organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1366-o1367

(S)-2-[(2-Hy­dr­oxy­benz­yl)aza­nium­yl]-4-(methyl­sulfan­yl)butano­ate

aDip. di Chimica Inorganica Chimica Analitica e Chimica Fisica, Universitá degli Studi di Messina, Via Salita Sperone 31, I-98166 Vill. S. Agata–Messina, Italy, and bDip. di Chimica Inorganica e Analitica Stanislao Cannizzaro, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy
*Correspondence e-mail: gbrancatelli@unime.it

(Received 18 February 2011; accepted 2 May 2011; online 11 May 2011)

The zwitterionic title compound, C12H17NO3S, is a reduced Schiff base derived from (S)-N-(2-hy­droxy­benzyl­idene)methio­nine. An intra­molecular inter­action between the N—H and carboxyl­ate groups forms a roughly planar (r.m.s. deviation = 0.1405 Å) five-membered ring containing the H(N), N, Cα, C(carboxyl­ate) and O atoms in a penta­gonal conformation. In the crystal, a supra­molecular triangle-shaped motif is generated by mol­ecules held together by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For transition metal complexes containing N-(2-hy­droxy­benz­yl)-α-amino acids as ligands, see: Bandyopadhyay et al. (2006[Bandyopadhyay, S., Mukherjee, G. N. & Drew, M. G. B. (2006). Inorg. Chim. Acta, 359, 3243-3251.]); Beltrán et al. (2002[Beltrán, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfán, N. (2002). J. Organomet. Chem. 657, 194-204.]); Ganguly et al. (2008[Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027-1050.]); Koh et al. (1996[Koh, L. L., Ranford, J. O., Robinson, W. T., Svensson, J. O., Tan, A. L. C. & Wu, D. (1996). Inorg. Chem. 35, 6466-6472.]); Martell (1989[Martell, A. E. (1989). Acc. Chem. Res. 22, 115-124.]); Maurya (2003[Maurya, M. R. (2003). Coord. Chem. Rev. 237, 163-181.]); Nefkens & Zwanenburg (1985[Nefkens, G. H. L. & Zwanenburg, B. (1985). Tetrahedron, 41, 6063-6066.]); Ritsma (1975[Ritsma, J. H. (1975). Rec. Trav. Chim. Pays-Bas, 94, 174-178.]); Shongwe et al. (1999[Shongwe, M. S., Mikuriya, M., Nukada, R., Ainscough, E. W., Brodie, A. M. & Waters, J. M. (1999). Inorg. Chim. Acta, 290, 228-236.]); Sreenivasulu & Vittal (2004[Sreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 43, 5769-5772.]); Wilson (1990[Wilson, J. G. (1990). Aust. J. Chem. 43, 1283-1289.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17NO3S

  • Mr = 255.33

  • Triclinic, P 1

  • a = 5.3221 (2) Å

  • b = 5.8369 (2) Å

  • c = 10.5564 (5) Å

  • α = 98.200 (3)°

  • β = 90.780 (3)°

  • γ = 96.849 (3)°

  • V = 322.10 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.53 × 0.44 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.679, Tmax = 0.746

  • 7430 measured reflections

  • 2324 independent reflections

  • 1966 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.179

  • S = 1.07

  • 2324 reflections

  • 156 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Assigned from the known absolute structure of the starting material; the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter is consistent with this assignment, 1119 Friedel pairs

  • Flack parameter: 0.12 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.83 2.641 (3) 168
N1—H1A⋯O3ii 0.9 1.83 2.713 (3) 166
N1—H1B⋯O1iii 0.9 2.14 2.916 (4) 144
N1—H1B⋯O2 0.9 2.35 2.687 (3) 102
Symmetry codes: (i) x-1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable attention has been devoted to both Schiff bases and reduced Schiff bases derived from salicylaldehyde and α-amino acids, since their transition metal complexes are closely analogous to the metal-free systems formed as intermediates in many reactions involving the vitamin B6, such as transamination, decarboxylation, α- and β-elimination and racemization (Martell, 1989). In this regard, copper(II) complexes of N-(2-hydroxybenzyl)-α-amino acids have been studied as models for the intermediate species that occur in the biological reactions mentioned above (Koh et al., 1996) and such reduced Schiff bases have been used as chelating agents for organoboron (Nefkens et al., 1985; Beltrán et al., 2002) and transition metals such as copper (Koh et al., 1996), zinc (Ritsma, 1975), cobalt (Bandyopadhyay et al., 2006), nickel (Sreenivasulu et al., 2004), manganese (Shongwe et al., 1999), technetium (Wilson, 1990) and vanadium (Maurya, 2003). These ligands are more stable than the Schiff bases from which they originate and are suitable to provide conformationally flexible rings in complexation. This results in different solid state architectures, and the presence of hydrogen bond donors and acceptors enables the design and construction of supramolecular, three-dimensional networks (Ganguly et al., 2008). This paper describes the structural characterization of the reduced Schiff base (S)-N-(2-hydroxybenzyl)methionine (I).

Figure 1 shows the molecular structure of (I). The crystal structure analysis clearly indicates that the amino acid is a pure enantiomer, since the compound crystallizes in the chiral P1 space group. In Figure 1 the L-enantiomer is shown with S absolute configuration at C8, in agreement with the synthetic precursor, L-(S)-methionine. The carboxylic acid has been found in the deprotonated —(COO)- form, with the C9—O2 and C9—O3 bond distances being very similar. Meanwhile, N1 is protonated in the NH2+ form. Therefore compound (I) crystallizes as a zwitterion. The angle N1—C8—C9 is lower in comparison to the angles N1—C8—C10 and C10—C8—C9. This asymmetry in the angles at the C8 is due to the presence of an intramolecular interaction between the N—H and carboxylate groups forming a roughly planar five-membered ring containing H, N, Cα, C and O atoms in a pentagonal (C5) conformation.

A very interesting feature encountered in the crystal lattice of (I) is related to the formation of supramolecular triangle-shaped motifs [R23(8)] involving molecules held together by O—H···O and N—H···O hydrogen bonds (Figure 2, Table 1). Other hydrogen bonding interactions govern the molecular arrangement in parallel strings extending along the (001) crystallographic plane (Figure 3).

Related literature top

For transition metal complexes containing N-(2-hydroxybenzyl)-α-amino acids as ligands, see: Bandyopadhyay et al. (2006); Beltrán et al. (2002); Ganguly et al. (2008); Koh et al. (1996); Martell (1989); Maurya (2003); Nefkens & Zwanenburg (1985); Ritsma (1975); Shongwe et al. (1999); Sreenivasulu & Vittal (2004); Wilson (1990).

Experimental top

The synthesis of the title compound (I) was performed according to the method previously employed for similar Schiff bases (Koh, et al., 1996), starting from L-(S)-metionine. Recrystallization of (I) from a methanol solution produced single crystals suitable for X-ray diffraction.

