inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Silver(I) di­aqua­magnesium catena-borodiphosphate(V) monohydrate, AgMg(H2O)2[BP2O8]·H2O

aCentre National pour la Recherche Scientifique et Technique, Division UATRS Angle Allal AlFassi et Avenue des FAR, Hay Ryad, BP 8027, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: zouihri@cnrst.ma

(Received 17 May 2011; accepted 23 May 2011; online 28 May 2011)

The title compound contains infinite one-dimensional [BP2O8]3− borophosphate helical ribbons, built up from alternate BO4 and PO4 tetra­hedra arranged around the 65 screw axes. The vertex-sharing BO4 and PO4 tetra­hedra form a spiral ribbon of four-membered rings in which BO4 and PO4 groups alternate. The ribbons are connected through slightly distorted MgO4(H2O)2 octa­hedra, in which the four O atoms belong to the phosphate groups. The free threads of the helices are occupied by silver ions, which are in an irregular environment surrounded by six O atoms. The central channels of the helices, running along the c axis, are filled with the water mol­ecules. The structure is stabilized by O—H⋯O hydrogen bonds between the water mol­ecules and O atoms that are part of the helices. The crystal structure of the title compound is isotopic with other analogous borophosphates such as AIMII(H2O)2[BP2O8]·H2O, where AI = Li, Na, K or NH4+ and MII = Mg, Mn, Fe, Co, Ni, Cu, Zn or Cd.

Related literature

For isotypic Mg analogues, see: Kniep et al. (1997[Kniep, R., Will, H. G., Boy, I. & Rohr, C. (1997). Angew. Chem. Int. Ed. 36, 1013-1014.]); Lin et al. (2008[Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39-i40.]). For other similar borophosphates, see: Kniep et al. (1998[Kniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater. 10, 2930-2934.]); Ewald et al. (2007[Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517-1540.]); Menezes et al. (2008[Menezes, P. W., Hoffmann, S., Prots, Y. & Kniep, R. (2008). Z. Kristallogr. 223, 333-334.]).

Experimental

Crystal data
  • AgMg(H2O)2[BP2O8]·H2O

  • Mr = 386.98

  • Hexagonal, P 65 22

  • a = 9.4577 (4) Å

  • c = 15.8301 (13) Å

  • V = 1226.27 (7) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.99 mm−1

  • T = 296 K

  • 0.17 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.705, Tmax = 0.741

  • 18120 measured reflections

  • 1553 independent reflections

  • 1517 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.10

  • 1553 reflections

  • 76 parameters

  • H-atom parameters constrained

  • Δρmax = 1.59 e Å−3

  • Δρmin = −1.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 543 Friedel pairs

  • Flack parameter: −0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O3i 0.86 1.89 2.744 (3) 175
O5—H5A⋯O5ii 0.86 2.06 2.889 (3) 162
O6—H6B⋯O2 0.86 1.93 2.781 (3) 170
Symmetry codes: (i) [-x+y, -x+1, z+{\script{1\over 3}}]; (ii) [-y+1, -x+1, -z+{\script{13\over 6}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The rich structural chemistry of the borophosphates system has generated considerable contemporary interest as a consequence of the interesting physical and chemical properties of the porous or tunnel structures generally adopted by the inorganic solids which are formed (Kniep et al., 1998, Ewald et al., 2007). Most of these compounds were synthesized with alkali (AI) and transition metal cations (MII), with the general formula AIMII(H2O)2[BP2O8].H2O, under hydrothermal conditions at 443–463 K (Kniep et al. (1997) and Lin et al. (2008)).

The crystal structure of the new synthesized helical borophosphate-hydrate AgMg(H2O)2[BP2O8].H2O is isotopic with other analogues borophosphates like AIMII (H2O)2[BP2O8].H2O (AI = Li, Na, K, NH4+ and MII = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) (Menezes et al., (2008)). Fig. 1 represents the plot of the asymmetric unit showing the cationic environment and the connection between different polyhedra. The BO4 and PO4 tetrahedra are relatively regular with B—O and P—O bond lengths ranging from 1.455 (3) Å to 1.480 (3) Å and from 1.503 (2) Å to to 1.569 (2) Å, respectively. Whereas, in the distorted MgO4(H2O)2 octahedron, the distances Mg—O vary between 2.053 (2) Å and 2.169 (3) Å. Moreover, the AgO6 polyhedron is more irregular with Ag—O distances in the range of 2.462–2.725 (3) Å.

The structure consists of infinite one dimensional helical anionic ribbons [BP2O8]3- constructed by corner-sharing BO4 and PO4 tetrahedra, arranged around the 65 screw axes. The ribbons borders are connected with Mg2+ cations via the terminal oxygen atoms of the phosphate groups. A three dimensional network is formed by interconnection between the (AgO6)n helices running along [001] and the tetrahedral ribbons via the slightly distorted MgO4(H2O)2 octahedra. The central channels of the helices, running along c axis, are filled up with the water molecule as shown in Fig 2. The structure is stabilized by O—H···O hydrogen bonds between water molecules and O atoms that are part of the helices (Table 1).

Related literature top

For isotypic Mg analogues, see: Kniep et al. (1997); Lin et al. (2008). For other similar borophosphates, see: Kniep et al. (1998); Ewald et al. (2007); Menezes et al. (2008).

Experimental top

The compound was hydrothermally synthesized at 453 °K for 7 days in a 25 ml Teflon-lined steel autoclave from the mixture of MgO, H3BO3, H3PO4 (85%), AgNO3 and 5 ml of distilled water in the molar ratio of 1:4:6:1:165. The brilliant colourless octahedral crystals were recovered and washed with hot water, then dried in air. Except for boron and hydrogen the presence of the elements were additionally confirmed by EDAX measurements.

Refinement top

The highest peak in the difference map is at 0.76 Å from Ag1 atom, and the minimum peak is at 0.52 Å from Ag1 atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Partial plot of AgMg(H2O)2[BP2O8] H2O crystal structure showing plyhedra linkage. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -y + 1, -x + 1, -z + 13/6; (ii) y - 1, -x + y, z + 1/6; (iii) y - 1, x, -z + 5/3; (iv) x, x-y + 1, -z + 11/6; (v) -x + y - 1, y, -z + 3/2; (vi) -x, -x + y, -z + 4/3; (vii) y, x + 1, -z + 5/3; (viii) x-y + 1, -y + 2, -z + 2.
[Figure 2] Fig. 2. Projection view of the AgMg(H2O)2[BP2O8] H2O framework structure showing tunnel running along c direction where water molecules are located.
Silver(I) diaquamagnesium catena-borodiphosphate(V) monohydrate top
Crystal data top
AgMg(H2O)2[BP2O8]·H2ODx = 3.144 Mg m3
Mr = 386.98Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6522Cell parameters from 1553 reflections
Hall symbol: P 65 2 ( 0 0 1)θ = 2.5–33.0°
a = 9.4577 (4) ŵ = 2.99 mm1
c = 15.8301 (13) ÅT = 296 K
V = 1226.27 (7) Å3Prism, colourless
Z = 60.17 × 0.10 × 0.10 mm
F(000) = 1128
Data collection top
Bruker APEXII CCD detector
diffractometer
1553 independent reflections
Radiation source: fine-focus sealed tube1517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 33.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 1414
Tmin = 0.705, Tmax = 0.741k = 1413
18120 measured reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0472P)2 + 4.7811P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max < 0.001
S = 1.10Δρmax = 1.59 e Å3
1553 reflectionsΔρmin = 1.56 e Å3
76 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0049 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 543 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (5)
Crystal data top
AgMg(H2O)2[BP2O8]·H2OZ = 6
Mr = 386.98Mo Kα radiation
Hexagonal, P6522µ = 2.99 mm1
a = 9.4577 (4) ÅT = 296 K
c = 15.8301 (13) Å0.17 × 0.10 × 0.10 mm
V = 1226.27 (7) Å3
Data collection top
Bruker APEXII CCD detector
diffractometer
1553 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
1517 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.741Rint = 0.031
18120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101Δρmax = 1.59 e Å3
S = 1.10Δρmin = 1.56 e Å3
1553 reflectionsAbsolute structure: Flack (1983), 543 Friedel pairs
76 parametersAbsolute structure parameter: 0.01 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.18579 (4)0.81421 (4)1.08330.03836 (17)
Mg0.10244 (16)0.55122 (8)0.91670.0065 (2)
P10.16930 (8)0.78125 (8)0.75206 (4)0.00471 (13)
B10.1513 (2)0.6974 (5)0.75000.0052 (6)
O10.1362 (3)0.6230 (3)0.79151 (13)0.0098 (4)
O20.3176 (3)0.9319 (3)0.78429 (13)0.0103 (4)
O30.1801 (3)0.7639 (3)0.65405 (12)0.0070 (3)
O40.0211 (2)0.8082 (2)0.76691 (12)0.0067 (3)
O50.1244 (8)1.00001.00000.082 (3)
H5A0.07270.97151.04730.098*
O60.2931 (3)0.7990 (3)0.94403 (14)0.0129 (4)
H6A0.38690.81240.95790.016*
H6B0.30960.85160.89740.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0451 (3)0.0451 (3)0.0305 (3)0.0267 (3)0.00288 (19)0.00288 (19)
Mg0.0067 (5)0.0063 (4)0.0066 (5)0.0034 (3)0.0000.0011 (4)
P10.0044 (2)0.0053 (2)0.0044 (2)0.0023 (2)0.0003 (2)0.0011 (2)
B10.0057 (11)0.0073 (14)0.0030 (13)0.0036 (7)0.0004 (10)0.000
O10.0145 (10)0.0083 (9)0.0072 (8)0.0062 (7)0.0010 (7)0.0031 (7)
O20.0054 (8)0.0108 (9)0.0102 (8)0.0008 (7)0.0015 (6)0.0002 (7)
O30.0103 (8)0.0089 (8)0.0038 (7)0.0062 (7)0.0009 (6)0.0011 (6)
O40.0039 (7)0.0065 (8)0.0095 (8)0.0023 (6)0.0015 (6)0.0025 (6)
O50.042 (2)0.072 (5)0.140 (8)0.036 (3)0.033 (3)0.066 (6)
O60.0099 (9)0.0136 (10)0.0130 (9)0.0041 (8)0.0003 (7)0.0031 (7)
Geometric parameters (Å, º) top
Ag1—O6i2.461 (2)P1—O21.503 (2)
Ag1—O62.462 (2)P1—O41.563 (2)
Ag1—O52.487 (4)P1—O31.569 (2)
Ag1—O5i2.487 (4)B1—O41.455 (3)
Ag1—Mg3.4363 (4)B1—O4v1.455 (3)
Ag1—Mgi3.4363 (4)B1—O3vi1.480 (3)
Mg—O2ii2.053 (2)B1—O3ii1.480 (3)
Mg—O2iii2.053 (2)O2—Mgvii2.053 (2)
Mg—O12.067 (2)O3—B1vi1.480 (3)
Mg—O1iv2.067 (2)O5—Ag1viii2.487 (4)
Mg—O62.169 (3)O5—H5A0.8600
Mg—O6iv2.169 (3)O6—H6A0.8600
P1—O11.503 (2)O6—H6B0.8600
O6i—Ag1—O6131.89 (11)O2iii—Mg—O6iv89.01 (10)
O6i—Ag1—O5148.09 (10)O1—Mg—O6iv83.08 (9)
O6—Ag1—O579.32 (11)O1iv—Mg—O6iv85.88 (9)
O6i—Ag1—O5i79.32 (11)O6—Mg—O6iv87.91 (14)
O6—Ag1—O5i148.09 (10)O1—P1—O2115.72 (13)
O5—Ag1—O5i71.0 (2)O1—P1—O4110.01 (12)
O2ii—Mg—O2iii94.25 (15)O2—P1—O4106.40 (12)
O2ii—Mg—O199.94 (9)O1—P1—O3107.40 (12)
O2iii—Mg—O190.53 (9)O2—P1—O3110.86 (12)
O2ii—Mg—O1iv90.53 (9)O4—P1—O3106.05 (11)
O2iii—Mg—O1iv99.94 (9)O4—B1—O4v102.9 (3)
O1—Mg—O1iv164.64 (15)O4—B1—O3vi113.29 (11)
O2ii—Mg—O689.01 (10)O4v—B1—O3vi112.88 (11)
O2iii—Mg—O6175.52 (10)O4—B1—O3ii112.88 (11)
O1—Mg—O685.88 (9)O4v—B1—O3ii113.29 (11)
O1iv—Mg—O683.08 (9)O3vi—B1—O3ii102.0 (3)
O2ii—Mg—O6iv175.52 (10)H6A—O6—H6B104.9
Symmetry codes: (i) y+1, x+1, z+13/6; (ii) y1, x+y, z+1/6; (iii) y1, x, z+5/3; (iv) x, xy+1, z+11/6; (v) x+y1, y, z+3/2; (vi) x, x+y, z+4/3; (vii) y, x+1, z+5/3; (viii) xy+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O3ix0.861.892.744 (3)175
O5—H5A···O5i0.862.062.889 (3)162
O6—H6B···O20.861.932.781 (3)170
Symmetry codes: (i) y+1, x+1, z+13/6; (ix) x+y, x+1, z+1/3.

Experimental details

Crystal data
Chemical formulaAgMg(H2O)2[BP2O8]·H2O
Mr386.98
Crystal system, space groupHexagonal, P6522
Temperature (K)296
a, c (Å)9.4577 (4), 15.8301 (13)
V3)1226.27 (7)
Z6
Radiation typeMo Kα
µ (mm1)2.99
Crystal size (mm)0.17 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.705, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
18120, 1553, 1517
Rint0.031
(sin θ/λ)max1)0.765
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.10
No. of reflections1553
No. of parameters76
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.59, 1.56
Absolute structureFlack (1983), 543 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O3i0.861.892.744 (3)175
O5—H5A···O5ii0.862.062.889 (3)162
O6—H6B···O20.861.932.781 (3)170
Symmetry codes: (i) x+y, x+1, z+1/3; (ii) y+1, x+1, z+13/6.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEwald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517–1540.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater. 10, 2930–2934.  Web of Science CrossRef CAS Google Scholar
First citationKniep, R., Will, H. G., Boy, I. & Rohr, C. (1997). Angew. Chem. Int. Ed. 36, 1013–1014.  CrossRef CAS Google Scholar
First citationLin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39–i40.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMenezes, P. W., Hoffmann, S., Prots, Y. & Kniep, R. (2008). Z. Kristallogr. 223, 333–334.  CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds