organic compounds
(S)-2-[(2-Hydroxybenzyl)azaniumyl]-4-(methylsulfanyl)butanoate
aDip. di Chimica Inorganica Chimica Analitica e Chimica Fisica, Universitá degli Studi di Messina, Via Salita Sperone 31, I-98166 Vill. S. Agata–Messina, Italy, and bDip. di Chimica Inorganica e Analitica Stanislao Cannizzaro, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy
*Correspondence e-mail: gbrancatelli@unime.it
The zwitterionic title compound, C12H17NO3S, is a reduced Schiff base derived from (S)-N-(2-hydroxybenzylidene)methionine. An intramolecular interaction between the N—H and carboxylate groups forms a roughly planar (r.m.s. deviation = 0.1405 Å) five-membered ring containing the H(N), N, Cα, C(carboxylate) and O atoms in a pentagonal conformation. In the crystal, a supramolecular triangle-shaped motif is generated by molecules held together by O—H⋯O and N—H⋯O hydrogen bonds.
Related literature
For transition metal complexes containing N-(2-hydroxybenzyl)-α-amino acids as ligands, see: Bandyopadhyay et al. (2006); Beltrán et al. (2002); Ganguly et al. (2008); Koh et al. (1996); Martell (1989); Maurya (2003); Nefkens & Zwanenburg (1985); Ritsma (1975); Shongwe et al. (1999); Sreenivasulu & Vittal (2004); Wilson (1990).
Experimental
Crystal data
|
Refinement
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811016564/fy2002sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811016564/fy2002Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811016564/fy2002Isup3.cml
The synthesis of the title compound (I) was performed according to the method previously employed for similar
(Koh, et al., 1996), starting from L-(S)-metionine. Recrystallization of (I) from a methanol solution produced single crystals suitable for X-ray diffraction.H atoms were located in a difference Fourier map and placed in idealized positions using the riding-model technique, with distances C—H = 0.93–0.97 Å, N—H = 0.90 Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.2Ueq(N). The best
was obtained using the multi-scan SADABS (Sheldrick, 1996) correction. The restraints were generated automatically by SHELXL97 to fix the origin.Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C12H17NO3S | Z = 1 |
Mr = 255.33 | F(000) = 136 |
Triclinic, P1 | Dx = 1.316 Mg m−3 |
Hall symbol: P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.3221 (2) Å | Cell parameters from 4292 reflections |
b = 5.8369 (2) Å | θ = 3.6–27.0° |
c = 10.5564 (5) Å | µ = 0.25 mm−1 |
α = 98.200 (3)° | T = 296 K |
β = 90.780 (3)° | Prysmatic, yellow |
γ = 96.849 (3)° | 0.53 × 0.44 × 0.16 mm |
V = 322.10 (2) Å3 |
Bruker APEXII CCD diffractometer | 1966 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ϕ and ω scans | θmax = 26°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −6→6 |
Tmin = 0.679, Tmax = 0.746 | k = −7→7 |
7430 measured reflections | l = −13→13 |
2324 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.179 | w = 1/[σ2(Fo2) + (0.1065P)2 + 0.1553P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2324 reflections | Δρmax = 0.79 e Å−3 |
156 parameters | Δρmin = −0.41 e Å−3 |
3 restraints | Absolute structure: Assigned from the known absolute structure of the starting material; the Flack (1983) parameter is consistent with this assignment, 1119 Friedel-pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.12 (19) |
C12H17NO3S | γ = 96.849 (3)° |
Mr = 255.33 | V = 322.10 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.3221 (2) Å | Mo Kα radiation |
b = 5.8369 (2) Å | µ = 0.25 mm−1 |
c = 10.5564 (5) Å | T = 296 K |
α = 98.200 (3)° | 0.53 × 0.44 × 0.16 mm |
β = 90.780 (3)° |
Bruker APEXII CCD diffractometer | 2324 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1966 reflections with I > 2σ(I) |
Tmin = 0.679, Tmax = 0.746 | Rint = 0.016 |
7430 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.179 | Δρmax = 0.79 e Å−3 |
S = 1.07 | Δρmin = −0.41 e Å−3 |
2324 reflections | Absolute structure: Assigned from the known absolute structure of the starting material; the Flack (1983) parameter is consistent with this assignment, 1119 Friedel-pairs |
156 parameters | Absolute structure parameter: 0.12 (19) |
3 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1397 (7) | 0.8261 (5) | 0.6478 (4) | 0.0378 (8) | |
C2 | 0.1286 (8) | 1.0229 (6) | 0.7378 (4) | 0.0480 (10) | |
H2 | 0.0037 | 1.1192 | 0.7301 | 0.058* | |
C3 | 0.3045 (9) | 1.0752 (9) | 0.8391 (4) | 0.0595 (11) | |
H3 | 0.2993 | 1.2085 | 0.8984 | 0.071* | |
C4 | 0.4846 (11) | 0.9326 (10) | 0.8521 (5) | 0.0719 (14) | |
H4 | 0.6064 | 0.9719 | 0.918 | 0.086* | |
C5 | 0.4866 (8) | 0.7305 (8) | 0.7677 (5) | 0.0592 (11) | |
H5 | 0.6034 | 0.6289 | 0.7807 | 0.071* | |
C6 | 0.3176 (7) | 0.6750 (6) | 0.6635 (4) | 0.0437 (9) | |
C7 | 0.3226 (7) | 0.4586 (6) | 0.5712 (5) | 0.0523 (11) | |
H7A | 0.1526 | 0.4057 | 0.5364 | 0.063* | |
H7B | 0.3754 | 0.3381 | 0.6164 | 0.063* | |
N1 | 0.4971 (5) | 0.4903 (4) | 0.4628 (3) | 0.0365 (7) | |
H1A | 0.4664 | 0.6175 | 0.4288 | 0.044* | |
H1B | 0.6586 | 0.5129 | 0.4927 | 0.044* | |
C12 | 0.982 (2) | 0.7692 (13) | 0.1065 (9) | 0.125 (3) | |
H12A | 0.8321 | 0.8384 | 0.0902 | 0.187* | |
H12B | 1.1162 | 0.8272 | 0.0553 | 0.187* | |
H12C | 1.0313 | 0.8083 | 0.1955 | 0.187* | |
C8 | 0.4605 (9) | 0.2821 (6) | 0.3620 (4) | 0.0528 (11) | |
H8 | 0.2775 | 0.234 | 0.3533 | 0.063* | |
C9 | 0.5770 (7) | 0.0784 (5) | 0.4082 (4) | 0.0396 (8) | |
O1 | −0.0230 (5) | 0.7724 (4) | 0.5440 (3) | 0.0481 (7) | |
H1 | −0.0734 | 0.8918 | 0.5264 | 0.072* | |
O2 | 0.7473 (5) | 0.1274 (4) | 0.4933 (3) | 0.0542 (8) | |
O3 | 0.4885 (6) | −0.1164 (4) | 0.3543 (3) | 0.0543 (8) | |
S1 | 0.9203 (4) | 0.4659 (3) | 0.0671 (2) | 0.1140 (8) | |
C10 | 0.5426 (11) | 0.3361 (8) | 0.2347 (5) | 0.0673 (14) | |
H10A | 0.4849 | 0.2056 | 0.1691 | 0.081* | |
H10B | 0.4698 | 0.472 | 0.2149 | 0.081* | |
C11 | 0.8008 (11) | 0.3782 (9) | 0.2368 (6) | 0.0749 (15) | |
H11A | 0.8727 | 0.24 | 0.2535 | 0.09* | |
H11B | 0.8581 | 0.5041 | 0.3051 | 0.09* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0352 (18) | 0.0332 (17) | 0.047 (2) | 0.0050 (13) | 0.0058 (17) | 0.0120 (14) |
C2 | 0.049 (2) | 0.0382 (19) | 0.060 (2) | 0.0137 (15) | 0.015 (2) | 0.0095 (17) |
C3 | 0.064 (3) | 0.068 (3) | 0.045 (2) | 0.008 (2) | 0.007 (2) | 0.0004 (19) |
C4 | 0.070 (3) | 0.091 (4) | 0.054 (3) | 0.013 (3) | 0.000 (3) | 0.005 (3) |
C5 | 0.047 (2) | 0.071 (3) | 0.065 (3) | 0.013 (2) | 0.002 (2) | 0.025 (2) |
C6 | 0.0355 (19) | 0.0368 (18) | 0.063 (2) | 0.0053 (14) | 0.0139 (19) | 0.0199 (16) |
C7 | 0.037 (2) | 0.0255 (16) | 0.096 (3) | 0.0053 (13) | 0.014 (2) | 0.0138 (19) |
N1 | 0.0462 (16) | 0.0128 (11) | 0.0509 (17) | 0.0053 (10) | −0.0084 (14) | 0.0058 (10) |
C12 | 0.183 (9) | 0.078 (4) | 0.121 (6) | 0.010 (5) | 0.017 (6) | 0.043 (4) |
C8 | 0.079 (3) | 0.0190 (15) | 0.059 (2) | 0.0112 (16) | −0.025 (2) | 0.0016 (15) |
C9 | 0.052 (2) | 0.0163 (15) | 0.0514 (19) | 0.0096 (13) | 0.0019 (19) | 0.0044 (13) |
O1 | 0.0499 (16) | 0.0286 (12) | 0.0668 (18) | 0.0114 (10) | −0.0099 (15) | 0.0056 (11) |
O2 | 0.0539 (16) | 0.0272 (12) | 0.082 (2) | 0.0108 (10) | −0.0169 (16) | 0.0075 (12) |
O3 | 0.081 (2) | 0.0182 (12) | 0.0622 (17) | 0.0056 (11) | −0.0112 (16) | 0.0037 (11) |
S1 | 0.1068 (14) | 0.1004 (13) | 0.1180 (14) | −0.0026 (10) | 0.0483 (12) | −0.0327 (11) |
C10 | 0.092 (4) | 0.046 (2) | 0.064 (3) | 0.011 (2) | −0.016 (3) | 0.007 (2) |
C11 | 0.087 (4) | 0.057 (3) | 0.078 (3) | 0.026 (2) | −0.033 (3) | −0.009 (2) |
C1—O1 | 1.365 (5) | N1—H1B | 0.9 |
C1—C2 | 1.389 (5) | C12—S1 | 1.749 (8) |
C1—C6 | 1.392 (5) | C12—H12A | 0.96 |
C2—C3 | 1.387 (7) | C12—H12B | 0.96 |
C2—H2 | 0.93 | C12—H12C | 0.96 |
C3—C4 | 1.360 (7) | C8—C10 | 1.483 (7) |
C3—H3 | 0.93 | C8—C9 | 1.539 (4) |
C4—C5 | 1.375 (7) | C8—H8 | 0.98 |
C4—H4 | 0.93 | C9—O3 | 1.232 (4) |
C5—C6 | 1.388 (6) | C9—O2 | 1.246 (5) |
C5—H5 | 0.93 | O1—H1 | 0.82 |
C6—C7 | 1.484 (6) | S1—C11 | 2.023 (7) |
C7—N1 | 1.502 (5) | C10—C11 | 1.366 (8) |
C7—H7A | 0.97 | C10—H10A | 0.97 |
C7—H7B | 0.97 | C10—H10B | 0.97 |
N1—C8 | 1.489 (4) | C11—H11A | 0.97 |
N1—H1A | 0.9 | C11—H11B | 0.97 |
O1—C1—C2 | 121.9 (3) | S1—C12—H12A | 109.5 |
O1—C1—C6 | 118.1 (3) | S1—C12—H12B | 109.5 |
C2—C1—C6 | 120.0 (3) | H12A—C12—H12B | 109.5 |
C3—C2—C1 | 119.7 (4) | S1—C12—H12C | 109.5 |
C3—C2—H2 | 120.1 | H12A—C12—H12C | 109.5 |
C1—C2—H2 | 120.1 | H12B—C12—H12C | 109.5 |
C4—C3—C2 | 120.3 (4) | C10—C8—N1 | 112.6 (3) |
C4—C3—H3 | 119.8 | C10—C8—C9 | 115.0 (4) |
C2—C3—H3 | 119.8 | N1—C8—C9 | 109.9 (3) |
C3—C4—C5 | 120.0 (5) | C10—C8—H8 | 106.2 |
C3—C4—H4 | 120 | N1—C8—H8 | 106.2 |
C5—C4—H4 | 120 | C9—C8—H8 | 106.2 |
C4—C5—C6 | 121.2 (4) | O3—C9—O2 | 127.9 (3) |
C4—C5—H5 | 119.4 | O3—C9—C8 | 114.6 (3) |
C6—C5—H5 | 119.4 | O2—C9—C8 | 117.5 (3) |
C5—C6—C1 | 118.4 (4) | C1—O1—H1 | 109.5 |
C5—C6—C7 | 121.2 (4) | C12—S1—C11 | 100.5 (3) |
C1—C6—C7 | 120.4 (4) | C11—C10—C8 | 108.8 (4) |
C6—C7—N1 | 113.2 (3) | C11—C10—H10A | 109.9 |
C6—C7—H7A | 108.9 | C8—C10—H10A | 109.9 |
N1—C7—H7A | 108.9 | C11—C10—H10B | 109.9 |
C6—C7—H7B | 108.9 | C8—C10—H10B | 109.9 |
N1—C7—H7B | 108.9 | H10A—C10—H10B | 108.3 |
H7A—C7—H7B | 107.8 | C10—C11—S1 | 110.1 (4) |
C8—N1—C7 | 110.7 (3) | C10—C11—H11A | 109.6 |
C8—N1—H1A | 109.5 | S1—C11—H11A | 109.6 |
C7—N1—H1A | 109.5 | C10—C11—H11B | 109.6 |
C8—N1—H1B | 109.5 | S1—C11—H11B | 109.6 |
C7—N1—H1B | 109.5 | H11A—C11—H11B | 108.1 |
H1A—N1—H1B | 108.1 | ||
O1—C1—C2—C3 | −177.5 (4) | C1—C6—C7—N1 | 91.8 (4) |
C6—C1—C2—C3 | 3.7 (6) | C6—C7—N1—C8 | −169.9 (3) |
C1—C2—C3—C4 | −1.2 (7) | C7—N1—C8—C10 | 156.6 (4) |
C2—C3—C4—C5 | −2.7 (8) | C7—N1—C8—C9 | −73.8 (4) |
C3—C4—C5—C6 | 4.3 (8) | C10—C8—C9—O3 | −74.6 (5) |
C4—C5—C6—C1 | −1.8 (6) | N1—C8—C9—O3 | 157.1 (3) |
C4—C5—C6—C7 | 179.0 (5) | C10—C8—C9—O2 | 105.0 (4) |
O1—C1—C6—C5 | 178.9 (4) | N1—C8—C9—O2 | −23.4 (5) |
C2—C1—C6—C5 | −2.2 (5) | N1—C8—C10—C11 | 71.0 (5) |
O1—C1—C6—C7 | −1.8 (5) | C9—C8—C10—C11 | −55.9 (5) |
C2—C1—C6—C7 | 177.1 (4) | C8—C10—C11—S1 | −177.7 (3) |
C5—C6—C7—N1 | −89.0 (5) | C12—S1—C11—C10 | 100.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.82 | 1.83 | 2.641 (3) | 168 |
N1—H1A···O3ii | 0.9 | 1.83 | 2.713 (3) | 166 |
N1—H1B···O1iii | 0.9 | 2.14 | 2.916 (4) | 144 |
N1—H1B···O2 | 0.9 | 2.35 | 2.687 (3) | 102 |
Symmetry codes: (i) x−1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C12H17NO3S |
Mr | 255.33 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 5.3221 (2), 5.8369 (2), 10.5564 (5) |
α, β, γ (°) | 98.200 (3), 90.780 (3), 96.849 (3) |
V (Å3) | 322.10 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.53 × 0.44 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.679, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7430, 2324, 1966 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.179, 1.07 |
No. of reflections | 2324 |
No. of parameters | 156 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.79, −0.41 |
Absolute structure | Assigned from the known absolute structure of the starting material; the Flack (1983) parameter is consistent with this assignment, 1119 Friedel-pairs |
Absolute structure parameter | 0.12 (19) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.82 | 1.83 | 2.641 (3) | 168 |
N1—H1A···O3ii | 0.9 | 1.83 | 2.713 (3) | 166 |
N1—H1B···O1iii | 0.9 | 2.14 | 2.916 (4) | 144 |
N1—H1B···O2 | 0.9 | 2.35 | 2.687 (3) | 102 |
Symmetry codes: (i) x−1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z. |
Acknowledgements
The authors thank the University of Messina and the MIUR (Ministero dell'Istruzione, dell'Universitá e della Ricerca) for financial support.
References
Bandyopadhyay, S., Mukherjee, G. N. & Drew, M. G. B. (2006). Inorg. Chim. Acta, 359, 3243–3251. CrossRef CAS Google Scholar
Beltrán, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfán, N. (2002). J. Organomet. Chem. 657, 194–204. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050. Web of Science CrossRef CAS Google Scholar
Koh, L. L., Ranford, J. O., Robinson, W. T., Svensson, J. O., Tan, A. L. C. & Wu, D. (1996). Inorg. Chem. 35, 6466–6472. CSD CrossRef PubMed CAS Web of Science Google Scholar
Martell, A. E. (1989). Acc. Chem. Res. 22, 115–124. CrossRef CAS Google Scholar
Maurya, M. R. (2003). Coord. Chem. Rev. 237, 163–181. CrossRef CAS Google Scholar
Nefkens, G. H. L. & Zwanenburg, B. (1985). Tetrahedron, 41, 6063–6066. CrossRef CAS Google Scholar
Ritsma, J. H. (1975). Rec. Trav. Chim. Pays-Bas, 94, 174–178. CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shongwe, M. S., Mikuriya, M., Nukada, R., Ainscough, E. W., Brodie, A. M. & Waters, J. M. (1999). Inorg. Chim. Acta, 290, 228–236. CrossRef CAS Google Scholar
Sreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 43, 5769–5772. Web of Science CSD CrossRef CAS Google Scholar
Wilson, J. G. (1990). Aust. J. Chem. 43, 1283–1289. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Considerable attention has been devoted to both Schiff bases and reduced Schiff bases derived from salicylaldehyde and α-amino acids, since their transition metal complexes are closely analogous to the metal-free systems formed as intermediates in many reactions involving the vitamin B6, such as transamination, decarboxylation, α- and β-elimination and racemization (Martell, 1989). In this regard, copper(II) complexes of N-(2-hydroxybenzyl)-α-amino acids have been studied as models for the intermediate species that occur in the biological reactions mentioned above (Koh et al., 1996) and such reduced Schiff bases have been used as chelating agents for organoboron (Nefkens et al., 1985; Beltrán et al., 2002) and transition metals such as copper (Koh et al., 1996), zinc (Ritsma, 1975), cobalt (Bandyopadhyay et al., 2006), nickel (Sreenivasulu et al., 2004), manganese (Shongwe et al., 1999), technetium (Wilson, 1990) and vanadium (Maurya, 2003). These ligands are more stable than the Schiff bases from which they originate and are suitable to provide conformationally flexible rings in complexation. This results in different solid state architectures, and the presence of hydrogen bond donors and acceptors enables the design and construction of supramolecular, three-dimensional networks (Ganguly et al., 2008). This paper describes the structural characterization of the reduced Schiff base (S)-N-(2-hydroxybenzyl)methionine (I).
Figure 1 shows the molecular structure of (I). The crystal structure analysis clearly indicates that the amino acid is a pure enantiomer, since the compound crystallizes in the chiral P1 space group. In Figure 1 the L-enantiomer is shown with S absolute configuration at C8, in agreement with the synthetic precursor, L-(S)-methionine. The carboxylic acid has been found in the deprotonated —(COO)- form, with the C9—O2 and C9—O3 bond distances being very similar. Meanwhile, N1 is protonated in the NH2+ form. Therefore compound (I) crystallizes as a zwitterion. The angle N1—C8—C9 is lower in comparison to the angles N1—C8—C10 and C10—C8—C9. This asymmetry in the angles at the C8 is due to the presence of an intramolecular interaction between the N—H and carboxylate groups forming a roughly planar five-membered ring containing H, N, Cα, C and O atoms in a pentagonal (C5) conformation.
A very interesting feature encountered in the crystal lattice of (I) is related to the formation of supramolecular triangle-shaped motifs [R23(8)] involving molecules held together by O—H···O and N—H···O hydrogen bonds (Figure 2, Table 1). Other hydrogen bonding interactions govern the molecular arrangement in parallel strings extending along the (001) crystallographic plane (Figure 3).