Refinement top

H atoms were located in a difference Fourier map and placed in idealized positions using the riding-model technique, with distances C—H = 0.93–0.97 Å, N—H = 0.90 Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.2Ueq(N). The best refinement was obtained using the multi-scan SADABS (Sheldrick, 1996) correction. The restraints were generated automatically by SHELXL97 to fix the origin.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : ORTEP drawing with numbering of the atoms. Non H-atoms are represented as displacement ellipsoids plotted at the 50% probability level, while H-atoms bound to heteroatoms are shown as small spheres of arbitrary radius. The intramolecular H-bond is represented by a dashed line.
[Figure 2] Fig. 2. : Supramolecular arrangement of (I): a perpendicular view of the triangular-shaped ring [R23(8)], involving three molecules interconnected through the H-bonding interactions N1—H1A···O3, N1—H1B···O1 and O1—H1···O2. Dotted lines indicate H-bonding interactions.
[Figure 3] Fig. 3. : Crystal packing of (I): molecular arrangement in parallel strings extending along the (001) crystallographic plane.
(S)-2-[(2-Hydroxybenzyl)azaniumyl]-4-(methylsulfanyl)butanoate top
Crystal data top
C12H17NO3SZ = 1
Mr = 255.33F(000) = 136
Triclinic, P1Dx = 1.316 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3221 (2) ÅCell parameters from 4292 reflections
b = 5.8369 (2) Åθ = 3.6–27.0°
c = 10.5564 (5) ŵ = 0.25 mm1
α = 98.200 (3)°T = 296 K
β = 90.780 (3)°Prysmatic, yellow
γ = 96.849 (3)°0.53 × 0.44 × 0.16 mm
V = 322.10 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.679, Tmax = 0.746k = 77
7430 measured reflectionsl = 1313
2324 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.1065P)2 + 0.1553P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2324 reflectionsΔρmax = 0.79 e Å3
156 parametersΔρmin = 0.41 e Å3
3 restraintsAbsolute structure: Assigned from the known absolute structure of the starting material; the Flack (1983) parameter is consistent with this assignment, 1119 Friedel-pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (19)
Crystal data top
C12H17NO3Sγ = 96.849 (3)°
Mr = 255.33V = 322.10 (2) Å3
Triclinic, P1Z = 1
a = 5.3221 (2) ÅMo Kα radiation
b = 5.8369 (2) ŵ = 0.25 mm1
c = 10.5564 (5) ÅT = 296 K
α = 98.200 (3)°0.53 × 0.44 × 0.16 mm
β = 90.780 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2324 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1966 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.746Rint = 0.016
7430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.179Δρmax = 0.79 e Å3
S = 1.07Δρmin = 0.41 e Å3
2324 reflectionsAbsolute structure: Assigned from the known absolute structure of the starting material; the Flack (1983) parameter is consistent with this assignment, 1119 Friedel-pairs
156 parametersAbsolute structure parameter: 0.12 (19)
3 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1397 (7)0.8261 (5)0.6478 (4)0.0378 (8)
C20.1286 (8)1.0229 (6)0.7378 (4)0.0480 (10)
H20.00371.11920.73010.058*
C30.3045 (9)1.0752 (9)0.8391 (4)0.0595 (11)
H30.29931.20850.89840.071*
C40.4846 (11)0.9326 (10)0.8521 (5)0.0719 (14)
H40.60640.97190.9180.086*
C50.4866 (8)0.7305 (8)0.7677 (5)0.0592 (11)
H50.60340.62890.78070.071*
C60.3176 (7)0.6750 (6)0.6635 (4)0.0437 (9)
C70.3226 (7)0.4586 (6)0.5712 (5)0.0523 (11)
H7A0.15260.40570.53640.063*
H7B0.37540.33810.61640.063*
N10.4971 (5)0.4903 (4)0.4628 (3)0.0365 (7)
H1A0.46640.61750.42880.044*
H1B0.65860.51290.49270.044*
C120.982 (2)0.7692 (13)0.1065 (9)0.125 (3)
H12A0.83210.83840.09020.187*
H12B1.11620.82720.05530.187*
H12C1.03130.80830.19550.187*
C80.4605 (9)0.2821 (6)0.3620 (4)0.0528 (11)
H80.27750.2340.35330.063*
C90.5770 (7)0.0784 (5)0.4082 (4)0.0396 (8)
O10.0230 (5)0.7724 (4)0.5440 (3)0.0481 (7)
H10.07340.89180.52640.072*
O20.7473 (5)0.1274 (4)0.4933 (3)0.0542 (8)
O30.4885 (6)0.1164 (4)0.3543 (3)0.0543 (8)
S10.9203 (4)0.4659 (3)0.0671 (2)0.1140 (8)
C100.5426 (11)0.3361 (8)0.2347 (5)0.0673 (14)
H10A0.48490.20560.16910.081*
H10B0.46980.4720.21490.081*
C110.8008 (11)0.3782 (9)0.2368 (6)0.0749 (15)
H11A0.87270.240.25350.09*
H11B0.85810.50410.30510.09*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0352 (18)0.0332 (17)0.047 (2)0.0050 (13)0.0058 (17)0.0120 (14)
C20.049 (2)0.0382 (19)0.060 (2)0.0137 (15)0.015 (2)0.0095 (17)
C30.064 (3)0.068 (3)0.045 (2)0.008 (2)0.007 (2)0.0004 (19)
C40.070 (3)0.091 (4)0.054 (3)0.013 (3)0.000 (3)0.005 (3)
C50.047 (2)0.071 (3)0.065 (3)0.013 (2)0.002 (2)0.025 (2)
C60.0355 (19)0.0368 (18)0.063 (2)0.0053 (14)0.0139 (19)0.0199 (16)
C70.037 (2)0.0255 (16)0.096 (3)0.0053 (13)0.014 (2)0.0138 (19)
N10.0462 (16)0.0128 (11)0.0509 (17)0.0053 (10)0.0084 (14)0.0058 (10)
C120.183 (9)0.078 (4)0.121 (6)0.010 (5)0.017 (6)0.043 (4)
C80.079 (3)0.0190 (15)0.059 (2)0.0112 (16)0.025 (2)0.0016 (15)
C90.052 (2)0.0163 (15)0.0514 (19)0.0096 (13)0.0019 (19)0.0044 (13)
O10.0499 (16)0.0286 (12)0.0668 (18)0.0114 (10)0.0099 (15)0.0056 (11)
O20.0539 (16)0.0272 (12)0.082 (2)0.0108 (10)0.0169 (16)0.0075 (12)
O30.081 (2)0.0182 (12)0.0622 (17)0.0056 (11)0.0112 (16)0.0037 (11)
S10.1068 (14)0.1004 (13)0.1180 (14)0.0026 (10)0.0483 (12)0.0327 (11)
C100.092 (4)0.046 (2)0.064 (3)0.011 (2)0.016 (3)0.007 (2)
C110.087 (4)0.057 (3)0.078 (3)0.026 (2)0.033 (3)0.009 (2)
Geometric parameters (Å, º) top
C1—O11.365 (5)N1—H1B0.9
C1—C21.389 (5)C12—S11.749 (8)
C1—C61.392 (5)C12—H12A0.96
C2—C31.387 (7)C12—H12B0.96
C2—H20.93C12—H12C0.96
C3—C41.360 (7)C8—C101.483 (7)
C3—H30.93C8—C91.539 (4)
C4—C51.375 (7)C8—H80.98
C4—H40.93C9—O31.232 (4)
C5—C61.388 (6)C9—O21.246 (5)
C5—H50.93O1—H10.82
C6—C71.484 (6)S1—C112.023 (7)
C7—N11.502 (5)C10—C111.366 (8)
C7—H7A0.97C10—H10A0.97
C7—H7B0.97C10—H10B0.97
N1—C81.489 (4)C11—H11A0.97
N1—H1A0.9C11—H11B0.97
O1—C1—C2121.9 (3)S1—C12—H12A109.5
O1—C1—C6118.1 (3)S1—C12—H12B109.5
C2—C1—C6120.0 (3)H12A—C12—H12B109.5
C3—C2—C1119.7 (4)S1—C12—H12C109.5
C3—C2—H2120.1H12A—C12—H12C109.5
C1—C2—H2120.1H12B—C12—H12C109.5
C4—C3—C2120.3 (4)C10—C8—N1112.6 (3)
C4—C3—H3119.8C10—C8—C9115.0 (4)
C2—C3—H3119.8N1—C8—C9109.9 (3)
C3—C4—C5120.0 (5)C10—C8—H8106.2
C3—C4—H4120N1—C8—H8106.2
C5—C4—H4120C9—C8—H8106.2
C4—C5—C6121.2 (4)O3—C9—O2127.9 (3)
C4—C5—H5119.4O3—C9—C8114.6 (3)
C6—C5—H5119.4O2—C9—C8117.5 (3)
C5—C6—C1118.4 (4)C1—O1—H1109.5
C5—C6—C7121.2 (4)C12—S1—C11100.5 (3)
C1—C6—C7120.4 (4)C11—C10—C8108.8 (4)
C6—C7—N1113.2 (3)C11—C10—H10A109.9
C6—C7—H7A108.9C8—C10—H10A109.9
N1—C7—H7A108.9C11—C10—H10B109.9
C6—C7—H7B108.9C8—C10—H10B109.9
N1—C7—H7B108.9H10A—C10—H10B108.3
H7A—C7—H7B107.8C10—C11—S1110.1 (4)
C8—N1—C7110.7 (3)C10—C11—H11A109.6
C8—N1—H1A109.5S1—C11—H11A109.6
C7—N1—H1A109.5C10—C11—H11B109.6
C8—N1—H1B109.5S1—C11—H11B109.6
C7—N1—H1B109.5H11A—C11—H11B108.1
H1A—N1—H1B108.1
O1—C1—C2—C3177.5 (4)C1—C6—C7—N191.8 (4)
C6—C1—C2—C33.7 (6)C6—C7—N1—C8169.9 (3)
C1—C2—C3—C41.2 (7)C7—N1—C8—C10156.6 (4)
C2—C3—C4—C52.7 (8)C7—N1—C8—C973.8 (4)
C3—C4—C5—C64.3 (8)C10—C8—C9—O374.6 (5)
C4—C5—C6—C11.8 (6)N1—C8—C9—O3157.1 (3)
C4—C5—C6—C7179.0 (5)C10—C8—C9—O2105.0 (4)
O1—C1—C6—C5178.9 (4)N1—C8—C9—O223.4 (5)
C2—C1—C6—C52.2 (5)N1—C8—C10—C1171.0 (5)
O1—C1—C6—C71.8 (5)C9—C8—C10—C1155.9 (5)
C2—C1—C6—C7177.1 (4)C8—C10—C11—S1177.7 (3)
C5—C6—C7—N189.0 (5)C12—S1—C11—C10100.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.641 (3)168
N1—H1A···O3ii0.91.832.713 (3)166
N1—H1B···O1iii0.92.142.916 (4)144
N1—H1B···O20.92.352.687 (3)102
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H17NO3S
Mr255.33
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.3221 (2), 5.8369 (2), 10.5564 (5)
α, β, γ (°)98.200 (3), 90.780 (3), 96.849 (3)
V3)322.10 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.53 × 0.44 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.679, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
7430, 2324, 1966
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.179, 1.07
No. of reflections2324
No. of parameters156
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.41
Absolute structureAssigned from the known absolute structure of the starting material; the Flack (1983) parameter is consistent with this assignment, 1119 Friedel-pairs
Absolute structure parameter0.12 (19)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.641 (3)168
N1—H1A···O3ii0.91.832.713 (3)166
N1—H1B···O1iii0.92.142.916 (4)144
N1—H1B···O20.92.352.687 (3)102
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the University of Messina and the MIUR (Ministero dell'Istruzione, dell'Universitá e della Ricerca) for financial support.

References

First citationBandyopadhyay, S., Mukherjee, G. N. & Drew, M. G. B. (2006). Inorg. Chim. Acta, 359, 3243–3251.  CrossRef CAS Google Scholar
First citationBeltrán, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfán, N. (2002). J. Organomet. Chem. 657, 194–204.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGanguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050.  Web of Science CrossRef CAS Google Scholar
First citationKoh, L. L., Ranford, J. O., Robinson, W. T., Svensson, J. O., Tan, A. L. C. & Wu, D. (1996). Inorg. Chem. 35, 6466–6472.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationMartell, A. E. (1989). Acc. Chem. Res. 22, 115–124.  CrossRef CAS Google Scholar
First citationMaurya, M. R. (2003). Coord. Chem. Rev. 237, 163–181.  CrossRef CAS Google Scholar
First citationNefkens, G. H. L. & Zwanenburg, B. (1985). Tetrahedron, 41, 6063–6066.  CrossRef CAS Google Scholar
First citationRitsma, J. H. (1975). Rec. Trav. Chim. Pays-Bas, 94, 174–178.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShongwe, M. S., Mikuriya, M., Nukada, R., Ainscough, E. W., Brodie, A. M. & Waters, J. M. (1999). Inorg. Chim. Acta, 290, 228–236.  CrossRef CAS Google Scholar
First citationSreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 43, 5769–5772.  Web of Science CSD CrossRef CAS Google Scholar
First citationWilson, J. G. (1990). Aust. J. Chem. 43, 1283–1289.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1366-o1367
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds