5—H5A···Cl1 = 170 (2)°], and one solvate CH3OH molecule bonded to the anion through a hydrogen bond [H3B···O1G = 2.839 (2) Å, N3—H3B···O1G = 171 (3)°]. Intermolecular hydrogen bonds link the Cl- anions and the solvate MeOH molecule to two additional cations (Table 1) resulting in a three-dimensional supramolecular arrangement (Fig.2).

Related literature top

For pharmacological applications of pyridazine derivatives, see: Cignarella & Barlocco (2002). For details of the preparation, see: Kumagai (1960); Steck & Brundage (1959).

Experimental top

The title compound has been obtained as an intermediate substance of the synthesis of 3,6-dithiopyridazine involving the reaction of 3,6-dichloropyridazine with thiourea in methanol solution and was isolated before alkaline treatment (Steck & Brundage, 1959); (Kumagai, 1960). The colourless plate-type single crystals are stable in the air.

Refinement top

All H-atoms, except H-atoms involved in H-bonding, were positioned geometrically and allowed to ride on their parent atoms, with C—H=0.95 Å and Uiso = 1.2–1.5 Ueq (parent atom). The rest H-atoms were located in a difference map and fully refined

Computing details top

Data collection: X-AREA (Stoe &Cie, 2002); cell refinement: X-AREA (Stoe &Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, showing 50% probability displacement ellipsoids for the non-H atoms. Dashed lines represent hydrogen bond.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. The weak hydrogen bonds are shown as dashed lines. H-atoms are omited for clarity
{Amino[(6-{[amino(iminiumyl)methyl]sulfanyl}pyridazin-3- yl)sulfanyl]methylidene}azanium dichloride methanol monosolvate top
Crystal data top
C6H10N6S22+·2Cl·CH4OZ = 2
Mr = 333.26F(000) = 344
Triclinic, P1Dx = 1.566 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7457 (2) ÅCell parameters from 32534 reflections
b = 9.0234 (3) Åθ = 1.7–29.6°
c = 13.0165 (4) ŵ = 0.75 mm1
α = 104.148 (2)°T = 293 K
β = 98.066 (2)°Plate, colourless
γ = 108.695 (2)°0.45 × 0.10 × 0.05 mm
V = 706.81 (4) Å3
Data collection top
Stoe IPDS 2
diffractometer
3234 independent reflections
Radiation source: sealed X-ray tube, long-fine focus2765 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.071
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.5°
rotation method scansh = 88
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 1111
Tmin = 0.739, Tmax = 0.959l = 016
3234 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.1092P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3234 reflectionsΔρmax = 0.27 e Å3
201 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.055 (4)
Crystal data top
C6H10N6S22+·2Cl·CH4Oγ = 108.695 (2)°
Mr = 333.26V = 706.81 (4) Å3
Triclinic, P1Z = 2
a = 6.7457 (2) ÅMo Kα radiation
b = 9.0234 (3) ŵ = 0.75 mm1
c = 13.0165 (4) ÅT = 293 K
α = 104.148 (2)°0.45 × 0.10 × 0.05 mm
β = 98.066 (2)°
Data collection top
Stoe IPDS 2
diffractometer
3234 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
2765 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.959Rint = 0.071
3234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
3234 reflectionsΔρmin = 0.33 e Å3
201 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46287 (7)0.17255 (5)0.64021 (3)0.03256 (12)
Cl20.10144 (7)0.26455 (6)0.02016 (4)0.03622 (12)
O1G0.5002 (2)0.10500 (17)0.13659 (11)0.0364 (3)
C1G0.7040 (4)0.0147 (3)0.1460 (2)0.0570 (6)
H1G10.72510.11460.20130.085*
H1G20.70980.03580.07750.085*
H1G30.81520.02510.16580.085*
H1G0.518 (5)0.132 (4)0.197 (2)0.059 (8)*
H4B0.434 (4)0.053 (3)0.357 (2)0.048 (7)*
H5A0.436 (4)0.388 (3)0.780 (2)0.037 (6)*
H6B0.410 (4)0.684 (3)0.992 (2)0.040 (6)*
H3A0.201 (4)0.137 (3)0.138 (2)0.046 (6)*
H4A0.441 (5)0.205 (4)0.439 (2)0.059 (8)*
H5B0.581 (4)0.541 (3)0.880 (2)0.047 (7)*
H3B0.330 (4)0.032 (3)0.169 (2)0.056 (8)*
H6A0.183 (5)0.646 (3)0.947 (2)0.049 (7)*
S10.22215 (7)0.35351 (5)0.32279 (3)0.02800 (11)
S20.02098 (7)0.37603 (6)0.77378 (3)0.03286 (12)
C40.0693 (2)0.36263 (19)0.64195 (12)0.0231 (3)
N10.2518 (2)0.48701 (16)0.53011 (11)0.0265 (3)
N20.2047 (2)0.49603 (17)0.62795 (11)0.0284 (3)
C30.0424 (3)0.2143 (2)0.55821 (13)0.0277 (3)
H30.14090.12490.57030.033*
C10.1553 (2)0.34686 (18)0.44932 (12)0.0220 (3)
N60.2904 (3)0.6233 (2)0.93770 (13)0.0357 (3)
C60.2824 (3)0.50356 (19)0.85521 (13)0.0261 (3)
C20.0002 (3)0.2071 (2)0.45784 (13)0.0271 (3)
H20.07160.11350.39790.033*
N30.2723 (3)0.1075 (2)0.18987 (12)0.0352 (3)
N50.4521 (3)0.4721 (2)0.83639 (13)0.0335 (3)
N40.3980 (3)0.1435 (2)0.37169 (13)0.0308 (3)
C50.3058 (2)0.18519 (19)0.29330 (13)0.0232 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0377 (2)0.0308 (2)0.0310 (2)0.01700 (17)0.00766 (16)0.00711 (15)
Cl20.0359 (2)0.0417 (2)0.0307 (2)0.01407 (18)0.00600 (16)0.01193 (17)
O1G0.0373 (7)0.0351 (7)0.0328 (7)0.0125 (5)0.0048 (5)0.0066 (5)
C1G0.0417 (12)0.0504 (13)0.0699 (16)0.0099 (10)0.0192 (11)0.0091 (11)
S10.0392 (2)0.0296 (2)0.0249 (2)0.02017 (17)0.01270 (15)0.01233 (15)
S20.0286 (2)0.0409 (2)0.02151 (19)0.00569 (17)0.00775 (15)0.00506 (16)
C40.0239 (7)0.0251 (7)0.0206 (7)0.0111 (6)0.0049 (5)0.0048 (6)
N10.0314 (7)0.0223 (6)0.0244 (6)0.0086 (5)0.0073 (5)0.0064 (5)
N20.0342 (7)0.0230 (6)0.0238 (6)0.0080 (5)0.0072 (5)0.0031 (5)
C30.0261 (7)0.0244 (7)0.0266 (8)0.0038 (6)0.0067 (6)0.0050 (6)
C10.0227 (7)0.0237 (7)0.0213 (7)0.0114 (6)0.0048 (5)0.0066 (5)
N60.0434 (9)0.0308 (7)0.0275 (7)0.0142 (7)0.0051 (7)0.0009 (6)
C60.0317 (8)0.0237 (7)0.0216 (7)0.0090 (6)0.0048 (6)0.0075 (6)
C20.0259 (7)0.0240 (7)0.0228 (7)0.0042 (6)0.0030 (6)0.0003 (6)
N30.0454 (9)0.0423 (8)0.0237 (7)0.0263 (7)0.0087 (6)0.0063 (6)
N50.0305 (8)0.0345 (8)0.0320 (7)0.0130 (6)0.0045 (6)0.0044 (6)
N40.0393 (8)0.0321 (7)0.0255 (7)0.0203 (6)0.0062 (6)0.0077 (6)
C50.0230 (7)0.0230 (7)0.0243 (7)0.0081 (5)0.0085 (5)0.0074 (6)
Geometric parameters (Å, º) top
O1G—C1G1.417 (3)C1—C21.398 (2)
O1G—H1G0.89 (3)N6—C61.305 (2)
C1G—H1G10.9600N6—H6B0.90 (3)
C1G—H1G20.9600N6—H6A0.83 (3)
C1G—H1G30.9600C6—N51.305 (2)
S1—C51.7603 (16)C2—H20.9300
S1—C11.7775 (15)N3—C51.306 (2)
S2—C61.7709 (17)N3—H3A0.92 (3)
S2—C41.7738 (15)N3—H3B0.89 (3)
C4—N21.329 (2)N5—H5A0.89 (2)
C4—C31.399 (2)N5—H5B0.90 (3)
N1—C11.326 (2)N4—C51.315 (2)
N1—N21.3450 (19)N4—H4B0.91 (3)
C3—C21.366 (2)N4—H4A0.86 (3)
C3—H30.9300
C1G—O1G—H1G103.6 (19)C6—N6—H6A122.6 (19)
O1G—C1G—H1G1109.5H6B—N6—H6A114 (2)
O1G—C1G—H1G2109.5N6—C6—N5123.12 (17)
H1G1—C1G—H1G2109.5N6—C6—S2115.38 (14)
O1G—C1G—H1G3109.5N5—C6—S2121.38 (13)
H1G1—C1G—H1G3109.5C3—C2—C1116.94 (14)
H1G2—C1G—H1G3109.5C3—C2—H2121.5
C5—S1—C1100.19 (7)C1—C2—H2121.5
C6—S2—C499.98 (8)C5—N3—H3A120.2 (16)
N2—C4—C3123.90 (14)C5—N3—H3B120.0 (18)
N2—C4—S2117.88 (11)H3A—N3—H3B120 (2)
C3—C4—S2118.18 (12)C6—N5—H5A119.1 (15)
C1—N1—N2118.93 (13)C6—N5—H5B117.8 (16)
C4—N2—N1119.05 (13)H5A—N5—H5B123 (2)
C2—C3—C4116.86 (15)C5—N4—H4B121.2 (17)
C2—C3—H3121.6C5—N4—H4A122 (2)
C4—C3—H3121.6H4B—N4—H4A116 (3)
N1—C1—C2124.05 (14)N3—C5—N4123.08 (15)
N1—C1—S1114.57 (11)N3—C5—S1115.75 (13)
C2—C1—S1121.20 (12)N4—C5—S1121.17 (12)
C6—N6—H6B123.2 (15)
C6—S2—C4—N237.51 (14)C5—S1—C1—N1126.26 (12)
C6—S2—C4—C3144.58 (13)C5—S1—C1—C258.54 (14)
C3—C4—N2—N15.3 (2)C4—S2—C6—N6134.58 (13)
S2—C4—N2—N1176.96 (11)C4—S2—C6—N549.21 (15)
C1—N1—N2—C42.6 (2)C4—C3—C2—C11.9 (2)
N2—C4—C3—C22.9 (2)N1—C1—C2—C34.5 (2)
S2—C4—C3—C2179.32 (13)S1—C1—C2—C3179.24 (12)
N2—N1—C1—C22.3 (2)C1—S1—C5—N3149.37 (13)
N2—N1—C1—S1177.35 (11)C1—S1—C5—N431.32 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1G—H1G···Cl1i0.89 (3)2.22 (3)3.1038 (15)171 (3)
N3—H3A···Cl20.92 (3)2.28 (3)3.1746 (17)166 (2)
N3—H3B···O1G0.89 (3)1.95 (3)2.839 (2)171 (3)
N4—H4A···Cl10.86 (3)2.70 (3)3.3950 (16)139 (2)
N4—H4B···Cl1i0.91 (3)2.36 (3)3.2522 (15)167 (2)
N5—H5A···Cl10.89 (2)2.39 (2)3.2614 (16)170 (2)
N5—H5B···Cl2ii0.90 (3)2.25 (3)3.1413 (17)173 (2)
N6—H6A···Cl2iii0.83 (3)2.36 (3)3.1878 (19)175 (3)
N6—H6B···O1Giv0.90 (3)2.17 (2)2.891 (2)136 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H10N6S22+·2Cl·CH4O
Mr333.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.7457 (2), 9.0234 (3), 13.0165 (4)
α, β, γ (°)104.148 (2), 98.066 (2), 108.695 (2)
V3)706.81 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.45 × 0.10 × 0.05
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.739, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
3234, 3234, 2765
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.03
No. of reflections3234
No. of parameters201
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.33

Computer programs: X-AREA (Stoe &Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1G—H1G···Cl1i0.89 (3)2.22 (3)3.1038 (15)171 (3)
N3—H3A···Cl20.92 (3)2.28 (3)3.1746 (17)166 (2)
N3—H3B···O1G0.89 (3)1.95 (3)2.839 (2)171 (3)
N4—H4A···Cl10.86 (3)2.70 (3)3.3950 (16)139 (2)
N4—H4B···Cl1i0.91 (3)2.36 (3)3.2522 (15)167 (2)
N5—H5A···Cl10.89 (2)2.39 (2)3.2614 (16)170 (2)
N5—H5B···Cl2ii0.90 (3)2.25 (3)3.1413 (17)173 (2)
N6—H6A···Cl2iii0.83 (3)2.36 (3)3.1878 (19)175 (3)
N6—H6B···O1Giv0.90 (3)2.17 (2)2.891 (2)136 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

This work was performed within the Cluster of Excellence "Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering (ADDE)" that is financially supported by the European Union (European Regional Development fund) and by the Ministry of Science and Art of Saxony (SMWK). LI is grateful to the DFG for a travel grant.

References

First citationCignarella, G. & Barlocco, D. J. (2002). Heterocycl. Chem. 39, 545–550.  CrossRef CAS Google Scholar
First citationKumagai, M. (1960). Nippon Kagaku Zasshi, 81, 1604–1611.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSteck, E. A. & Brundage, R. P. (1959). J. Am. Chem. Soc. 81, 6511–6514.  CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds