organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(1,3-Benzo­thia­zol-2-yl)amino­carbon­yl]meth­yl piperidine-1-carbodi­thio­ate monohydrate

aDepartment of Organic Chemistry, the College of Chemistry, Xiangtan University, Hunan 411105, People's Republic of China, and bEnvironmental Engineering, Dongguan University of Technology, Guangdong 523808, People's Republic of China
*Correspondence e-mail: zhaohbhanlf@163.com

(Received 11 May 2011; accepted 16 May 2011; online 25 May 2011)

In the title compound, C15H17N3OS3·H2O, the piperidine ring has a chair conformation. The crystal structure is stabilized by weak inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen-bonding inter­actions.

Related literature

For the biological activity of substituted N-benzothia­zol-2-yl-amides, see: Patel & Shaikh (2010[Patel, N. B. & Shaikh, F. M. (2010). Sci. Pharm. 78, 753-765.]); Hou et al. (2006[Hou, X. T., Wang, M., Jiang, S. R. & Niu, S. G. (2006). Chin. J. Pestic. Sci. 8, 222-226.]). For related structures, see: Wang et al. (2008[Wang, J. K., Peng, F., Jiang, J. L., Lu, Z. J., Wang, L. Y., Bai, J. F. & Pan, Y. (2008). Tetrahedron Lett. 49, 467-470.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N3OS3·H2O

  • Mr = 369.39

  • Monoclinic, P 21 /c

  • a = 10.6326 (3) Å

  • b = 12.0735 (3) Å

  • c = 14.7824 (4) Å

  • β = 113.133 (2)°

  • V = 1745.08 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.918, Tmax = 0.918

  • 15147 measured reflections

  • 3992 independent reflections

  • 3497 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.11

  • 3992 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H3⋯O2i 0.84 1.91 2.745 (2) 170
O2—H2′A⋯N3ii 0.92 2.04 2.920 (2) 160
O2—H2′B⋯O1iii 0.91 1.92 2.821 (2) 169
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted N-benzothiazol-2-yl-amides are an important class of heterocyclic compounds that exhibit a wide range of biological properties such as antimicrobial activity (Patel & Shaikh, 2010), antivirus infections (Hou et al., 2006). In this paper, the structure of 1-(dithiopiperidyl)-N-benzothiazole-2-yl-acetamide is reported.

The title compound (I) (Fig. 1) crystallizes in the centrosymmetric space group P21/c. One 1-(dithiopiperidyl)-N-benzothiazole-2-yl-acetamide molecule and a solvent water molecule in the asymmetric unit. The piperidine ring has a chair conformation; Crystal packing is stablized by N—H···O, O—H···N and O—H···O hydrogen bonds (Figs. 2 and Table 1).

Related literature top

For the biological activity of substituted N-benzothiazol-2-yl-amides, see: Patel & Shaikh (2010); Hou et al. (2006). For related structures, see: Wang et al. (2008).

Experimental top

Single crystals were recrystallization from an ethanol solution at room temperature.

Refinement top

H atoms were placed in calculated positions (C—H=0.93–0.97 Å, N—H=0.85 Å,O—H=0.91–0.92 Å) and refined in riding mode, with Uĩso~(H) = xU~eq~(C,N), where x =1.5 (O,N) and 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing of the title compound. Dashed lines indicate hydrogen bonds.
{[(1,3-Benzothiazol-2-yl)aminocarbonyl]methyl} piperidine-1-carbodithioate monohydrate top
Crystal data top
C15H17N3OS3·H2OF(000) = 776
Mr = 369.39Dx = 1.406 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8358 reflections
a = 10.6326 (3) Åθ = 3.0–27.5°
b = 12.0735 (3) ŵ = 0.44 mm1
c = 14.7824 (4) ÅT = 296 K
β = 113.133 (2)°Block, colorless
V = 1745.08 (8) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3992 independent reflections
Radiation source: fine-focus sealed tube3497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1213
Tmin = 0.918, Tmax = 0.918k = 1415
15147 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.6208P]
where P = (Fo2 + 2Fc2)/3
3992 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H17N3OS3·H2OV = 1745.08 (8) Å3
Mr = 369.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6326 (3) ŵ = 0.44 mm1
b = 12.0735 (3) ÅT = 296 K
c = 14.7824 (4) Å0.20 × 0.20 × 0.20 mm
β = 113.133 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3992 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3497 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.918Rint = 0.020
15147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.11Δρmax = 0.21 e Å3
3992 reflectionsΔρmin = 0.30 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S30.11155 (5)0.39341 (3)0.39288 (3)0.04084 (12)
S20.14706 (5)0.19374 (3)0.16270 (3)0.04125 (12)
S10.34529 (6)0.24704 (5)0.36726 (3)0.05848 (15)
O10.00460 (15)0.32824 (10)0.26734 (10)0.0505 (3)
N30.14307 (15)0.20161 (10)0.46198 (10)0.0387 (3)
N10.37483 (17)0.30273 (14)0.20291 (11)0.0504 (4)
N20.02961 (10)0.18869 (7)0.35648 (7)0.0398 (3)
H30.02500.12090.37150.060*
C150.19188 (10)0.38955 (7)0.47513 (7)0.0390 (3)
C140.24377 (10)0.47707 (7)0.51145 (7)0.0524 (4)
H140.23750.54970.49270.063*
C130.3046 (2)0.45284 (17)0.57595 (18)0.0621 (5)
H130.34040.50990.60080.075*
C120.3132 (2)0.34427 (18)0.60443 (17)0.0607 (5)
H120.35390.33000.64860.073*
C110.2626 (2)0.25758 (15)0.56845 (15)0.0506 (4)
H110.26960.18520.58740.061*
C100.20087 (17)0.28022 (13)0.50311 (12)0.0381 (3)
C90.09440 (16)0.24949 (12)0.40459 (11)0.0344 (3)
C80.01508 (18)0.23052 (13)0.28907 (12)0.0389 (3)
C70.0712 (2)0.14189 (14)0.24244 (13)0.0450 (4)
H7A0.00250.09200.20540.054*
H7B0.13920.09920.29430.054*
C60.30123 (18)0.25403 (13)0.24634 (12)0.0401 (3)
C10.3334 (2)0.31304 (17)0.09552 (13)0.0524 (5)
H1A0.24660.27580.06180.063*
H1B0.40100.27760.07630.063*
C20.3200 (2)0.43266 (18)0.06582 (15)0.0607 (5)
H2A0.24540.46580.07850.073*
H2B0.29830.43800.00420.073*
C30.4502 (3)0.4956 (2)0.1215 (2)0.0794 (7)
H3A0.43570.57380.10570.095*
H3B0.52180.46970.10160.095*
C40.4948 (3)0.4796 (2)0.23209 (18)0.0701 (6)
H4A0.58320.51440.26610.084*
H4B0.42950.51560.25340.084*
C50.5044 (2)0.3595 (2)0.25880 (17)0.0632 (5)
H5A0.57740.32530.24490.076*
H5B0.52610.35200.32870.076*
O20.99835 (17)0.03537 (10)0.61071 (10)0.0591 (4)
H2'A0.95010.07350.55380.089*
H2'B1.01110.08220.66170.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S30.0527 (3)0.02621 (18)0.0499 (2)0.00354 (15)0.0270 (2)0.00531 (15)
S20.0520 (3)0.0395 (2)0.0354 (2)0.00204 (17)0.02063 (18)0.00248 (15)
S10.0800 (4)0.0582 (3)0.0310 (2)0.0053 (2)0.0152 (2)0.00416 (19)
O10.0772 (9)0.0309 (6)0.0565 (8)0.0079 (6)0.0403 (7)0.0086 (5)
N30.0505 (8)0.0279 (6)0.0419 (7)0.0021 (5)0.0225 (6)0.0002 (5)
N10.0531 (9)0.0581 (9)0.0363 (7)0.0110 (7)0.0135 (7)0.0000 (7)
N20.0581 (9)0.0250 (6)0.0431 (7)0.0033 (6)0.0273 (7)0.0030 (5)
C150.0415 (8)0.0336 (8)0.0442 (8)0.0010 (6)0.0192 (7)0.0000 (6)
C140.0612 (11)0.0352 (8)0.0684 (12)0.0057 (8)0.0336 (10)0.0015 (8)
C130.0706 (13)0.0503 (11)0.0828 (15)0.0061 (9)0.0490 (12)0.0094 (10)
C120.0674 (13)0.0575 (12)0.0762 (14)0.0045 (10)0.0487 (12)0.0074 (10)
C110.0603 (11)0.0418 (9)0.0611 (11)0.0072 (8)0.0362 (10)0.0022 (8)
C100.0407 (8)0.0330 (7)0.0426 (8)0.0021 (6)0.0185 (7)0.0021 (6)
C90.0405 (8)0.0261 (7)0.0359 (7)0.0006 (6)0.0144 (6)0.0010 (5)
C80.0495 (9)0.0318 (8)0.0386 (8)0.0030 (6)0.0209 (7)0.0021 (6)
C70.0632 (11)0.0318 (8)0.0496 (9)0.0011 (7)0.0325 (9)0.0010 (7)
C60.0515 (9)0.0328 (7)0.0343 (8)0.0058 (7)0.0151 (7)0.0012 (6)
C10.0619 (12)0.0603 (11)0.0391 (9)0.0108 (9)0.0243 (8)0.0040 (8)
C20.0705 (14)0.0633 (13)0.0498 (11)0.0025 (10)0.0252 (10)0.0052 (9)
C30.0941 (19)0.0622 (14)0.0802 (16)0.0202 (13)0.0324 (14)0.0070 (12)
C40.0686 (14)0.0641 (13)0.0749 (15)0.0181 (11)0.0252 (12)0.0150 (12)
C50.0502 (11)0.0731 (14)0.0565 (12)0.0111 (10)0.0103 (9)0.0025 (11)
O20.1018 (11)0.0269 (6)0.0487 (7)0.0058 (6)0.0297 (7)0.0001 (5)
Geometric parameters (Å, º) top
S3—C151.7395 (10)C11—C101.392 (2)
S3—C91.7486 (15)C11—H110.9300
S2—C61.7757 (18)C8—C71.517 (2)
S2—C71.7828 (17)C7—H7A0.9700
S1—C61.6624 (16)C7—H7B0.9700
O1—C81.2163 (19)C1—C21.500 (3)
N3—C91.291 (2)C1—H1A0.9700
N3—C101.394 (2)C1—H1B0.9700
N1—C61.329 (2)C2—C31.508 (3)
N1—C51.468 (3)C2—H2A0.9700
N1—C11.477 (2)C2—H2B0.9700
N2—C81.3586 (18)C3—C41.525 (3)
N2—C91.3799 (17)C3—H3A0.9700
N2—H30.8445C3—H3B0.9700
C15—C141.3936C4—C51.496 (3)
C15—C101.3978 (18)C4—H4A0.9700
C14—C131.377 (2)C4—H4B0.9700
C14—H140.9300C5—H5A0.9700
C13—C121.391 (3)C5—H5B0.9700
C13—H130.9300O2—H2'A0.9186
C12—C111.376 (3)O2—H2'B0.9083
C12—H120.9300
C15—S3—C987.99 (6)S2—C7—H7B108.6
C6—S2—C7102.54 (8)H7A—C7—H7B107.6
C9—N3—C10109.94 (13)N1—C6—S1124.85 (14)
C6—N1—C5122.35 (16)N1—C6—S2113.75 (12)
C6—N1—C1124.96 (15)S1—C6—S2121.40 (10)
C5—N1—C1112.56 (16)N1—C1—C2110.48 (16)
C8—N2—C9124.72 (11)N1—C1—H1A109.6
C8—N2—H3123.5C2—C1—H1A109.6
C9—N2—H3111.7N1—C1—H1B109.6
C14—C15—C10121.23 (8)C2—C1—H1B109.6
C14—C15—S3128.8H1A—C1—H1B108.1
C10—C15—S3109.98 (9)C1—C2—C3111.35 (19)
C13—C14—C15118.06 (9)C1—C2—H2A109.4
C13—C14—H14121.0C3—C2—H2A109.4
C15—C14—H14121.0C1—C2—H2B109.4
C14—C13—C12120.96 (16)C3—C2—H2B109.4
C14—C13—H13119.5H2A—C2—H2B108.0
C12—C13—H13119.5C2—C3—C4110.69 (19)
C11—C12—C13121.18 (18)C2—C3—H3A109.5
C11—C12—H12119.4C4—C3—H3A109.5
C13—C12—H12119.4C2—C3—H3B109.5
C12—C11—C10118.79 (17)C4—C3—H3B109.5
C12—C11—H11120.6H3A—C3—H3B108.1
C10—C11—H11120.6C5—C4—C3111.4 (2)
C11—C10—N3125.33 (15)C5—C4—H4A109.3
C11—C10—C15119.77 (14)C3—C4—H4A109.3
N3—C10—C15114.89 (13)C5—C4—H4B109.3
N3—C9—N2120.70 (13)C3—C4—H4B109.3
N3—C9—S3117.19 (12)H4A—C4—H4B108.0
N2—C9—S3122.09 (10)N1—C5—C4110.63 (18)
O1—C8—N2122.14 (14)N1—C5—H5A109.5
O1—C8—C7125.17 (15)C4—C5—H5A109.5
N2—C8—C7112.63 (13)N1—C5—H5B109.5
C8—C7—S2114.45 (12)C4—C5—H5B109.5
C8—C7—H7A108.6H5A—C5—H5B108.1
S2—C7—H7A108.6H2'A—O2—H2'B107.2
C8—C7—H7B108.6
C9—S3—C15—C14179.51 (6)C15—S3—C9—N2178.26 (14)
C9—S3—C15—C100.94 (11)C9—N2—C8—O12.2 (3)
C10—C15—C14—C130.05 (14)C9—N2—C8—C7175.06 (14)
S3—C15—C14—C13179.45 (15)O1—C8—C7—S28.9 (3)
C15—C14—C13—C120.4 (3)N2—C8—C7—S2173.96 (12)
C14—C13—C12—C110.7 (4)C6—S2—C7—C871.97 (15)
C13—C12—C11—C100.6 (3)C5—N1—C6—S11.7 (3)
C12—C11—C10—N3178.85 (19)C1—N1—C6—S1177.38 (15)
C12—C11—C10—C150.3 (3)C5—N1—C6—S2178.72 (16)
C9—N3—C10—C11179.96 (17)C1—N1—C6—S23.1 (2)
C9—N3—C10—C150.8 (2)C7—S2—C6—N1177.71 (13)
C14—C15—C10—C110.00 (19)C7—S2—C6—S12.73 (12)
S3—C15—C10—C11179.59 (14)C6—N1—C1—C2118.0 (2)
C14—C15—C10—N3179.20 (9)C5—N1—C1—C258.0 (2)
S3—C15—C10—N31.21 (17)N1—C1—C2—C355.5 (2)
C10—N3—C9—N2178.87 (14)C1—C2—C3—C453.5 (3)
C10—N3—C9—S30.03 (19)C2—C3—C4—C553.3 (3)
C8—N2—C9—N3174.61 (15)C6—N1—C5—C4118.4 (2)
C8—N2—C9—S36.6 (2)C1—N1—C5—C457.7 (2)
C15—S3—C9—N30.55 (13)C3—C4—C5—N154.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3···O2i0.841.912.745 (2)170
O2—H2A···N3ii0.922.042.920 (2)160
O2—H2B···O1iii0.911.922.821 (2)169
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17N3OS3·H2O
Mr369.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.6326 (3), 12.0735 (3), 14.7824 (4)
β (°) 113.133 (2)
V3)1745.08 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.918, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
15147, 3992, 3497
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.11
No. of reflections3992
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.30

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3···O2i0.8441.9102.745 (2)170
O2—H2'A···N3ii0.9192.0402.920 (2)160
O2—H2'B···O1iii0.9081.9232.821 (2)169
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Key Laboratory of Functional Organometallic Materials of the College of Hunan Province, Hengyang, Hunan, China.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, X. T., Wang, M., Jiang, S. R. & Niu, S. G. (2006). Chin. J. Pestic. Sci. 8, 222–226.  CAS Google Scholar
First citationPatel, N. B. & Shaikh, F. M. (2010). Sci. Pharm. 78, 753–765.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. K., Peng, F., Jiang, J. L., Lu, Z. J., Wang, L. Y., Bai, J. F. & Pan, Y. (2008). Tetrahedron Lett. 49, 467–470.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds