organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Hy­dr­oxy-5-nitro­phen­yl)methane­sulfonamide ethanol monosolvate

aTianjin Key Lab of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China, and bSchool of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
*Correspondence e-mail: czq0601@gmail.com

(Received 29 March 2011; accepted 6 May 2011; online 11 May 2011)

In the title compound, C7H8N2O5S·C2H6O, the dihedral angle between the aromatic ring and the nitro group is 8.78 (9)° and the S atom is displaced by 0.226 (3) Å from the plane of the aromatic ring. In the crystal, the ethanol mol­ecule is involved in hydrogen bonding to two separate sulfonamide mol­ecules, as a donor in an O—H⋯O inter­action and as an acceptor in an N—H⋯O inter­action. Weak C—H⋯O hydrogen bonding is also present.

Related literature

The title compound is an inter­mediate in the preparation of derivatives of the aromatase inhibitor nimesulide [systematic name N-(4-nitro-2-phen­oxy­phen­yl)methane­sulfonamide]. For background to the bioactivity and applications of nimesulide, see: Diaz-Cruz et al. (2005[Diaz-Cruz, E. S., Shapiro, C. L. & Brueggemeier, R. W. (2005). J. Clin. Endocrinol. Metab. 90, 2563-2570.]). For the synthesis of other nimesulide derivatives, see: Su et al. (2006[Su, B., Diaz-Cruz, E. S., Landini, S. & Brueggemeier, R. W. (2006). J. Med. Chem. 49, 1413-1419.]); Wang et al. (2007[Wang, M., Lacy, G., Gao, M., Miller, K. D., Sledge, G. W. & Zheng, Q.-H. (2007). Bioorg. Med. Chem. Lett. 17, 332-336.]). For a related structure, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2O5S·C2H6O

  • Mr = 278.28

  • Monoclinic, P 21 /c

  • a = 11.709 (3) Å

  • b = 8.8521 (18) Å

  • c = 12.439 (3) Å

  • β = 112.459 (7)°

  • V = 1191.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Rigaku Saturn CCD area detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.943, Tmax = 0.954

  • 12473 measured reflections

  • 2840 independent reflections

  • 2091 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 0.98

  • 2840 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O6i 0.830 (18) 1.835 (19) 2.6619 (15) 173.6 (17)
N1—H1⋯O6 0.855 (16) 2.114 (16) 2.9601 (17) 170.2 (14)
O6—H6A⋯O2i 0.78 (2) 2.00 (2) 2.7605 (14) 166 (2)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Nimesulide is a COX-2 inhibitor that has a high affinity for aromatase. Clinical data for Nimesulide in the treatment of several breast cancer patients have recently been presented (Diaz-Cruz et al., 2005).

The title compound (Fig 1) is an important intermediate in the preparation of nimesulide derivatives. Some derivatives of nimesulide have been reported to have a high affinity for aromatase (Su et al., 2006, Wang et al., 2007). Herein, the synthesis and the crystal structure of the title compound are reported.

The dihedral angle between the plane of the aromatic ring and the plane formed by the three atoms of the nitro group is 8.78 (9)° and the deviation of the Sulfur atom from the plane of the aromatic ring is -0.2258 (27) Å. In the crystal packing, The ethanol molecule is involved in hydrogen bonding to two separate sulfonamide molecules (Table 1), as a donor in an O—H···O interaction and as an acceptor in an N—H···O interaction. Weak C—H···O hydrogen bonding is also present (Fig. 2).

Related literature top

The title compound is an intermediate in the preparation of derivatives of the aromatase inhibitor nimesulide [systematic name N-(4-nitro-2-phenoxyphenyl)methanesulfonamide]. For background to the bioactivity and applications of nimesulide, see: Diaz-Cruz et al. (2005). For the synthesis of other nimesulide derivatives, see: Su et al. (2006); Wang et al. (2007). For a related structure, see: Gowda et al., 2007).

Experimental top

NaH (60% powder, 18 g, 0.75 mol) was added to a solution of 2-amino-4-nitrophenol (19.3 g, 0.125 mol) in anhydrous DMF (200 mL) at room temperature. After being stirred at the same temperature for 30 min, methanesulfonyl chloride (57.3 g, 0.5 mol) was added to the mixture, and the stirring was continued overnight at room temperature. H2O (400 mL) was added to the mixture, and then it was neutralized with 5 N HCl until pH=1–2. The intermediate precipitate was collected by filtration and washed with H2O, which was used iinn the next reaction without further purification. The intermediate was added to a 3 N NaOH aq. solution and was stirred at 353 K overnight. After being cooled, it was neutralized with 5 N HCl until pH=1–2. The precipitated solid was collected and washed with H2O to provide the desired product, which was then recrystalized from ethano to give colourless single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were geometrically positioned (C—H 0.95–0.99 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku,1998); cell refinement: RAPID-AUTO (Rigaku,1998); data reduction: RAPID-AUTO (Rigaku,1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The structure of C9H14N2O6S with all non-H atom-labelling scheme and ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound with hydrogen bonds.
N-(2-Hydroxy-5-nitrophenyl)methanesulfonamide ethanol monosolvate top
Crystal data top
C7H8N2O5S·C2H6OF(000) = 584
Mr = 278.28Dx = 1.551 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4097 reflections
a = 11.709 (3) Åθ = 1.8–27.9°
b = 8.8521 (18) ŵ = 0.30 mm1
c = 12.439 (3) ÅT = 113 K
β = 112.459 (7)°Prism, colourless
V = 1191.5 (5) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Rigaku Saturn CCD area detector
diffractometer
2840 independent reflections
Radiation source: rotating anode2091 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.045
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω and ϕ scansh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 911
Tmin = 0.943, Tmax = 0.954l = 1616
12473 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0421P)2]
where P = (Fo2 + 2Fc2)/3
2840 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C7H8N2O5S·C2H6OV = 1191.5 (5) Å3
Mr = 278.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.709 (3) ŵ = 0.30 mm1
b = 8.8521 (18) ÅT = 113 K
c = 12.439 (3) Å0.20 × 0.18 × 0.16 mm
β = 112.459 (7)°
Data collection top
Rigaku Saturn CCD area detector
diffractometer
2840 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2091 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.954Rint = 0.045
12473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.33 e Å3
2840 reflectionsΔρmin = 0.36 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23077 (3)0.44845 (4)0.61896 (3)0.01396 (10)
O10.14081 (9)0.51062 (11)0.65857 (8)0.0200 (2)
O20.34570 (9)0.52619 (10)0.64474 (8)0.0187 (2)
O30.37065 (9)0.01532 (12)0.74369 (9)0.0186 (2)
H30.4002 (16)0.069 (2)0.7674 (14)0.038 (6)*
O40.18590 (9)0.18630 (12)0.56941 (9)0.0263 (3)
O50.20141 (9)0.05693 (11)0.57761 (9)0.0240 (3)
N10.27051 (11)0.28099 (13)0.67419 (10)0.0160 (3)
N20.13955 (11)0.05910 (14)0.59166 (10)0.0185 (3)
C10.16076 (13)0.42769 (17)0.46762 (11)0.0207 (3)
H1A0.15010.52730.43060.031*
H1B0.07990.37940.44720.031*
H1C0.21320.36480.44040.031*
C20.19037 (12)0.16067 (15)0.67166 (11)0.0138 (3)
C30.06316 (12)0.17416 (16)0.63523 (11)0.0151 (3)
H3A0.02370.26890.61040.018*
C40.00540 (13)0.04612 (16)0.63584 (11)0.0153 (3)
C50.04822 (13)0.09282 (16)0.67288 (11)0.0169 (3)
H50.00100.17800.67320.020*
C60.17558 (13)0.10593 (16)0.70973 (11)0.0165 (3)
H60.21410.20090.73540.020*
C70.24676 (12)0.01876 (16)0.70925 (11)0.0143 (3)
H10.3450 (15)0.2597 (17)0.6838 (12)0.022 (4)*
O60.52899 (9)0.24326 (11)0.69398 (9)0.0171 (2)
H6A0.5557 (16)0.1858 (19)0.7445 (13)0.033 (5)*
C80.52156 (14)0.16205 (16)0.58969 (12)0.0210 (3)
H8A0.45080.09120.56560.025*
H8B0.59810.10290.60570.025*
C90.50525 (15)0.27419 (19)0.49432 (12)0.0307 (4)
H9A0.43150.33550.48140.046*
H9B0.49570.22030.42260.046*
H9C0.57800.34000.51680.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01380 (18)0.01101 (19)0.01618 (18)0.00055 (13)0.00473 (13)0.00005 (13)
O10.0206 (5)0.0166 (5)0.0246 (6)0.0028 (4)0.0106 (4)0.0020 (4)
O20.0151 (5)0.0144 (5)0.0242 (5)0.0039 (4)0.0049 (4)0.0002 (4)
O30.0137 (5)0.0142 (6)0.0261 (6)0.0028 (4)0.0056 (4)0.0053 (4)
O40.0184 (6)0.0224 (6)0.0383 (6)0.0036 (5)0.0111 (5)0.0001 (5)
O50.0188 (6)0.0236 (6)0.0297 (6)0.0097 (5)0.0095 (5)0.0065 (4)
N10.0103 (6)0.0133 (6)0.0232 (6)0.0006 (5)0.0051 (5)0.0034 (5)
N20.0178 (6)0.0221 (7)0.0176 (6)0.0025 (5)0.0092 (5)0.0037 (5)
C10.0209 (8)0.0227 (8)0.0164 (7)0.0004 (6)0.0047 (6)0.0010 (6)
C20.0156 (7)0.0134 (7)0.0134 (6)0.0015 (5)0.0065 (5)0.0006 (5)
C30.0168 (7)0.0138 (7)0.0150 (6)0.0011 (6)0.0064 (5)0.0001 (5)
C40.0136 (7)0.0201 (8)0.0136 (7)0.0023 (6)0.0068 (5)0.0034 (5)
C50.0210 (8)0.0150 (7)0.0163 (7)0.0066 (6)0.0089 (6)0.0023 (5)
C60.0191 (7)0.0133 (7)0.0170 (7)0.0011 (6)0.0070 (6)0.0019 (6)
C70.0145 (7)0.0161 (8)0.0127 (7)0.0005 (6)0.0055 (5)0.0007 (5)
O60.0188 (5)0.0137 (6)0.0184 (5)0.0008 (4)0.0069 (4)0.0012 (4)
C80.0245 (8)0.0192 (8)0.0207 (7)0.0015 (6)0.0102 (6)0.0032 (6)
C90.0349 (10)0.0359 (10)0.0249 (8)0.0045 (8)0.0155 (7)0.0059 (7)
Geometric parameters (Å, º) top
S1—O11.4323 (10)C3—C41.3906 (19)
S1—O21.4344 (10)C3—H3A0.9500
S1—N11.6254 (12)C4—C51.378 (2)
S1—C11.7523 (14)C5—C61.3875 (19)
O3—C71.3468 (17)C5—H50.9500
O3—H30.830 (18)C6—C71.3845 (19)
O4—N21.2345 (15)C6—H60.9500
O5—N21.2302 (15)O6—C81.4564 (16)
N1—C21.4119 (17)O6—H6A0.776 (15)
N1—H10.855 (16)C8—C91.502 (2)
N2—C41.4571 (18)C8—H8A0.9900
C1—H1A0.9800C8—H8B0.9900
C1—H1B0.9800C9—H9A0.9800
C1—H1C0.9800C9—H9B0.9800
C2—C31.3865 (19)C9—H9C0.9800
C2—C71.4130 (19)
O1—S1—O2119.28 (6)C5—C4—C3122.62 (13)
O1—S1—N1109.54 (6)C5—C4—N2118.98 (12)
O2—S1—N1104.50 (6)C3—C4—N2118.37 (12)
O1—S1—C1107.83 (7)C4—C5—C6118.70 (13)
O2—S1—C1107.72 (7)C4—C5—H5120.7
N1—S1—C1107.42 (7)C6—C5—H5120.7
C7—O3—H3112.7 (12)C7—C6—C5120.31 (13)
C2—N1—S1126.73 (10)C7—C6—H6119.8
C2—N1—H1118.1 (10)C5—C6—H6119.8
S1—N1—H1111.8 (10)O3—C7—C6123.89 (13)
O5—N2—O4123.04 (12)O3—C7—C2115.83 (12)
O5—N2—C4118.62 (12)C6—C7—C2120.28 (13)
O4—N2—C4118.34 (12)C8—O6—H6A105.5 (13)
S1—C1—H1A109.5O6—C8—C9108.88 (12)
S1—C1—H1B109.5O6—C8—H8A109.9
H1A—C1—H1B109.5C9—C8—H8A109.9
S1—C1—H1C109.5O6—C8—H8B109.9
H1A—C1—H1C109.5C9—C8—H8B109.9
H1B—C1—H1C109.5H8A—C8—H8B108.3
C3—C2—N1124.34 (12)C8—C9—H9A109.5
C3—C2—C7119.51 (12)C8—C9—H9B109.5
N1—C2—C7116.14 (12)H9A—C9—H9B109.5
C2—C3—C4118.57 (13)C8—C9—H9C109.5
C2—C3—H3A120.7H9A—C9—H9C109.5
C4—C3—H3A120.7H9B—C9—H9C109.5
O1—S1—N1—C251.29 (13)O5—N2—C4—C3170.54 (12)
O2—S1—N1—C2179.82 (11)O4—N2—C4—C39.04 (18)
C1—S1—N1—C265.57 (13)C3—C4—C5—C60.8 (2)
S1—N1—C2—C39.6 (2)N2—C4—C5—C6177.01 (11)
S1—N1—C2—C7170.35 (10)C4—C5—C6—C70.13 (19)
N1—C2—C3—C4179.32 (12)C5—C6—C7—O3179.95 (12)
C7—C2—C3—C40.63 (19)C5—C6—C7—C20.25 (19)
C2—C3—C4—C51.0 (2)C3—C2—C7—O3179.72 (11)
C2—C3—C4—N2176.78 (11)N1—C2—C7—O30.33 (17)
O5—N2—C4—C57.36 (18)C3—C2—C7—C60.0 (2)
O4—N2—C4—C5173.06 (12)N1—C2—C7—C6179.95 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.830 (18)1.835 (19)2.6619 (15)173.6 (17)
N1—H1···O60.855 (16)2.114 (16)2.9601 (17)170.2 (14)
O6—H6A···O2i0.78 (2)2.00 (2)2.7605 (14)166 (2)
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H8N2O5S·C2H6O
Mr278.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)11.709 (3), 8.8521 (18), 12.439 (3)
β (°) 112.459 (7)
V3)1191.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerRigaku Saturn CCD area detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.943, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
12473, 2840, 2091
Rint0.045
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 0.98
No. of reflections2840
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.36

Computer programs: RAPID-AUTO (Rigaku,1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.830 (18)1.835 (19)2.6619 (15)173.6 (17)
N1—H1···O60.855 (16)2.114 (16)2.9601 (17)170.2 (14)
O6—H6A···O2i0.776 (15)2.003 (16)2.7605 (14)165.5 (18)
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the State Key Laboratory of Elemento-organic Chemistry, Nankai University, for the data collection.

References

First citationDiaz-Cruz, E. S., Shapiro, C. L. & Brueggemeier, R. W. (2005). J. Clin. Endocrinol. Metab. 90, 2563–2570.  Web of Science PubMed CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, B., Diaz-Cruz, E. S., Landini, S. & Brueggemeier, R. W. (2006). J. Med. Chem. 49, 1413–1419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, M., Lacy, G., Gao, M., Miller, K. D., Sledge, G. W. & Zheng, Q.-H. (2007). Bioorg. Med. Chem. Lett. 17, 332–336.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds