organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sulfonated 1,3-bis­­(4-pyrid­yl)propane

aChemistry Division, Code 6120 Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: andrew.purdy@nrl.navy.mil

(Received 27 January 2011; accepted 16 May 2011; online 28 May 2011)

In the title compound, 4-[3-(3-sulfonato­pyridin-1-ium-4-yl)prop­yl]pyridin-1-ium-3-sulfonate, C13H14N2O6S2, the mol­ecule is zwitterionic, with the sulfonic acid proton transfered to the basic pyridine N atom. Also, the structure adopts a butterfly-like conformation with the sulfonate groups on opposite sides of the `wings'. The dihedral angle between the two pyridinium rings is 83.56 (7)°, and this results in the mol­ecule having a chiral conformation and packing. There is strong inter­molecular hydrogen bonding between the pyridinium H and sulfonate O atoms of adjoining mol­ecules. In addition, there are weaker inter­molecular C—H⋯O inter­actions.

Related literature

For zwiterionic polymers, see: Estrin & Entelis (1974[Estrin, Ya. I. & Entelis, S. G. (1974). Vysokomol. Soedin. Ser. A, 16, 1612-19.]); Sundaram et al. (2010[Sundaram, H. S., Cho, Y., Weinman, C. J., Paik, M. Y., Dimitriou, M. D., Finlay, J., Callow, M. E., Callow, J. A., Kramer, E. J. & Ober, C. K. (2010). Polym. Prepr. 51, 384-385.]). For 1,3-bis­(4-pyrid­yl)propane ligands, see: Chen et al. (2010[Chen, Y., Zhou, B., Zhao, J., Li, Y., Su, Z. & Zhao, Z. (2010). Inorg. Chim. Acta, 363, 3897-3903.]); Correa et al. (2010[Correa, C. C., Diniz, R., Janczak, J., Yoshida, M. I., de Oliveira, L. F. C. & Machado, F. C. (2010). Polyhedron, 29, 3125-3131.]); Sun et al. (2010[Sun, J.-K., Yao, Q.-X., Ju, Z.-F. & Zhang, J. (2010). CrystEngComm, 12, 1709-1711.]); Zheng et al. (2010[Zheng, Y.-Q., Zhang, J. & Liu, J.-Y. (2010). CrystEngComm, 12, 2740-2748.]). For sulfonation of pyridine rings, see: McElvain & Goese (1943[McElvain, S. M. & Goese, M. A. (1943). J. Am. Chem. Soc. 65, 2233-2236.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O6S2

  • Mr = 358.38

  • Orthorhombic, P 21 21 21

  • a = 9.7132 (2) Å

  • b = 11.2624 (2) Å

  • c = 13.5369 (2) Å

  • V = 1480.85 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.59 mm−1

  • T = 295 K

  • 0.77 × 0.25 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.290, Tmax = 0.626

  • 3960 measured reflections

  • 2714 independent reflections

  • 2593 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.06

  • 2714 reflections

  • 208 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 899 Friedel pairs

  • Flack parameter: 0.07 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O3Ai 0.86 1.88 2.706 (3) 159
N1A—H1AA⋯S1i 0.86 2.79 3.633 (3) 165
N1B—H1BA⋯O2Bii 0.86 1.85 2.710 (3) 176
N1B—H1BA⋯S2ii 0.86 2.85 3.655 (2) 158
C3B—H3BA⋯O1Aiii 0.93 2.44 3.008 (3) 119
C4B—H4BA⋯O2Aiv 0.93 2.50 3.035 (3) 117
C5B—H5BA⋯O1Bv 0.93 2.58 3.416 (4) 150
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

From the titled compound C13H14N2O6S2 we can see that the sulfonatation of 1,3-bis(4-pyridyl)propane occurs in the meta position under mercury catalysis, the same as when pyridine is sulfonated under similar conditions (McElvain & Goese, 1943). From recent studies, 1,3-bis(4-pyridyl)propane ligands have been shown (Chen et al., 2010; Correa et al., 2010; Sun et al., 2010; Zheng et al., 2010) to be very flexible, and this has been taken advantage of in supramolecular chemistry. Our interest was to link the sulfonated pyridines into a zwitterionic polymer. (Estrin & Entelis, 1974; Sundaram et al., 2010). Polymer zwitterions are very advantageous in the sense that their distinct polar ends have high electric dipoles, and can readily reorient to an applied electric field if the chain is flexible.

In view of the interest in a flexible zwitterionic polymer backbone, the starting material, 1,3-bis(4-pyridyl)propane was sulfonated. The structure of this derivative is reported here. The structure shows that both pyridine rings have been sulfonated in the 3-position. As is to be expected for a moiety containing both acidic and basic substituents, the molecule is zwitterionic, with the sulfonic acid proton transfered to the basic pyridine N. The structure has adopted a "butterfly-like" conformation with the sulfonate groups on opposite sides of the "wings". The dihedral angle of 83.56 (7)° between the two pyridinium rings is shown in Figure 2. This has resulted in the molecule being chiral in the solid state even though it is not chiral in solution. There is strong intermolecular hydrogen bonding between the pyridinium H and sulfonate O atoms of adjoining molecules. In addition there are weaker intermolecular C—H···O interactions.

Related literature top

For zwiterionic polymers, see: Estrin & Entelis (1974); Sundaram et al. (2010). For 1,3-bis(4-pyridyl)propane ligands, see: Chen et al. (2010); Correa et al. (2010); Sun et al. (2010); Zheng et al. (2010). For sulfonation of pyridine rings, see: McElvain & Goese (1943).

Experimental top

The compound was prepared by adding a mercury catalyst (0.05 g) to 0.33 g of 1,3-bis(4-pyridyl)propane dissolved in 3.24 g of fuming sulfuric acid (oleum). The reaction mixture was placed in a quartz tube that was sealed under vacuum with a fill factor of 10/15.4 cm. The quartz tube was then placed into a pressurized hydrothermal vessel that was set in a furnace at a temperature of 245°C. The pressure vessel attained an internal temperature of 204°C, and the reaction continued for 5 days. After cooling, the quartz tube was removed from the chamber behind a blast shield in a fume hood, and was frozen with liquid nitrogen before opening. The liquid was then poured into an Erlenmeyer flask containing about 10 ml of triply distilled water and was allowed to stand. Crystals of the titled compound slowly appeared over a month at which point they were washed with alcohol and allowed to air dry on top of the oven at about 50°C. Approximately 0.15 g was isolated (25%). MP: dec 320. NMR: (D2O/DSS): 1H, 2.28 (CH2, 2H), 3.44 (CH2, 4H), 8.13 (py, 2H), 8.79 (py, 2H), 9.13 (py, 2H); 13C 31.75 (CH2, 1 C), 35.39 (CH2, 2 C), 131.97, 142.50, 144.09, 145.02, 164.74 (py).

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.93 and 0.97 Å Uiso(H) = 1.2Ueq(C). The H atoms attached to N were idealized with an N–H distance of 0.86 Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of C13H14N2O6S2 illustrating the atom numbering scheme used. Thermal ellipsoids are at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing for C13H14N2O6S2 viewed down the c axis showing the hydrogen bonds as dashed lines.
4-[3-(3-sulfonatopyridin-1-ium-4-yl)propyl]pyridin-1-ium-3-sulfonate top
Crystal data top
C13H14N2O6S2Dx = 1.607 Mg m3
Mr = 358.38Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 3437 reflections
a = 9.7132 (2) Åθ = 4.6–77.4°
b = 11.2624 (2) ŵ = 3.59 mm1
c = 13.5369 (2) ÅT = 295 K
V = 1480.85 (5) Å3Needle, pale yellow
Z = 40.77 × 0.25 × 0.19 mm
F(000) = 744
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2714 independent reflections
Radiation source: Enhance (Cu) X-ray Source2593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 77.6°, θmin = 5.1°
ω scansh = 812
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2007), based on expressions derived by Clark & Reid (1995)]
k = 1114
Tmin = 0.290, Tmax = 0.626l = 1613
3960 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.3816P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2714 reflectionsΔρmax = 0.51 e Å3
208 parametersΔρmin = 0.52 e Å3
12 restraintsAbsolute structure: Flack (1983), 899 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (2)
Crystal data top
C13H14N2O6S2V = 1480.85 (5) Å3
Mr = 358.38Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.7132 (2) ŵ = 3.59 mm1
b = 11.2624 (2) ÅT = 295 K
c = 13.5369 (2) Å0.77 × 0.25 × 0.19 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2714 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2007), based on expressions derived by Clark & Reid (1995)]
2593 reflections with I > 2σ(I)
Tmin = 0.290, Tmax = 0.626Rint = 0.021
3960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.51 e Å3
S = 1.06Δρmin = 0.52 e Å3
2714 reflectionsAbsolute structure: Flack (1983), 899 Friedel pairs
208 parametersAbsolute structure parameter: 0.07 (2)
12 restraints
Special details top

Experimental. CrysAlis Pro (Oxford Diffraction, 2007) Analytical numeric absorption correction using a multifaceted crystal model, based on expressions derived by Clark & Reid (1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28273 (7)0.82506 (6)0.18353 (4)0.03490 (17)
S20.25484 (7)0.69702 (6)0.73312 (6)0.0450 (2)
O1A0.1398 (2)0.8521 (2)0.16464 (17)0.0501 (6)
O2A0.3744 (3)0.8523 (3)0.10328 (15)0.0587 (7)
O3A0.3027 (2)0.70553 (17)0.22295 (16)0.0444 (5)
O1B0.2815 (3)0.6781 (2)0.8361 (2)0.0741 (8)
O2B0.3281 (3)0.80026 (19)0.69595 (18)0.0521 (5)
O3B0.1119 (3)0.6967 (3)0.7050 (3)0.0883 (11)
N1A0.4665 (3)1.0862 (2)0.3287 (2)0.0478 (6)
H1AA0.52651.13940.31350.057*
N1B0.4929 (2)0.4168 (2)0.68491 (18)0.0356 (5)
H1BA0.55020.37720.72040.043*
C10.1965 (3)0.8097 (3)0.41421 (19)0.0386 (6)
H1A0.14770.77380.35930.046*
H1B0.12930.83740.46200.046*
C20.2932 (3)0.7187 (3)0.4620 (2)0.0424 (6)
H2A0.34450.75700.51470.051*
H2B0.35880.69120.41310.051*
C30.2151 (3)0.6114 (3)0.5045 (2)0.0479 (7)
H3A0.13500.63840.54090.057*
H3B0.18410.56050.45120.057*
C1A0.2832 (3)0.9119 (2)0.37844 (17)0.0326 (5)
C2A0.3323 (3)0.9228 (2)0.28185 (18)0.0301 (5)
C3A0.4240 (3)1.0107 (2)0.2592 (2)0.0391 (6)
H3AA0.45691.01780.19500.047*
C4A0.4185 (4)1.0818 (3)0.4211 (3)0.0553 (9)
H4AA0.44731.13740.46750.066*
C5A0.3276 (4)0.9959 (3)0.4470 (2)0.0486 (7)
H5AA0.29450.99290.51140.058*
C1B0.3094 (3)0.5428 (2)0.57229 (19)0.0356 (5)
C2B0.3329 (3)0.5730 (2)0.67150 (19)0.0310 (5)
C3B0.4251 (3)0.5075 (2)0.72588 (19)0.0338 (5)
H3BA0.44050.52640.79180.041*
C4B0.4747 (3)0.3857 (2)0.5911 (2)0.0401 (6)
H4BA0.52460.32290.56450.048*
C5B0.3826 (3)0.4462 (3)0.53385 (19)0.0414 (6)
H5BA0.36840.42300.46870.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0363 (3)0.0368 (3)0.0316 (3)0.0032 (3)0.0007 (2)0.0034 (2)
S20.0395 (4)0.0328 (3)0.0627 (4)0.0030 (3)0.0108 (3)0.0146 (3)
O1A0.0454 (12)0.0517 (13)0.0531 (12)0.0097 (10)0.0129 (9)0.0057 (10)
O2A0.0598 (14)0.0826 (18)0.0336 (9)0.0084 (14)0.0095 (10)0.0077 (11)
O3A0.0485 (11)0.0315 (9)0.0532 (11)0.0056 (9)0.0039 (9)0.0078 (8)
O1B0.102 (2)0.0568 (14)0.0640 (14)0.0053 (16)0.0363 (15)0.0128 (12)
O2B0.0640 (14)0.0320 (10)0.0604 (13)0.0069 (10)0.0061 (11)0.0096 (9)
O3B0.0386 (12)0.0712 (18)0.155 (3)0.0011 (13)0.0049 (16)0.055 (2)
N1A0.0484 (14)0.0281 (11)0.0669 (17)0.0097 (10)0.0099 (13)0.0047 (11)
N1B0.0359 (11)0.0312 (10)0.0396 (11)0.0001 (9)0.0002 (9)0.0083 (9)
C10.0378 (13)0.0425 (14)0.0354 (11)0.0022 (12)0.0038 (10)0.0110 (11)
C20.0405 (14)0.0468 (14)0.0401 (13)0.0009 (13)0.0002 (12)0.0174 (11)
C30.0466 (16)0.0459 (15)0.0511 (15)0.0080 (14)0.0070 (14)0.0181 (13)
C1A0.0353 (12)0.0307 (11)0.0319 (11)0.0061 (11)0.0011 (10)0.0021 (9)
C2A0.0327 (11)0.0260 (10)0.0314 (10)0.0043 (10)0.0011 (9)0.0024 (9)
C3A0.0415 (14)0.0333 (12)0.0425 (14)0.0003 (11)0.0002 (11)0.0086 (11)
C4A0.071 (2)0.0360 (15)0.0585 (18)0.0021 (15)0.0121 (17)0.0129 (14)
C5A0.0600 (19)0.0457 (16)0.0401 (14)0.0031 (15)0.0010 (13)0.0098 (12)
C1B0.0388 (13)0.0312 (12)0.0368 (12)0.0063 (11)0.0020 (11)0.0079 (10)
C2B0.0337 (12)0.0230 (10)0.0363 (12)0.0032 (9)0.0067 (10)0.0013 (9)
C3B0.0383 (12)0.0332 (12)0.0299 (11)0.0069 (10)0.0025 (10)0.0008 (10)
C4B0.0488 (15)0.0286 (12)0.0428 (14)0.0014 (12)0.0105 (12)0.0010 (11)
C5B0.0557 (16)0.0412 (14)0.0272 (11)0.0061 (14)0.0046 (11)0.0023 (11)
Geometric parameters (Å, º) top
S1—O2A1.438 (2)C2—H2A0.9700
S1—O1A1.444 (2)C2—H2B0.9700
S1—O3A1.461 (2)C3—C1B1.509 (4)
S1—C2A1.793 (3)C3—H3A0.9700
S2—O1B1.433 (3)C3—H3B0.9700
S2—O3B1.439 (3)C1A—C5A1.394 (4)
S2—O2B1.453 (2)C1A—C2A1.397 (3)
S2—C2B1.795 (2)C2A—C3A1.366 (4)
N1A—C3A1.334 (4)C3A—H3AA0.9300
N1A—C4A1.337 (5)C4A—C5A1.356 (5)
N1A—H1AA0.8600C4A—H4AA0.9300
N1B—C4B1.329 (4)C5A—H5AA0.9300
N1B—C3B1.336 (3)C1B—C5B1.400 (4)
N1B—H1BA0.8600C1B—C2B1.404 (4)
C1—C1A1.506 (4)C2B—C3B1.375 (4)
C1—C21.534 (4)C3B—H3BA0.9300
C1—H1A0.9700C4B—C5B1.366 (4)
C1—H1B0.9700C4B—H4BA0.9300
C2—C31.539 (4)C5B—H5BA0.9300
O2A—S1—O1A114.62 (15)C1B—C3—H3B109.8
O2A—S1—O3A112.98 (15)C2—C3—H3B109.8
O1A—S1—O3A112.74 (14)H3A—C3—H3B108.3
O2A—S1—C2A105.27 (13)C5A—C1A—C2A117.2 (3)
O1A—S1—C2A105.09 (12)C5A—C1A—C1118.5 (2)
O3A—S1—C2A105.00 (11)C2A—C1A—C1124.0 (2)
O1B—S2—O3B115.5 (2)C3A—C2A—C1A119.8 (2)
O1B—S2—O2B111.54 (16)C3A—C2A—S1116.9 (2)
O3B—S2—O2B112.5 (2)C1A—C2A—S1123.30 (19)
O1B—S2—C2B105.08 (15)N1A—C3A—C2A120.4 (3)
O3B—S2—C2B106.43 (15)N1A—C3A—H3AA119.8
O2B—S2—C2B104.76 (13)C2A—C3A—H3AA119.8
C3A—N1A—C4A121.9 (3)N1A—C4A—C5A119.7 (3)
C3A—N1A—H1AA119.1N1A—C4A—H4AA120.1
C4A—N1A—H1AA119.1C5A—C4A—H4AA120.1
C4B—N1B—C3B122.2 (2)C4A—C5A—C1A120.9 (3)
C4B—N1B—H1BA118.9C4A—C5A—H5AA119.5
C3B—N1B—H1BA118.9C1A—C5A—H5AA119.5
C1A—C1—C2107.7 (2)C5B—C1B—C2B117.5 (2)
C1A—C1—H1A110.2C5B—C1B—C3118.7 (3)
C2—C1—H1A110.2C2B—C1B—C3123.8 (3)
C1A—C1—H1B110.2C3B—C2B—C1B119.2 (2)
C2—C1—H1B110.2C3B—C2B—S2116.38 (19)
H1A—C1—H1B108.5C1B—C2B—S2124.4 (2)
C1—C2—C3112.4 (2)N1B—C3B—C2B120.6 (2)
C1—C2—H2A109.1N1B—C3B—H3BA119.7
C3—C2—H2A109.1C2B—C3B—H3BA119.7
C1—C2—H2B109.1N1B—C4B—C5B119.9 (3)
C3—C2—H2B109.1N1B—C4B—H4BA120.1
H2A—C2—H2B107.9C5B—C4B—H4BA120.1
C1B—C3—C2109.3 (2)C4B—C5B—C1B120.6 (2)
C1B—C3—H3A109.8C4B—C5B—H5BA119.7
C2—C3—H3A109.8C1B—C5B—H5BA119.7
C1A—C1—C2—C3178.2 (2)C1—C1A—C5A—C4A172.4 (3)
C1—C2—C3—C1B165.5 (3)C2—C3—C1B—C5B94.3 (3)
C2—C1—C1A—C5A78.8 (3)C2—C3—C1B—C2B82.9 (3)
C2—C1—C1A—C2A95.4 (3)C5B—C1B—C2B—C3B0.1 (4)
C5A—C1A—C2A—C3A2.3 (4)C3—C1B—C2B—C3B177.4 (3)
C1—C1A—C2A—C3A172.0 (2)C5B—C1B—C2B—S2177.4 (2)
C5A—C1A—C2A—S1178.4 (2)C3—C1B—C2B—S20.2 (4)
C1—C1A—C2A—S17.3 (4)O1B—S2—C2B—C3B15.5 (3)
O2A—S1—C2A—C3A9.9 (2)O3B—S2—C2B—C3B138.4 (3)
O1A—S1—C2A—C3A111.5 (2)O2B—S2—C2B—C3B102.2 (2)
O3A—S1—C2A—C3A129.4 (2)O1B—S2—C2B—C1B166.9 (2)
O2A—S1—C2A—C1A169.4 (2)O3B—S2—C2B—C1B44.0 (3)
O1A—S1—C2A—C1A69.2 (2)O2B—S2—C2B—C1B75.4 (2)
O3A—S1—C2A—C1A50.0 (2)C4B—N1B—C3B—C2B0.1 (4)
C4A—N1A—C3A—C2A2.3 (5)C1B—C2B—C3B—N1B0.7 (4)
C1A—C2A—C3A—N1A0.2 (4)S2—C2B—C3B—N1B177.00 (19)
S1—C2A—C3A—N1A179.5 (2)C3B—N1B—C4B—C5B1.0 (4)
C3A—N1A—C4A—C5A2.4 (5)N1B—C4B—C5B—C1B1.6 (4)
N1A—C4A—C5A—C1A0.1 (5)C2B—C1B—C5B—C4B1.0 (4)
C2A—C1A—C5A—C4A2.2 (5)C3—C1B—C5B—C4B176.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O3Ai0.861.882.706 (3)159
N1A—H1AA···S1i0.862.793.633 (3)165
N1B—H1BA···O2Bii0.861.852.710 (3)176
N1B—H1BA···S2ii0.862.853.655 (2)158
C3B—H3BA···O1Aiii0.932.443.008 (3)119
C4B—H4BA···O2Aiv0.932.503.035 (3)117
C5B—H5BA···O1Bv0.932.583.416 (4)150
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+1; (iv) x+1, y1/2, z+1/2; (v) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC13H14N2O6S2
Mr358.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)9.7132 (2), 11.2624 (2), 13.5369 (2)
V3)1480.85 (5)
Z4
Radiation typeCu Kα
µ (mm1)3.59
Crystal size (mm)0.77 × 0.25 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2007), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.290, 0.626
No. of measured, independent and
observed [I > 2σ(I)] reflections
3960, 2714, 2593
Rint0.021
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.06
No. of reflections2714
No. of parameters208
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.52
Absolute structureFlack (1983), 899 Friedel pairs
Absolute structure parameter0.07 (2)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O3Ai0.861.882.706 (3)159
N1A—H1AA···S1i0.862.793.633 (3)165
N1B—H1BA···O2Bii0.861.852.710 (3)176
N1B—H1BA···S2ii0.862.853.655 (2)158
C3B—H3BA···O1Aiii0.932.443.008 (3)119
C4B—H4BA···O2Aiv0.932.503.035 (3)117
C5B—H5BA···O1Bv0.932.583.416 (4)150
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+1; (iv) x+1, y1/2, z+1/2; (v) x+1/2, y+1, z1/2.
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer, and we thank the Office of Naval Research for financial support.

References

First citationChen, Y., Zhou, B., Zhao, J., Li, Y., Su, Z. & Zhao, Z. (2010). Inorg. Chim. Acta, 363, 3897–3903.  CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCorrea, C. C., Diniz, R., Janczak, J., Yoshida, M. I., de Oliveira, L. F. C. & Machado, F. C. (2010). Polyhedron, 29, 3125–3131.  CAS Google Scholar
First citationEstrin, Ya. I. & Entelis, S. G. (1974). Vysokomol. Soedin. Ser. A, 16, 1612–19.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcElvain, S. M. & Goese, M. A. (1943). J. Am. Chem. Soc. 65, 2233–2236.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J.-K., Yao, Q.-X., Ju, Z.-F. & Zhang, J. (2010). CrystEngComm, 12, 1709–1711.  CrossRef CAS Google Scholar
First citationSundaram, H. S., Cho, Y., Weinman, C. J., Paik, M. Y., Dimitriou, M. D., Finlay, J., Callow, M. E., Callow, J. A., Kramer, E. J. & Ober, C. K. (2010). Polym. Prepr. 51, 384–385.  CAS Google Scholar
First citationZheng, Y.-Q., Zhang, J. & Liu, J.-Y. (2010). CrystEngComm, 12, 2740–2748.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds