organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1505-o1506

1-Benzyl-3,5-bis­­(4-chloro­benzyl­­idene)piperidin-4-one

aDepartment of Natural Sciences, New Mexico Highlands University, Las Vegas, NM 87701, USA, bSSS Optical Technologies, LLC, 515 Sparkman Drive, Suite 122, Huntsville, AL 35816, USA, cDepartment of Biological Sciences, University of North Texas, Denton, TX 76203, USA, and dDepartment of Chemistry, University of North Texas, Denton, TX 76203, USA
*Correspondence e-mail: shulaev@unt.edu, vladimir.nesterov@unt.edu

(Received 25 April 2011; accepted 16 May 2011; online 25 May 2011)

The title compound, C26H21Cl2NO, crystallizes with two symmetry-independent mol­ecules (A and B) in the asymmetric unit. In both mol­ecules, the central heterocyclic ring adopts a sofa conformation. The dihedral angles between the planar part of this central heterocyclic ring [maximum deviations of 0.011 (1) and 0.036 (1) Å in mol­ecules A and B, respectively] and the two almost planar [maximum deviations of 0.020 (1) and 0.008 (1) Å in A and 0.007 (1) and 0.011 (1) in B] side-chain fragments that include the aromatic ring and bridging atoms are 20.1 (1) and 31.2 (1)° in mol­ecule A, and 26.4 (1) and 19.6 (1)° in mol­ecule B. The dihedral angles between the planar part of the heterocyclic ring and the benzyl substituent are 79.7 (1) and 53.2 (1)° in mol­ecules A and B, respectively. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the two independent mol­ecules into dimers.

Related literature

For non-linear optical organic compounds with two-photon absorption properties and potential biophotonic materials, see: Nesterov et al. (2003[Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605-o608.], 2007[Nesterov, V. N., Sarkisov, S. S., Curley, M. J., Urbas, A. & Ruiz, T. (2007). Acta Cryst. E63, o4784.]); Sarkisov et al. (2005[Sarkisov, S. S., Peterson, B. H., Curley, M. J., Nesterov, V. N., Timofeeva, T., Antipin, M., Radovanova, E. I., Leyderman, A. & Fleitz, P. (2005). JNOPM, 14, 21-40.]). For the biological importance of 4-piperidone, see: Jia et al. (1988[Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1988). Acta Cryst. C44, 2114-2117.]); Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zell, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). For the synthesis of the title compound, see: Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zell, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). For related structures, see: Nesterov et al. (2003[Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605-o608.], 2007[Nesterov, V. N., Sarkisov, S. S., Curley, M. J., Urbas, A. & Ruiz, T. (2007). Acta Cryst. E63, o4784.], 2011[Nesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011). Acta Cryst. E67, o760-o761.]). For details concerning weak hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.]). For van der Waals radii, see: Rowland & Taylor (1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]).

[Scheme 1]

Experimental

Crystal data
  • C26H21Cl2NO

  • Mr = 434.34

  • Triclinic, [P \overline 1]

  • a = 12.504 (2) Å

  • b = 13.414 (4) Å

  • c = 14.763 (2) Å

  • α = 102.736 (3)°

  • β = 111.676 (2)°

  • γ = 104.066 (3)°

  • V = 2095.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.962

  • 24542 measured reflections

  • 8251 independent reflections

  • 7049 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.02

  • 8251 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16B—H16B⋯O1A 0.95 2.42 3.334 (2) 160
C14A—H14A⋯O1B 0.95 2.52 3.309 (2) 141
C16A—H16A⋯O1B 0.95 2.48 3.099 (2) 122

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Continuing our work on the synthesis and structural investigations of nonlinear optical organic compounds with two-photon absorption properties and potential biophotonic materials (Nesterov et al., 2003; Nesterov et al. 2007; Nesterov et al., 2011; Sarkisov et al., 2005), we investigated the crystal structure of the title compound. This compound belongs to a group that has shown anticancer activity (Jia et al., 1988; Dimmock et al., 2001). It may also find application as an agent for locating cancer cells with two photon excited fluorescence and as a potential agent for a photodynamic treatment of cancer (Nesterov et al., 2003; Sarkisov et al., 2005).

The molecular structure of the title compound is illustrated in Fig. 1. The central heterocycle adopts a sofa conformation: atom N1A lies -0.721 (2) Å in (IA) and N1B lies 0.725 (2) Å in (IB) out of the central C5 plane [planar within 0.011 (1) and 0.036 (1) Å, respectively]. Dihedral angles between the flat part of the heterocycle (atoms C2A,C3A,C4A,C5A,C6A in (IA) and C2B,C3B,C4B,C5B,C6B in (IB) and the two almost planar fragments that include the Ph-ring and the bridging atoms are 20.1 (1) and 31.2 (1)° in (IA) for (C7A-C13A) and (C14A-C20A), respectively and 26.4 (1) and 19.6 (1)° for (C7B-C13B) and (C14B-C20B), respectively. Such nonplanarity might partly be caused by the presence of short intramolecular contacts H2AA···H13A and H6AB···H20A in (IA) and H2BB···H13B and H6BA···H20B in (IB) with distances 2.19 and 2.18 Å in (IA) and 2.14 and 2.22 Å in (IB), that are somewhat shorter than the doubled van der Waals radii of the H atom (Rowland & Taylor, 1996). Atoms N1A and N1B in the piperidone rings have a pyramidal coordination with the sum of bond angles equal to 331.4 (1) and 335.8 (1)°, while the methylene substituent connected to it occupies an equatorial position. The mutual orientations of the benzyl substituents and flat part of the heterocycles in both molecules are more different (dihedral angles are 79.7 (1) and 53.2 (1)°, respectively).

In the crystal there are several weak intermolecular C—H···O contacts (Table 1) that could be considered as weak hydrogen bonds (Desiraju & Steiner, 1999) that link (IA) and (IB) molecules into dimers (Fig. 2).

Related literature top

For non-linear optical organic compounds with two-photon absorption properties and potential biophotonic materials, see: Nesterov et al. (2003, 2007); Sarkisov et al. (2005). For the biological importance of 4-piperidone, see: Jia et al. (1988); Dimmock et al. (2001). For the synthesis of the title compound, see: Dimmock et al. (2001). For related structures, see: Nesterov et al. (2003, 2007, 2011). For details concerning weak hydrogen bonds, see: Desiraju & Steiner (1999). For van der Waals radii, see: Rowland & Taylor (1996).

Experimental top

The title compound was obtained according to the literature procedure (Dimmock et al., 2001) by the reaction of p-chlorobenzaldehyde with 1-benzyl-4-piperidone. The precipitate obtained was isolated and recrystallized from ethanol/acetonitrile [v/v = 50/50]; Mp. 424 K, yield 86%). The title compound was characterized by 1H and 13C NMR spectroscopy.

Refinement top

All C-bound H atoms were placed in idealized positions and allowed to ride on their parent atom: C—H = 0.95 and 0.99 Å for CH and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit in (I), with hydrogen bonds shown as dashed lines. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. Projection of the crystal packing of the title compound along the a-axis. Dashed lines denote weak intermolecular C—H···O hydrogen bonds.
1-Benzyl-3,5-bis(4-chlorobenzylidene)piperidin-4-one top
Crystal data top
C26H21Cl2NOZ = 4
Mr = 434.34F(000) = 904
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.504 (2) ÅCell parameters from 2357 reflections
b = 13.414 (4) Åθ = 2.4–25.4°
c = 14.763 (2) ŵ = 0.33 mm1
α = 102.736 (3)°T = 100 K
β = 111.676 (2)°Plate, yellow
γ = 104.066 (3)°0.25 × 0.20 × 0.12 mm
V = 2095.7 (8) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
8251 independent reflections
Radiation source: fine-focus sealed tube7049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.922, Tmax = 0.962k = 1616
24542 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.057P)2 + 1.110P]
where P = (Fo2 + 2Fc2)/3
8251 reflections(Δ/σ)max = 0.001
541 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C26H21Cl2NOγ = 104.066 (3)°
Mr = 434.34V = 2095.7 (8) Å3
Triclinic, P1Z = 4
a = 12.504 (2) ÅMo Kα radiation
b = 13.414 (4) ŵ = 0.33 mm1
c = 14.763 (2) ÅT = 100 K
α = 102.736 (3)°0.25 × 0.20 × 0.12 mm
β = 111.676 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
8251 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
7049 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.962Rint = 0.024
24542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.02Δρmax = 0.79 e Å3
8251 reflectionsΔρmin = 0.48 e Å3
541 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.01606 (5)0.78507 (4)0.69670 (4)0.03870 (13)
Cl2A0.65255 (5)0.12893 (5)0.08931 (4)0.03854 (13)
O1A0.35806 (13)0.34345 (11)0.51320 (10)0.0336 (3)
N1A0.24037 (13)0.45157 (12)0.27541 (11)0.0214 (3)
C1A0.20424 (16)0.49694 (15)0.19088 (13)0.0235 (4)
H1AA0.22130.45970.13480.028*
H1AB0.25480.57580.21780.028*
C2A0.24894 (16)0.52293 (14)0.37107 (13)0.0225 (4)
H2AA0.17140.53760.35580.027*
H2AB0.31720.59370.39740.027*
C3A0.27142 (16)0.46956 (14)0.45281 (13)0.0225 (4)
C4A0.33892 (16)0.39154 (14)0.44991 (13)0.0237 (4)
C5A0.38468 (15)0.37528 (14)0.36967 (13)0.0226 (4)
C6A0.35812 (16)0.43693 (15)0.29532 (13)0.0230 (4)
H6AA0.42490.50930.32510.028*
H6AB0.35500.39590.22930.028*
C7A0.23584 (16)0.48474 (15)0.52962 (13)0.0243 (4)
H7AA0.25170.43890.56980.029*
C8A0.17781 (16)0.55822 (15)0.56197 (13)0.0242 (4)
C9A0.12682 (16)0.53599 (16)0.62905 (13)0.0273 (4)
H9AA0.12720.47220.64700.033*
C10A0.07631 (16)0.60382 (16)0.66965 (14)0.0279 (4)
H10A0.04260.58740.71500.033*
C11A0.07585 (17)0.69624 (16)0.64286 (14)0.0283 (4)
C12A0.12458 (17)0.72161 (15)0.57642 (14)0.0287 (4)
H12A0.12240.78490.55810.034*
C13A0.17646 (17)0.65334 (15)0.53720 (13)0.0265 (4)
H13A0.21150.67120.49310.032*
C14A0.44035 (15)0.30143 (15)0.36640 (13)0.0238 (4)
H14A0.44730.26740.41730.029*
C15A0.49216 (15)0.26528 (15)0.29595 (13)0.0235 (4)
C16A0.49531 (16)0.15947 (15)0.27926 (14)0.0256 (4)
H16A0.46470.11600.31330.031*
C17A0.54175 (17)0.11651 (16)0.21450 (15)0.0285 (4)
H17A0.54060.04360.20230.034*
C18A0.59003 (16)0.18160 (16)0.16772 (14)0.0271 (4)
C19A0.59069 (16)0.28780 (15)0.18407 (14)0.0269 (4)
H19A0.62500.33210.15240.032*
C20A0.54096 (16)0.32860 (15)0.24702 (13)0.0250 (4)
H20A0.53990.40070.25720.030*
C21A0.06923 (16)0.48300 (14)0.14668 (12)0.0212 (3)
C22A0.03196 (17)0.57277 (14)0.14847 (14)0.0265 (4)
H22A0.09210.64460.18060.032*
C23A0.09251 (18)0.55824 (15)0.10361 (14)0.0300 (4)
H23A0.11690.62010.10460.036*
C24A0.18115 (17)0.45380 (15)0.05750 (14)0.0275 (4)
H24A0.26620.44380.02660.033*
C25A0.14470 (17)0.36398 (15)0.05688 (13)0.0257 (4)
H25A0.20510.29230.02630.031*
C26A0.02083 (17)0.37834 (14)0.10062 (13)0.0240 (4)
H26A0.00320.31630.09930.029*
Cl1B0.95734 (5)0.23822 (4)0.32282 (4)0.03777 (13)
Cl2B0.37099 (5)0.37742 (4)0.99889 (4)0.03390 (13)
O1B0.56754 (19)0.16150 (17)0.50449 (12)0.0619 (6)
N1B0.80808 (13)0.13829 (11)0.75624 (11)0.0214 (3)
C1B0.90276 (16)0.13447 (14)0.85070 (13)0.0231 (4)
H1BA0.92510.20060.90960.028*
H1BB0.97750.13830.84060.028*
C2B0.77495 (16)0.04704 (14)0.66319 (13)0.0218 (3)
H2BA0.72500.02170.66470.026*
H2BB0.85060.03820.66150.026*
C3B0.70258 (17)0.06941 (14)0.56795 (13)0.0244 (4)
C4B0.62426 (19)0.13581 (17)0.57702 (15)0.0321 (4)
C5B0.61373 (16)0.16622 (14)0.67621 (13)0.0236 (4)
C6B0.69847 (16)0.14481 (14)0.76757 (13)0.0221 (4)
H6BA0.72330.20450.83260.026*
H6BB0.65440.07530.77180.026*
C7B0.70371 (17)0.03605 (15)0.47530 (14)0.0259 (4)
H7BA0.65600.06000.42380.031*
C8B0.76759 (16)0.03161 (14)0.44228 (13)0.0242 (4)
C9B0.79157 (17)0.02325 (15)0.35788 (14)0.0260 (4)
H9BA0.76610.02580.32470.031*
C10B0.85128 (18)0.08460 (15)0.32190 (14)0.0288 (4)
H10B0.86840.07670.26580.035*
C11B0.88558 (17)0.15780 (15)0.36921 (14)0.0274 (4)
C12B0.86061 (17)0.17053 (15)0.45097 (14)0.0273 (4)
H12B0.88350.22180.48200.033*
C13B0.80220 (17)0.10792 (14)0.48681 (13)0.0254 (4)
H13B0.78510.11670.54270.030*
C14B0.52956 (16)0.21299 (14)0.67633 (13)0.0241 (4)
H14B0.48690.22380.61330.029*
C15B0.49337 (15)0.24968 (14)0.75771 (13)0.0216 (3)
C16B0.43215 (16)0.32462 (14)0.74851 (14)0.0235 (4)
H16B0.41610.34870.69060.028*
C17B0.39458 (16)0.36416 (15)0.82178 (14)0.0256 (4)
H17B0.35540.41640.81540.031*
C18B0.41504 (16)0.32627 (15)0.90467 (13)0.0235 (4)
C19B0.47058 (16)0.24907 (15)0.91413 (13)0.0245 (4)
H19B0.48110.22170.96970.029*
C20B0.51062 (16)0.21212 (14)0.84192 (13)0.0234 (4)
H20B0.55050.16040.84940.028*
C21B0.86682 (15)0.03449 (14)0.88084 (13)0.0223 (4)
C22B0.88113 (16)0.06166 (15)0.83723 (14)0.0265 (4)
H22B0.91550.06390.78950.032*
C23B0.84610 (18)0.15432 (16)0.86226 (15)0.0324 (4)
H23B0.85520.21960.83100.039*
C24B0.79766 (18)0.15083 (17)0.93324 (16)0.0360 (5)
H24B0.77410.21370.95110.043*
C25B0.78367 (18)0.05629 (18)0.97777 (16)0.0344 (4)
H25B0.75040.05421.02620.041*
C26B0.81808 (17)0.03602 (16)0.95213 (14)0.0278 (4)
H26B0.80830.10090.98350.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0431 (3)0.0438 (3)0.0363 (3)0.0205 (2)0.0243 (2)0.0098 (2)
Cl2A0.0449 (3)0.0511 (3)0.0420 (3)0.0289 (2)0.0311 (2)0.0227 (2)
O1A0.0478 (8)0.0417 (8)0.0285 (7)0.0268 (7)0.0218 (6)0.0227 (6)
N1A0.0245 (7)0.0260 (7)0.0169 (7)0.0114 (6)0.0089 (6)0.0108 (6)
C1A0.0262 (9)0.0290 (9)0.0191 (8)0.0118 (7)0.0101 (7)0.0129 (7)
C2A0.0246 (9)0.0240 (9)0.0195 (8)0.0090 (7)0.0095 (7)0.0084 (7)
C3A0.0226 (8)0.0219 (8)0.0186 (8)0.0054 (7)0.0065 (7)0.0066 (7)
C4A0.0256 (9)0.0253 (9)0.0179 (8)0.0078 (7)0.0075 (7)0.0085 (7)
C5A0.0211 (8)0.0254 (9)0.0200 (8)0.0080 (7)0.0071 (7)0.0095 (7)
C6A0.0223 (8)0.0289 (9)0.0208 (8)0.0099 (7)0.0100 (7)0.0124 (7)
C7A0.0236 (9)0.0270 (9)0.0193 (8)0.0068 (7)0.0072 (7)0.0095 (7)
C8A0.0219 (8)0.0273 (9)0.0158 (8)0.0050 (7)0.0053 (7)0.0031 (7)
C9A0.0249 (9)0.0310 (10)0.0195 (8)0.0045 (8)0.0065 (7)0.0088 (7)
C10A0.0244 (9)0.0356 (10)0.0201 (9)0.0066 (8)0.0101 (7)0.0075 (8)
C11A0.0246 (9)0.0324 (10)0.0224 (9)0.0081 (8)0.0100 (7)0.0023 (8)
C12A0.0305 (10)0.0265 (9)0.0254 (9)0.0076 (8)0.0114 (8)0.0070 (7)
C13A0.0298 (9)0.0279 (9)0.0198 (8)0.0064 (8)0.0119 (7)0.0073 (7)
C14A0.0211 (8)0.0292 (9)0.0213 (8)0.0077 (7)0.0086 (7)0.0122 (7)
C15A0.0183 (8)0.0300 (9)0.0204 (8)0.0097 (7)0.0051 (7)0.0105 (7)
C16A0.0241 (9)0.0319 (10)0.0244 (9)0.0119 (8)0.0111 (7)0.0135 (8)
C17A0.0298 (10)0.0304 (10)0.0312 (10)0.0148 (8)0.0152 (8)0.0139 (8)
C18A0.0219 (9)0.0399 (11)0.0249 (9)0.0153 (8)0.0122 (7)0.0134 (8)
C19A0.0208 (9)0.0337 (10)0.0263 (9)0.0081 (7)0.0086 (7)0.0159 (8)
C20A0.0209 (8)0.0280 (9)0.0227 (9)0.0081 (7)0.0060 (7)0.0099 (7)
C21A0.0271 (9)0.0259 (9)0.0132 (7)0.0113 (7)0.0091 (7)0.0090 (7)
C22A0.0307 (10)0.0207 (9)0.0252 (9)0.0081 (7)0.0094 (8)0.0091 (7)
C23A0.0363 (10)0.0264 (9)0.0298 (10)0.0183 (8)0.0128 (8)0.0097 (8)
C24A0.0260 (9)0.0333 (10)0.0245 (9)0.0141 (8)0.0106 (7)0.0098 (8)
C25A0.0289 (9)0.0238 (9)0.0211 (9)0.0072 (7)0.0098 (7)0.0066 (7)
C26A0.0333 (10)0.0214 (8)0.0192 (8)0.0134 (7)0.0111 (7)0.0075 (7)
Cl1B0.0470 (3)0.0375 (3)0.0438 (3)0.0213 (2)0.0317 (2)0.0141 (2)
Cl2B0.0409 (3)0.0470 (3)0.0327 (3)0.0277 (2)0.0248 (2)0.0200 (2)
O1B0.0977 (14)0.1087 (15)0.0391 (9)0.0861 (13)0.0465 (10)0.0507 (10)
N1B0.0246 (7)0.0225 (7)0.0189 (7)0.0097 (6)0.0109 (6)0.0070 (6)
C1B0.0229 (8)0.0234 (9)0.0210 (8)0.0080 (7)0.0089 (7)0.0060 (7)
C2B0.0238 (8)0.0214 (8)0.0206 (8)0.0084 (7)0.0106 (7)0.0065 (7)
C3B0.0293 (9)0.0253 (9)0.0224 (9)0.0111 (7)0.0129 (7)0.0111 (7)
C4B0.0419 (11)0.0417 (11)0.0281 (10)0.0248 (9)0.0209 (9)0.0197 (9)
C5B0.0280 (9)0.0244 (9)0.0221 (9)0.0104 (7)0.0128 (7)0.0105 (7)
C6B0.0265 (9)0.0239 (9)0.0202 (8)0.0114 (7)0.0126 (7)0.0091 (7)
C7B0.0285 (9)0.0281 (9)0.0231 (9)0.0107 (8)0.0119 (8)0.0109 (7)
C8B0.0250 (9)0.0241 (9)0.0195 (8)0.0061 (7)0.0095 (7)0.0046 (7)
C9B0.0311 (10)0.0251 (9)0.0222 (9)0.0086 (8)0.0131 (8)0.0086 (7)
C10B0.0338 (10)0.0287 (9)0.0246 (9)0.0062 (8)0.0178 (8)0.0075 (8)
C11B0.0272 (9)0.0255 (9)0.0284 (9)0.0074 (7)0.0155 (8)0.0040 (7)
C12B0.0306 (10)0.0246 (9)0.0245 (9)0.0086 (8)0.0119 (8)0.0066 (7)
C13B0.0297 (9)0.0259 (9)0.0197 (8)0.0076 (7)0.0125 (7)0.0065 (7)
C14B0.0276 (9)0.0263 (9)0.0212 (8)0.0108 (7)0.0107 (7)0.0120 (7)
C15B0.0186 (8)0.0230 (8)0.0210 (8)0.0056 (7)0.0073 (7)0.0084 (7)
C16B0.0227 (8)0.0288 (9)0.0240 (9)0.0103 (7)0.0113 (7)0.0154 (7)
C17B0.0237 (9)0.0288 (9)0.0303 (9)0.0145 (7)0.0126 (8)0.0143 (8)
C18B0.0223 (8)0.0284 (9)0.0230 (9)0.0101 (7)0.0126 (7)0.0091 (7)
C19B0.0271 (9)0.0292 (9)0.0214 (9)0.0121 (8)0.0113 (7)0.0130 (7)
C20B0.0262 (9)0.0245 (9)0.0229 (9)0.0122 (7)0.0110 (7)0.0110 (7)
C21B0.0183 (8)0.0251 (9)0.0200 (8)0.0084 (7)0.0049 (7)0.0071 (7)
C22B0.0255 (9)0.0302 (10)0.0243 (9)0.0142 (8)0.0091 (7)0.0095 (8)
C23B0.0295 (10)0.0264 (10)0.0329 (10)0.0136 (8)0.0035 (8)0.0093 (8)
C24B0.0273 (10)0.0338 (11)0.0412 (12)0.0067 (8)0.0061 (9)0.0235 (9)
C25B0.0297 (10)0.0465 (12)0.0328 (10)0.0136 (9)0.0154 (9)0.0212 (9)
C26B0.0283 (9)0.0334 (10)0.0253 (9)0.0148 (8)0.0122 (8)0.0119 (8)
Geometric parameters (Å, º) top
Cl1A—C11A1.7507 (19)Cl1B—C11B1.7427 (19)
Cl2A—C18A1.7398 (18)Cl2B—C18B1.7430 (18)
O1A—C4A1.234 (2)O1B—C4B1.220 (2)
N1A—C6A1.462 (2)N1B—C6B1.461 (2)
N1A—C2A1.471 (2)N1B—C2B1.466 (2)
N1A—C1A1.478 (2)N1B—C1B1.480 (2)
C1A—C21A1.513 (2)C1B—C21B1.522 (2)
C1A—H1AA0.9900C1B—H1BA0.9900
C1A—H1AB0.9900C1B—H1BB0.9900
C2A—C3A1.509 (2)C2B—C3B1.505 (2)
C2A—H2AA0.9900C2B—H2BA0.9900
C2A—H2AB0.9900C2B—H2BB0.9900
C3A—C7A1.357 (2)C3B—C7B1.349 (2)
C3A—C4A1.499 (2)C3B—C4B1.496 (3)
C4A—O1A1.234 (2)C4B—O1B1.220 (2)
C4A—C5A1.492 (2)C4B—C5B1.494 (2)
C5A—C14A1.344 (3)C5B—C14B1.350 (2)
C5A—C6A1.505 (2)C5B—C6B1.512 (2)
C6A—H6AA0.9900C6B—H6BA0.9900
C6A—H6AB0.9900C6B—H6BB0.9900
C7A—C8A1.457 (3)C7B—C8B1.464 (3)
C7A—H7AA0.9500C7B—H7BA0.9500
C8A—C13A1.405 (3)C8B—C13B1.403 (3)
C8A—C9A1.407 (3)C8B—C9B1.406 (2)
C9A—C10A1.380 (3)C9B—C10B1.384 (3)
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—C11A1.382 (3)C10B—C11B1.386 (3)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.392 (3)C11B—C12B1.388 (3)
C12A—C13A1.388 (3)C12B—C13B1.381 (3)
C12A—H12A0.9500C12B—H12B0.9500
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.471 (2)C14B—C15B1.463 (2)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.399 (3)C15B—C16B1.404 (2)
C15A—C20A1.400 (3)C15B—C20B1.406 (2)
C16A—C17A1.383 (3)C16B—C17B1.384 (2)
C16A—H16A0.9500C16B—H16B0.9500
C17A—C18A1.386 (3)C17B—C18B1.388 (2)
C17A—H17A0.9500C17B—H17B0.9500
C18A—C19A1.389 (3)C18B—C19B1.384 (3)
C19A—C20A1.385 (3)C19B—C20B1.384 (2)
C19A—H19A0.9500C19B—H19B0.9500
C20A—H20A0.9500C20B—H20B0.9500
C21A—C22A1.391 (2)C21B—C22B1.393 (3)
C21A—C26A1.395 (2)C21B—C26B1.396 (2)
C22A—C23A1.390 (3)C22B—C23B1.390 (3)
C22A—H22A0.9500C22B—H22B0.9500
C23A—C24A1.386 (3)C23B—C24B1.389 (3)
C23A—H23A0.9500C23B—H23B0.9500
C24A—C25A1.387 (3)C24B—C25B1.377 (3)
C24A—H24A0.9500C24B—H24B0.9500
C25A—C26A1.384 (3)C25B—C26B1.389 (3)
C25A—H25A0.9500C25B—H25B0.9500
C26A—H26A0.9500C26B—H26B0.9500
C6A—N1A—C2A109.92 (13)C6B—N1B—C2B110.96 (13)
C6A—N1A—C1A110.49 (13)C6B—N1B—C1B112.52 (13)
C2A—N1A—C1A111.03 (13)C2B—N1B—C1B112.25 (13)
N1A—C1A—C21A112.10 (14)N1B—C1B—C21B116.12 (14)
N1A—C1A—H1AA109.2N1B—C1B—H1BA108.3
C21A—C1A—H1AA109.2C21B—C1B—H1BA108.3
N1A—C1A—H1AB109.2N1B—C1B—H1BB108.3
C21A—C1A—H1AB109.2C21B—C1B—H1BB108.3
H1AA—C1A—H1AB107.9H1BA—C1B—H1BB107.4
N1A—C2A—C3A110.47 (14)N1B—C2B—C3B109.53 (14)
N1A—C2A—H2AA109.6N1B—C2B—H2BA109.8
C3A—C2A—H2AA109.6C3B—C2B—H2BA109.8
N1A—C2A—H2AB109.6N1B—C2B—H2BB109.8
C3A—C2A—H2AB109.6C3B—C2B—H2BB109.8
H2AA—C2A—H2AB108.1H2BA—C2B—H2BB108.2
C7A—C3A—C4A115.94 (16)C7B—C3B—C4B117.08 (16)
C7A—C3A—C2A126.30 (16)C7B—C3B—C2B125.51 (16)
C4A—C3A—C2A117.76 (15)C4B—C3B—C2B117.40 (15)
O1A—C4A—C5A120.82 (16)O1B—C4B—C5B120.89 (18)
O1A—C4A—C5A120.82 (16)O1B—C4B—C5B120.89 (18)
O1A—C4A—C3A120.99 (16)O1B—C4B—C3B121.05 (17)
O1A—C4A—C3A120.99 (16)O1B—C4B—C3B121.05 (17)
C5A—C4A—C3A118.17 (15)C5B—C4B—C3B118.02 (16)
C14A—C5A—C4A116.67 (16)C14B—C5B—C4B116.11 (16)
C14A—C5A—C6A125.41 (16)C14B—C5B—C6B125.67 (16)
C4A—C5A—C6A117.80 (15)C4B—C5B—C6B118.20 (15)
N1A—C6A—C5A110.04 (14)N1B—C6B—C5B110.34 (14)
N1A—C6A—H6AA109.7N1B—C6B—H6BA109.6
C5A—C6A—H6AA109.7C5B—C6B—H6BA109.6
N1A—C6A—H6AB109.7N1B—C6B—H6BB109.6
C5A—C6A—H6AB109.7C5B—C6B—H6BB109.6
H6AA—C6A—H6AB108.2H6BA—C6B—H6BB108.1
C3A—C7A—C8A131.99 (17)C3B—C7B—C8B129.59 (17)
C3A—C7A—H7AA114.0C3B—C7B—H7BA115.2
C8A—C7A—H7AA114.0C8B—C7B—H7BA115.2
C13A—C8A—C9A117.67 (17)C13B—C8B—C9B117.56 (16)
C13A—C8A—C7A125.01 (16)C13B—C8B—C7B124.16 (16)
C9A—C8A—C7A117.16 (17)C9B—C8B—C7B118.23 (16)
C10A—C9A—C8A122.13 (18)C10B—C9B—C8B121.70 (17)
C10A—C9A—H9AA118.9C10B—C9B—H9BA119.1
C8A—C9A—H9AA118.9C8B—C9B—H9BA119.1
C9A—C10A—C11A118.51 (17)C9B—C10B—C11B118.80 (17)
C9A—C10A—H10A120.7C9B—C10B—H10B120.6
C11A—C10A—H10A120.7C11B—C10B—H10B120.6
C10A—C11A—C12A121.59 (17)C10B—C11B—C12B121.21 (17)
C10A—C11A—Cl1A118.99 (14)C10B—C11B—Cl1B119.43 (14)
C12A—C11A—Cl1A119.40 (15)C12B—C11B—Cl1B119.33 (15)
C13A—C12A—C11A119.25 (18)C13B—C12B—C11B119.37 (17)
C13A—C12A—H12A120.4C13B—C12B—H12B120.3
C11A—C12A—H12A120.4C11B—C12B—H12B120.3
C12A—C13A—C8A120.83 (17)C12B—C13B—C8B121.32 (17)
C12A—C13A—H13A119.6C12B—C13B—H13B119.3
C8A—C13A—H13A119.6C8B—C13B—H13B119.3
C5A—C14A—C15A129.81 (16)C5B—C14B—C15B130.51 (16)
C5A—C14A—H14A115.1C5B—C14B—H14B114.7
C15A—C14A—H14A115.1C15B—C14B—H14B114.7
C16A—C15A—C20A117.86 (17)C16B—C15B—C20B117.61 (16)
C16A—C15A—C14A116.56 (16)C16B—C15B—C14B117.40 (15)
C20A—C15A—C14A125.56 (17)C20B—C15B—C14B124.93 (16)
C17A—C16A—C15A121.75 (17)C17B—C16B—C15B121.57 (16)
C17A—C16A—H16A119.1C17B—C16B—H16B119.2
C15A—C16A—H16A119.1C15B—C16B—H16B119.2
C16A—C17A—C18A118.90 (18)C16B—C17B—C18B118.99 (16)
C16A—C17A—H17A120.5C16B—C17B—H17B120.5
C18A—C17A—H17A120.5C18B—C17B—H17B120.5
C17A—C18A—C19A120.95 (17)C19B—C18B—C17B121.11 (16)
C17A—C18A—Cl2A118.89 (15)C19B—C18B—Cl2B119.42 (14)
C19A—C18A—Cl2A120.16 (14)C17B—C18B—Cl2B119.47 (14)
C20A—C19A—C18A119.41 (16)C20B—C19B—C18B119.43 (16)
C20A—C19A—H19A120.3C20B—C19B—H19B120.3
C18A—C19A—H19A120.3C18B—C19B—H19B120.3
C19A—C20A—C15A121.08 (17)C19B—C20B—C15B121.20 (16)
C19A—C20A—H20A119.5C19B—C20B—H20B119.4
C15A—C20A—H20A119.5C15B—C20B—H20B119.4
C22A—C21A—C26A118.64 (16)C22B—C21B—C26B118.14 (17)
C22A—C21A—C1A121.36 (16)C22B—C21B—C1B120.62 (16)
C26A—C21A—C1A119.98 (15)C26B—C21B—C1B121.24 (16)
C23A—C22A—C21A120.60 (17)C23B—C22B—C21B121.22 (18)
C23A—C22A—H22A119.7C23B—C22B—H22B119.4
C21A—C22A—H22A119.7C21B—C22B—H22B119.4
C24A—C23A—C22A120.22 (17)C24B—C23B—C22B119.57 (18)
C24A—C23A—H23A119.9C24B—C23B—H23B120.2
C22A—C23A—H23A119.9C22B—C23B—H23B120.2
C23A—C24A—C25A119.49 (17)C25B—C24B—C23B120.06 (18)
C23A—C24A—H24A120.3C25B—C24B—H24B120.0
C25A—C24A—H24A120.3C23B—C24B—H24B120.0
C26A—C25A—C24A120.30 (17)C24B—C25B—C26B120.25 (19)
C26A—C25A—H25A119.9C24B—C25B—H25B119.9
C24A—C25A—H25A119.8C26B—C25B—H25B119.9
C25A—C26A—C21A120.73 (16)C25B—C26B—C21B120.76 (18)
C25A—C26A—H26A119.6C25B—C26B—H26B119.6
C21A—C26A—H26A119.6C21B—C26B—H26B119.6
C6A—N1A—C1A—C21A163.42 (14)C6B—N1B—C1B—C21B64.13 (19)
C2A—N1A—C1A—C21A74.36 (18)C2B—N1B—C1B—C21B61.88 (19)
C6A—N1A—C2A—C3A63.95 (17)C6B—N1B—C2B—C3B66.43 (17)
C1A—N1A—C2A—C3A173.49 (14)C1B—N1B—C2B—C3B166.71 (14)
N1A—C2A—C3A—C7A151.02 (17)N1B—C2B—C3B—C7B148.23 (18)
N1A—C2A—C3A—C4A28.7 (2)N1B—C2B—C3B—C4B30.7 (2)
O1A—O1A—C4A—C5A0.0 (3)O1B—O1B—C4B—C5B0.0 (2)
O1A—O1A—C4A—C3A0.0 (3)O1B—O1B—C4B—C3B0.0 (3)
C7A—C3A—C4A—O1A1.2 (3)C7B—C3B—C4B—O1B2.5 (3)
C2A—C3A—C4A—O1A178.50 (16)C2B—C3B—C4B—O1B176.6 (2)
C7A—C3A—C4A—O1A1.2 (3)C7B—C3B—C4B—O1B2.5 (3)
C2A—C3A—C4A—O1A178.50 (16)C2B—C3B—C4B—O1B176.6 (2)
C7A—C3A—C4A—C5A177.55 (15)C7B—C3B—C4B—C5B175.28 (17)
C2A—C3A—C4A—C5A2.7 (2)C2B—C3B—C4B—C5B5.7 (3)
O1A—C4A—C5A—C14A3.9 (3)O1B—C4B—C5B—C14B6.4 (3)
O1A—C4A—C5A—C14A3.9 (3)O1B—C4B—C5B—C14B6.4 (3)
C3A—C4A—C5A—C14A177.34 (15)C3B—C4B—C5B—C14B171.31 (17)
O1A—C4A—C5A—C6A179.84 (16)O1B—C4B—C5B—C6B172.3 (2)
O1A—C4A—C5A—C6A179.84 (16)O1B—C4B—C5B—C6B172.3 (2)
C3A—C4A—C5A—C6A1.1 (2)C3B—C4B—C5B—C6B9.9 (3)
C2A—N1A—C6A—C5A65.66 (18)C2B—N1B—C6B—C5B62.09 (18)
C1A—N1A—C6A—C5A171.47 (14)C1B—N1B—C6B—C5B171.20 (14)
C14A—C5A—C6A—N1A143.83 (17)C14B—C5B—C6B—N1B155.89 (17)
C4A—C5A—C6A—N1A32.1 (2)C4B—C5B—C6B—N1B22.7 (2)
C4A—C3A—C7A—C8A174.85 (17)C4B—C3B—C7B—C8B178.06 (18)
C2A—C3A—C7A—C8A5.5 (3)C2B—C3B—C7B—C8B3.0 (3)
C3A—C7A—C8A—C13A19.2 (3)C3B—C7B—C8B—C13B25.4 (3)
C3A—C7A—C8A—C9A165.48 (18)C3B—C7B—C8B—C9B157.34 (19)
C13A—C8A—C9A—C10A0.3 (3)C13B—C8B—C9B—C10B2.4 (3)
C7A—C8A—C9A—C10A175.98 (16)C7B—C8B—C9B—C10B179.87 (17)
C8A—C9A—C10A—C11A0.2 (3)C8B—C9B—C10B—C11B1.5 (3)
C9A—C10A—C11A—C12A0.1 (3)C9B—C10B—C11B—C12B0.3 (3)
C9A—C10A—C11A—Cl1A178.20 (14)C9B—C10B—C11B—Cl1B178.39 (14)
C10A—C11A—C12A—C13A0.9 (3)C10B—C11B—C12B—C13B1.0 (3)
Cl1A—C11A—C12A—C13A177.40 (14)Cl1B—C11B—C12B—C13B179.10 (14)
C11A—C12A—C13A—C8A1.4 (3)C11B—C12B—C13B—C8B0.0 (3)
C9A—C8A—C13A—C12A1.1 (3)C9B—C8B—C13B—C12B1.7 (3)
C7A—C8A—C13A—C12A176.41 (17)C7B—C8B—C13B—C12B178.97 (17)
C4A—C5A—C14A—C15A178.45 (16)C4B—C5B—C14B—C15B178.23 (18)
C6A—C5A—C14A—C15A2.5 (3)C6B—C5B—C14B—C15B3.1 (3)
C5A—C14A—C15A—C16A153.04 (19)C5B—C14B—C15B—C16B160.85 (19)
C5A—C14A—C15A—C20A28.7 (3)C5B—C14B—C15B—C20B22.0 (3)
C20A—C15A—C16A—C17A1.7 (3)C20B—C15B—C16B—C17B2.8 (3)
C14A—C15A—C16A—C17A179.90 (16)C14B—C15B—C16B—C17B179.86 (16)
C15A—C16A—C17A—C18A2.1 (3)C15B—C16B—C17B—C18B1.8 (3)
C16A—C17A—C18A—C19A0.8 (3)C16B—C17B—C18B—C19B0.8 (3)
C16A—C17A—C18A—Cl2A178.13 (14)C16B—C17B—C18B—Cl2B178.72 (14)
C17A—C18A—C19A—C20A0.8 (3)C17B—C18B—C19B—C20B2.5 (3)
Cl2A—C18A—C19A—C20A179.76 (13)Cl2B—C18B—C19B—C20B177.08 (14)
C18A—C19A—C20A—C15A1.2 (3)C18B—C19B—C20B—C15B1.5 (3)
C16A—C15A—C20A—C19A0.0 (3)C16B—C15B—C20B—C19B1.1 (3)
C14A—C15A—C20A—C19A178.24 (16)C14B—C15B—C20B—C19B178.24 (17)
N1A—C1A—C21A—C22A120.53 (17)N1B—C1B—C21B—C22B85.3 (2)
N1A—C1A—C21A—C26A61.1 (2)N1B—C1B—C21B—C26B94.30 (19)
C26A—C21A—C22A—C23A1.1 (3)C26B—C21B—C22B—C23B1.1 (3)
C1A—C21A—C22A—C23A177.27 (16)C1B—C21B—C22B—C23B178.52 (16)
C21A—C22A—C23A—C24A0.7 (3)C21B—C22B—C23B—C24B1.0 (3)
C22A—C23A—C24A—C25A0.3 (3)C22B—C23B—C24B—C25B0.5 (3)
C23A—C24A—C25A—C26A0.9 (3)C23B—C24B—C25B—C26B0.1 (3)
C24A—C25A—C26A—C21A0.5 (3)C24B—C25B—C26B—C21B0.2 (3)
C22A—C21A—C26A—C25A0.5 (2)C22B—C21B—C26B—C25B0.7 (3)
C1A—C21A—C26A—C25A177.93 (16)C1B—C21B—C26B—C25B178.92 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16B—H16B···O1A0.952.423.334 (2)160
C14A—H14A···O1B0.952.523.309 (2)141
C16A—H16A···O1B0.952.483.099 (2)122

Experimental details

Crystal data
Chemical formulaC26H21Cl2NO
Mr434.34
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)12.504 (2), 13.414 (4), 14.763 (2)
α, β, γ (°)102.736 (3), 111.676 (2), 104.066 (3)
V3)2095.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.25 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.922, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
24542, 8251, 7049
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.02
No. of reflections8251
No. of parameters541
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.48

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16B—H16B···O1A0.952.423.334 (2)160
C14A—H14A···O1B0.952.523.309 (2)141
C16A—H16A···O1B0.952.483.099 (2)122
 

Acknowledgements

We appreciate financial support from DoD grant W911NF-05–1–0456, and in part by the NIH (National Institutes of Health) NCI (National Cancer Institute) grant R01CA120170.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zell, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1988). Acta Cryst. C44, 2114–2117.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNesterov, V. N., Sarkisov, S. S., Curley, M. J., Urbas, A. & Ruiz, T. (2007). Acta Cryst. E63, o4784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011). Acta Cryst. E67, o760–o761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605–o608.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSarkisov, S. S., Peterson, B. H., Curley, M. J., Nesterov, V. N., Timofeeva, T., Antipin, M., Radovanova, E. I., Leyderman, A. & Fleitz, P. (2005). JNOPM, 14, 21–40.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1505-o1506
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds