organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Methylenebis{N-[(E)-quinolin-2-yl­methyl­idene]aniline}

aLaboratoire d'Électrochimie des Matériaux Moléculaires et Complexes, (LEMMC), Département de Génie des Procèdes Faculté de Technologie, Université Ferhat Abbas, Setif 19000, Algeria
*Correspondence e-mail: daoudkamal88@yahoo.fr

(Received 25 March 2011; accepted 27 April 2011; online 7 May 2011)

The title compound, C33H24N4, was prepared by the reaction of a bifunctional aromatic diamine (4,4′-diamino­diphenyl­methane) and an aldehyde (quinoline-2-carboxaldhyde). The mol­ecule consists of two nearly planar (or r.m.s. deviation = 0.017 Å) 4-methyl-N-[(E)-quinolin-2-yl­methyl­idene]aniline moieties, which are linked by the methyl­ene group. The angle between the mean planes of the two benzene rings connected to the methyl­ene group is 77.86 (11)°.

Related literature

For the biological and pharmacological activity of quinolines and their derivatives, see: Kidwai et al. (2000[Kidwai, M., Bhushan, K., Sapra, P., Saxena, R. & Gupta, R. (2000). Bioorg. Med. Chem. 8, 69-72.]); Souza (2005[Souza, M. V. N. (2005). Mini Rev. Med. Chem. 5, 1009-1017.]); Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Niebala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]); Gómez-Barrio et al. (2006[Gómez-Barrio, A., Montero-Pereira, D., Nogal-Ruiz, J. J., Escario, J. A., Muelas-Serrano, S., Kouznetsov, V. V., Vargas Mendez, L. Y., Urbina González, J. M. & Ochoa, C. (2006). Acta Parasitol. 51, 73-78.]); Vinsova et al. (2008[Vinsova, J., Imramovsky, A., Jampilek, J., Monreal-Ferriz, J. & Dolezal, M. (2008). Anti-Infect. Agent. Med. Chem. 7, 12-31.]); Jain et al. (2005[Jain, M., Khan, S., Tekwani, B., Jacob, M., Singh, S., Singh, B. & Jain, R. (2005). Bioorg. Med. Chem. 13, 4458-4466.]); Chen et al. (2006[Chen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373-4378.]). For water treatment applications, see: Izatt et al. (1995[Izatt, R. M., Pawlak, M. K. & Bardshaw, I. S. (1995). Chem. Rev. 95, 2529-2586.]); Kalcher et al. (1995[Kalcher, K., Kauffman, J. M., Wank, J., Vaneare, I. S., Vitras, K., Neuhal, C. & Yang, Z. (1995). Electroanalysis, 7, 5-22.]); Gilmartin & Hart (1995[Gilmartin, M. A. T. & Hart, J. P. (1995). Analyst, 120, 1029-1045.]). For use in corrosion inhibitors, see: Ahamad et al. (2010[Ahamad, I., Prasad, R. & Quraishi, M. A. (2010). Corros. Sci. 52, 933-942.]); Negm et al. (2010[Negm, N. A., Elkholy, Y. M., Zahran, M. K. & Tawfik, S. M. (2010). Corros. Sci. 52, 3523-3536.]). For related structures, see: Girija et al. (2004[Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586-o588.]); Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3087.]). For the synthesis, see: Issaadi et al. (2005[Issaadi, S., Haffar, D., Douadi, T., Chafaa, S., Séraphin, D., Khan, M. A. & Bouet, G. M. (2005). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 35, 875-882.]); Ghames et al. (2006[Ghames, A., Douadi, T., Haffar, D., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2006). Polyhedron, 25, 3201-3208.]); Kaabi et al. (2007[Kaabi, I., Haffar, D., Douadi, T., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2007). Transition Met. Chem. 32, 666-673.]).

[Scheme 1]

Experimental

Crystal data
  • C33H24N4

  • Mr = 476.56

  • Triclinic, P 1

  • a = 4.6051 (2) Å

  • b = 6.0189 (2) Å

  • c = 22.2172 (8) Å

  • α = 88.393 (2)°

  • β = 88.521 (2)°

  • γ = 78.044 (2)°

  • V = 602.09 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.10 × 0.07 × 0.02 mm

Data collection
  • Bruker APEXII diffractometer

  • 9094 measured reflections

  • 2707 independent reflections

  • 2415 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.10

  • 2707 reflections

  • 335 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Quinolines and their derivatives are often used for the desig of synthetic compounds with diverse pharmacological and medicinal proprieties. Substituted quinolines have been reported in the literature to show antibacterial (Kidwai et al., 2000), antimalarial (Souza et al., 2005), antifungal (Musiol et al., 2006), antiparasitical (Gómez-Barrio et al., 2006), antimycobacterial (Vinsova et al., 2008), antileishmanial (Jain et al., 2005), and anti-inflammatory behavior (Chen et al., 2006). Schiff base compounds are typically formed by condensation of an aromatic diamine and a quinolinealdehyde. These kinds of compounds have a wide variety of applications in many fields. For example, their capacity for complexation of transition metals is useful in water treatment (Izatt et al., 1995; Kalcher et al., 1995; Gilmartin et al., 1995). They also serve as intermediates in certain enzymatic reactions and their use as corrosion inhibitors (Ahamad et al., 2010; Negm et al., 2010) shows their importance. The title compound, C33H24N4, is a condensation product of quinolinealdehyde with a bifunctional aromatic diamine. The two 4-methyl-N-[(E)-quinolin-2-ylmethylidene]aniline moieties are nearly planar. A dihedral angle of 77.86 (11)° is found between the mean planes of the benzene rings C11—C12—C13—C14—C15—C16 and C18—C19—C20—C21—C22—C23. The dihedral angle between the mean planes of the attached benzene and quinoline rings is 2.66 (9)° for the groups linked via N2 and 2.57 (9)° for those linked via N3. The corresponding bond lengths and bond angles are similar in both 4-methyl-N-[(E)-quinolin-2-ylmethylidene]aniline moieties. The N2—C10 imine (C=N) bond length of 1.270 (3) Å agrees with similar double bonds usually observed in related compounds (Girija et al., 2004), and it is much shorter than the N2—C11 single C—N bond of 1.425 (2) Å (Gowda et al., 2007).

Related literature top

For the biological and pharmacological activity of quinolines and their derivatives, see: Kidwai et al. (2000); Souza (2005); Musiol et al. (2006); Gómez-Barrio et al. (2006); Vinsova et al. (2008); Jain et al. (2005); Chen et al. (2006). For water treatment applications, see: Izatt et al. (1995); Kalcher et al. (1995); Gilmartin & Hart (1995). For use in corrosion inhibitors, see: Ahamad et al. (2010); Negm et al. (2010). For related structures, see: Girija et al. (2004); Gowda et al. (2007). For the synthesis, see: Issaadi et al. (2005); Ghames et al. (2006); Kaabi et al. (2007).

Experimental top

The studied Schiff base compound was synthesized, as reported in the literature (Issaadi et al., 2005; Ghames et al., 2006; Kaabi et al., 2007), by reacting the mixture of 4,4'-Diaminodiphenyl methane (0.396 mg, 0.002 mol) and 2-quinolinecarboxaldhyde (0.64 mg, 0.004 mol) in 20 ml of boiling ethanol for 5 h. After completion of the reaction the separated solid was filtered, washed with alcohol, and finally recrystallized from ethanol and dried under vacuum. The single crystals suitable for X-ray analysis were obtained by slow evaporation from ethanol-dichloromethane (1:1).

Refinement top

H atoms were included in geometric positions with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) and were refined in riding mode. In the absence of significant anomalous scattering Friedel opposites were merged.

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non–H atoms drawn at the 50% probability level.
4,4'-Methylenebis{N-[(E)-quinolin-2-ylmethylidene]aniline} top
Crystal data top
C33H24N4F(000) = 250
Mr = 476.56Dx = 1.314 Mg m3
Triclinic, P1Melting point: 472 K
a = 4.6051 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.0189 (2) ÅCell parameters from 3977 reflections
c = 22.2172 (8) Åθ = 2.8–27.4°
α = 88.393 (2)°µ = 0.08 mm1
β = 88.521 (2)°T = 293 K
γ = 78.044 (2)°Plate, white
V = 602.09 (4) Å30.10 × 0.07 × 0.02 mm
Z = 1
Data collection top
Bruker APEXII
diffractometer
2415 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.025
Graphite monochromatorθmax = 27.4°, θmin = 3.5°
CCD rotation images, thick slices scansh = 55
9094 measured reflectionsk = 77
2707 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.1098P]
where P = (Fo2 + 2Fc2)/3
2707 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.21 e Å3
3 restraintsΔρmin = 0.16 e Å3
Crystal data top
C33H24N4γ = 78.044 (2)°
Mr = 476.56V = 602.09 (4) Å3
Triclinic, P1Z = 1
a = 4.6051 (2) ÅMo Kα radiation
b = 6.0189 (2) ŵ = 0.08 mm1
c = 22.2172 (8) ÅT = 293 K
α = 88.393 (2)°0.10 × 0.07 × 0.02 mm
β = 88.521 (2)°
Data collection top
Bruker APEXII
diffractometer
2415 reflections with I > 2σ(I)
9094 measured reflectionsRint = 0.025
2707 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.10Δρmax = 0.21 e Å3
2707 reflectionsΔρmin = 0.16 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6501 (4)0.5318 (3)0.77370 (8)0.0237 (4)
N21.0442 (4)0.6798 (3)0.89610 (8)0.0238 (4)
N41.0206 (4)0.2145 (3)1.38522 (9)0.0268 (4)
C50.2926 (5)0.8583 (4)0.73373 (10)0.0253 (5)
C100.9472 (5)0.5623 (4)0.85769 (10)0.0247 (5)
H101.02070.40630.85690.03*
C241.3130 (5)0.1462 (4)1.29921 (10)0.0278 (5)
H241.20050.00071.29570.033*
C171.9310 (5)0.3232 (4)1.07135 (10)0.0269 (5)
H17A1.99710.45041.08840.032*
H17B2.10150.22791.0520.032*
N31.5292 (4)0.2108 (3)1.26316 (8)0.0276 (4)
C211.6114 (5)0.0656 (4)1.21714 (10)0.0253 (5)
C290.9465 (5)0.3569 (4)1.42954 (10)0.0248 (5)
C90.7206 (5)0.6683 (4)0.81435 (10)0.0228 (5)
C121.3477 (5)0.7218 (4)0.97880 (10)0.0258 (5)
H121.25860.87540.97770.031*
C60.4393 (5)0.6264 (4)0.73269 (10)0.0228 (5)
C111.2656 (4)0.5772 (4)0.93764 (9)0.0219 (5)
C251.2375 (5)0.3021 (4)1.34684 (10)0.0258 (5)
C161.4071 (5)0.3483 (4)0.93972 (10)0.0251 (5)
H161.35650.24880.91250.03*
C281.0849 (5)0.5901 (4)1.43483 (10)0.0265 (5)
C151.6231 (5)0.2676 (4)0.98216 (10)0.0250 (5)
H151.71680.11510.98260.03*
C221.8462 (5)0.1645 (4)1.17962 (10)0.0272 (5)
H221.93670.31621.18590.033*
C40.0736 (5)0.9418 (4)0.69045 (11)0.0327 (5)
H40.02491.09320.69110.039*
C70.3754 (5)0.9952 (4)0.77817 (10)0.0296 (5)
H70.28311.14760.78040.035*
C80.5909 (5)0.9030 (4)0.81772 (10)0.0267 (5)
H80.65190.99230.84640.032*
C131.5611 (5)0.6402 (4)1.02157 (10)0.0262 (5)
H131.6110.73971.04890.031*
C330.9868 (5)0.7265 (4)1.48092 (11)0.0309 (5)
H331.07420.881.48430.037*
C320.7644 (6)0.6344 (4)1.52053 (11)0.0340 (6)
H320.7020.72541.55060.041*
C300.7182 (5)0.2664 (4)1.47154 (11)0.0301 (5)
H300.62770.11341.46890.036*
C10.3662 (5)0.4863 (4)0.68751 (10)0.0272 (5)
H10.46370.33490.68570.033*
C141.7009 (5)0.4130 (4)1.02415 (10)0.0237 (5)
C191.5822 (5)0.2860 (4)1.15999 (10)0.0273 (5)
H191.49270.4381.15370.033*
C231.9483 (5)0.0403 (4)1.13279 (11)0.0286 (5)
H232.10620.10981.10830.034*
C30.0056 (5)0.8029 (5)0.64793 (12)0.0359 (6)
H30.13850.86010.61980.043*
C20.1522 (5)0.5731 (4)0.64641 (11)0.0322 (5)
H20.10370.47950.61730.039*
C181.8167 (5)0.1865 (4)1.12220 (10)0.0240 (5)
C271.3166 (5)0.6745 (4)1.39298 (10)0.0304 (5)
H271.41410.8261.39510.036*
C261.3957 (5)0.5313 (4)1.34953 (10)0.0287 (5)
H261.54990.5831.32230.034*
C201.4791 (5)0.1629 (4)1.20683 (10)0.0276 (5)
H201.32180.23261.23140.033*
C310.6299 (5)0.4020 (4)1.51582 (11)0.0333 (5)
H310.47990.34041.5430.04*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0219 (9)0.0260 (9)0.0232 (9)0.0050 (8)0.0006 (7)0.0012 (7)
N20.0213 (9)0.0274 (10)0.0233 (9)0.0064 (8)0.0020 (7)0.0009 (7)
N40.0286 (10)0.0285 (10)0.0242 (10)0.0084 (8)0.0018 (8)0.0014 (8)
C50.0194 (11)0.0292 (12)0.0257 (11)0.0026 (9)0.0053 (9)0.0032 (9)
C100.0232 (11)0.0251 (11)0.0245 (11)0.0025 (9)0.0016 (9)0.0010 (9)
C240.0323 (13)0.0281 (11)0.0241 (11)0.0085 (10)0.0032 (10)0.0005 (9)
C170.0204 (11)0.0363 (13)0.0259 (11)0.0107 (10)0.0012 (9)0.0023 (10)
N30.0275 (11)0.0335 (11)0.0222 (10)0.0072 (9)0.0013 (8)0.0007 (8)
C210.0258 (12)0.0319 (12)0.0203 (11)0.0097 (10)0.0038 (9)0.0018 (9)
C290.0239 (11)0.0304 (12)0.0217 (11)0.0090 (9)0.0054 (9)0.0014 (9)
C90.0195 (11)0.0278 (12)0.0210 (10)0.0051 (9)0.0048 (9)0.0007 (9)
C120.0229 (11)0.0246 (11)0.0301 (12)0.0055 (9)0.0025 (9)0.0042 (9)
C60.0185 (11)0.0269 (12)0.0230 (11)0.0056 (9)0.0055 (8)0.0025 (9)
C110.0196 (11)0.0276 (12)0.0196 (10)0.0079 (9)0.0028 (8)0.0010 (9)
C250.0299 (12)0.0303 (12)0.0195 (10)0.0109 (10)0.0045 (9)0.0002 (9)
C160.0258 (12)0.0281 (12)0.0225 (11)0.0074 (9)0.0016 (9)0.0052 (9)
C280.0286 (12)0.0291 (12)0.0240 (11)0.0101 (9)0.0066 (9)0.0000 (9)
C150.0222 (11)0.0259 (11)0.0265 (11)0.0038 (9)0.0006 (9)0.0007 (9)
C220.0261 (12)0.0281 (12)0.0265 (12)0.0036 (9)0.0007 (10)0.0017 (9)
C40.0241 (12)0.0336 (13)0.0367 (13)0.0010 (10)0.0018 (10)0.0072 (10)
C70.0297 (13)0.0248 (12)0.0313 (12)0.0001 (10)0.0067 (10)0.0004 (9)
C80.0301 (12)0.0265 (11)0.0229 (11)0.0043 (9)0.0038 (9)0.0046 (9)
C130.0238 (11)0.0331 (13)0.0239 (11)0.0105 (10)0.0005 (9)0.0055 (9)
C330.0335 (14)0.0297 (12)0.0311 (13)0.0101 (11)0.0069 (10)0.0057 (10)
C320.0382 (14)0.0379 (13)0.0296 (12)0.0175 (11)0.0027 (10)0.0092 (10)
C300.0290 (12)0.0337 (12)0.0283 (11)0.0075 (10)0.0024 (9)0.0005 (9)
C10.0253 (11)0.0307 (12)0.0259 (11)0.0072 (9)0.0015 (9)0.0008 (9)
C140.0170 (10)0.0346 (13)0.0210 (10)0.0094 (9)0.0046 (8)0.0017 (9)
C190.0260 (12)0.0300 (12)0.0258 (11)0.0060 (9)0.0024 (9)0.0015 (9)
C230.0233 (11)0.0365 (13)0.0263 (11)0.0063 (10)0.0040 (9)0.0075 (10)
C30.0251 (12)0.0507 (16)0.0315 (12)0.0080 (11)0.0064 (10)0.0125 (11)
C20.0289 (12)0.0443 (14)0.0262 (12)0.0145 (11)0.0013 (9)0.0013 (10)
C180.0175 (10)0.0363 (12)0.0201 (10)0.0098 (9)0.0032 (8)0.0013 (9)
C270.0349 (13)0.0259 (11)0.0294 (12)0.0033 (10)0.0062 (10)0.0006 (9)
C260.0315 (12)0.0321 (12)0.0218 (10)0.0049 (10)0.0005 (9)0.0030 (9)
C200.0240 (11)0.0347 (12)0.0233 (11)0.0043 (9)0.0020 (9)0.0021 (9)
C310.0302 (13)0.0433 (14)0.0283 (12)0.0124 (11)0.0005 (10)0.0003 (10)
Geometric parameters (Å, º) top
N1—C91.328 (3)C28—C331.418 (3)
N1—C61.373 (3)C15—C141.399 (3)
N2—C101.270 (3)C15—H150.93
N2—C111.424 (3)C22—C231.393 (3)
N4—C251.329 (3)C22—H220.93
N4—C291.370 (3)C4—C31.363 (4)
C5—C71.412 (3)C4—H40.93
C5—C41.417 (3)C7—C81.362 (3)
C5—C61.420 (3)C7—H70.93
C10—C91.471 (3)C8—H80.93
C10—H100.93C13—C141.386 (3)
C24—N31.265 (3)C13—H130.93
C24—C251.477 (3)C33—C321.370 (4)
C24—H240.93C33—H330.93
C17—C141.517 (3)C32—C311.409 (4)
C17—C181.526 (3)C32—H320.93
C17—H17A0.97C30—C311.368 (3)
C17—H17B0.97C30—H300.93
N3—C211.421 (3)C1—C21.373 (3)
C21—C221.390 (3)C1—H10.93
C21—C201.399 (3)C19—C201.391 (3)
C29—C301.419 (3)C19—C181.394 (3)
C29—C281.419 (3)C19—H190.93
C9—C81.418 (3)C23—C181.390 (3)
C12—C131.390 (3)C23—H230.93
C12—C111.392 (3)C3—C21.408 (4)
C12—H120.93C3—H30.93
C6—C11.419 (3)C2—H20.93
C11—C161.397 (3)C27—C261.368 (3)
C25—C261.421 (3)C27—H270.93
C16—C151.392 (3)C26—H260.93
C16—H160.93C20—H200.93
C28—C271.418 (3)C31—H310.93
C9—N1—C6117.22 (19)C3—C4—H4119.6
C10—N2—C11121.13 (17)C5—C4—H4119.6
C25—N4—C29117.13 (19)C8—C7—C5119.7 (2)
C7—C5—C4123.2 (2)C8—C7—H7120.1
C7—C5—C6117.7 (2)C5—C7—H7120.1
C4—C5—C6119.1 (2)C7—C8—C9118.8 (2)
N2—C10—C9121.21 (18)C7—C8—H8120.6
N2—C10—H10119.4C9—C8—H8120.6
C9—C10—H10119.4C14—C13—C12121.1 (2)
N3—C24—C25120.6 (2)C14—C13—H13119.4
N3—C24—H24119.7C12—C13—H13119.4
C25—C24—H24119.7C32—C33—C28120.6 (2)
C14—C17—C18113.55 (17)C32—C33—H33119.7
C14—C17—H17A108.9C28—C33—H33119.7
C18—C17—H17A108.9C33—C32—C31120.2 (2)
C14—C17—H17B108.9C33—C32—H32119.9
C18—C17—H17B108.9C31—C32—H32119.9
H17A—C17—H17B107.7C31—C30—C29120.7 (2)
C24—N3—C21122.4 (2)C31—C30—H30119.7
C22—C21—C20118.4 (2)C29—C30—H30119.7
C22—C21—N3115.5 (2)C2—C1—C6120.3 (2)
C20—C21—N3126.1 (2)C2—C1—H1119.8
N4—C29—C30118.1 (2)C6—C1—H1119.8
N4—C29—C28123.1 (2)C13—C14—C15118.2 (2)
C30—C29—C28118.8 (2)C13—C14—C17121.1 (2)
N1—C9—C8124.0 (2)C15—C14—C17120.7 (2)
N1—C9—C10116.01 (18)C20—C19—C18121.4 (2)
C8—C9—C10120.03 (18)C20—C19—H19119.3
C13—C12—C11121.0 (2)C18—C19—H19119.3
C13—C12—H12119.5C18—C23—C22120.7 (2)
C11—C12—H12119.5C18—C23—H23119.7
N1—C6—C5122.56 (19)C22—C23—H23119.7
N1—C6—C1118.5 (2)C4—C3—C2120.4 (2)
C5—C6—C1118.9 (2)C4—C3—H3119.8
C12—C11—C16118.22 (19)C2—C3—H3119.8
C12—C11—N2115.96 (19)C1—C2—C3120.5 (2)
C16—C11—N2125.81 (18)C1—C2—H2119.7
N4—C25—C26124.0 (2)C3—C2—H2119.7
N4—C25—C24116.30 (19)C23—C18—C19118.2 (2)
C26—C25—C24119.7 (2)C23—C18—C17120.7 (2)
C15—C16—C11120.7 (2)C19—C18—C17121.1 (2)
C15—C16—H16119.7C26—C27—C28119.5 (2)
C11—C16—H16119.7C26—C27—H27120.2
C27—C28—C33123.3 (2)C28—C27—H27120.2
C27—C28—C29117.5 (2)C27—C26—C25118.7 (2)
C33—C28—C29119.2 (2)C27—C26—H26120.6
C16—C15—C14120.9 (2)C25—C26—H26120.6
C16—C15—H15119.6C19—C20—C21120.2 (2)
C14—C15—H15119.6C19—C20—H20119.9
C21—C22—C23121.1 (2)C21—C20—H20119.9
C21—C22—H22119.4C30—C31—C32120.5 (2)
C23—C22—H22119.4C30—C31—H31119.7
C3—C4—C5120.8 (2)C32—C31—H31119.7

Experimental details

Crystal data
Chemical formulaC33H24N4
Mr476.56
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.6051 (2), 6.0189 (2), 22.2172 (8)
α, β, γ (°)88.393 (2), 88.521 (2), 78.044 (2)
V3)602.09 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.10 × 0.07 × 0.02
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9094, 2707, 2415
Rint0.025
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.10
No. of reflections2707
No. of parameters335
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thanks Dr Lahcène Ouahab for the data collection at the Centre de Diffractomtétrie de l'Université de Rennes 1 CDiFX.

References

First citationAhamad, I., Prasad, R. & Quraishi, M. A. (2010). Corros. Sci. 52, 933–942.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2002). APEX2, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373–4378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGhames, A., Douadi, T., Haffar, D., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2006). Polyhedron, 25, 3201–3208.  Web of Science CSD CrossRef CAS Google Scholar
First citationGilmartin, M. A. T. & Hart, J. P. (1995). Analyst, 120, 1029–1045.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGirija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586–o588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGómez-Barrio, A., Montero-Pereira, D., Nogal-Ruiz, J. J., Escario, J. A., Muelas-Serrano, S., Kouznetsov, V. V., Vargas Mendez, L. Y., Urbina González, J. M. & Ochoa, C. (2006). Acta Parasitol. 51, 73–78.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIssaadi, S., Haffar, D., Douadi, T., Chafaa, S., Séraphin, D., Khan, M. A. & Bouet, G. M. (2005). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 35, 875–882.  CrossRef CAS Google Scholar
First citationIzatt, R. M., Pawlak, M. K. & Bardshaw, I. S. (1995). Chem. Rev. 95, 2529–2586.  CrossRef CAS Web of Science Google Scholar
First citationJain, M., Khan, S., Tekwani, B., Jacob, M., Singh, S., Singh, B. & Jain, R. (2005). Bioorg. Med. Chem. 13, 4458–4466.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaabi, I., Haffar, D., Douadi, T., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2007). Transition Met. Chem. 32, 666–673.  CSD CrossRef CAS Google Scholar
First citationKalcher, K., Kauffman, J. M., Wank, J., Vaneare, I. S., Vitras, K., Neuhal, C. & Yang, Z. (1995). Electroanalysis, 7, 5–22.  CrossRef CAS Web of Science Google Scholar
First citationKidwai, M., Bhushan, K., Sapra, P., Saxena, R. & Gupta, R. (2000). Bioorg. Med. Chem. 8, 69–72.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Niebala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNegm, N. A., Elkholy, Y. M., Zahran, M. K. & Tawfik, S. M. (2010). Corros. Sci. 52, 3523–3536.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. (2005). Mini Rev. Med. Chem. 5, 1009–1017.  Web of Science PubMed Google Scholar
First citationVinsova, J., Imramovsky, A., Jampilek, J., Monreal-Ferriz, J. & Dolezal, M. (2008). Anti-Infect. Agent. Med. Chem. 7, 12–31.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds