organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-(4-chloro­benz­yl)-3-(4-fluoro­phen­yl)-1H-pyrazole-5-carboxyl­ate

aTaishan Medical College, Tai an, 271016, People's Republic of China
*Correspondence e-mail: yqge@yahoo.cn

(Received 20 April 2011; accepted 6 May 2011; online 11 May 2011)

In the title compound, C19H16ClFN2O2, the pyrazole ring makes dihedral angles of 5.15 (6) and 77.72 (6)°, with the fluoro­phenyl and chloro­phenyl rings, respectively.

Related literature

For the pharmacological activity of pyrazole compounds, see: Ge et al. (2007[Ge, Y.-Q., Dong, W.-L., Xia, Y., Wei, F. & Zhao, B.-X. (2007). Acta Cryst. E63, o1313-o1314.]). For the synthesis of the title compound, see: Li et al. (2011[Li, Y.-Q., Jia, B.-X., Xiao, Y.-L. & Guo, F.-G. (2011). Acta Cryst. E67, o468.]). For the structure of ethyl 1-benzyl-3-(4-fluoro­phen­yl)-1H-pyrazole-5-carboxyl­ate, see: Han et al. (2011[Han, Z., Zheng, H.-L. & Tian, X.-L. (2011). Acta Cryst. E67, o511.]). For applications of nitro­gen-containing heterocyclic compounds, see: Ge et al. (2009[Ge, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). Heterocycles, 78, 197-206.], 2011[Ge, Y. Q., Jia, J., Yang, H., Tao, X. T. & Wang, J. W. (2011). Dyes Pigm. 88, 344-349.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16ClFN2O2

  • Mr = 358.79

  • Triclinic, [P \overline 1]

  • a = 8.267 (4) Å

  • b = 10.375 (5) Å

  • c = 11.368 (5) Å

  • α = 109.128 (7)°

  • β = 93.269 (7)°

  • γ = 104.842 (7)°

  • V = 879.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.22 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.974

  • 4589 measured reflections

  • 3091 independent reflections

  • 2570 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.05

  • 3091 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Synthesis of nitrogen-containing heterocyclic compounds has been a subject of great interest due to their applications in the agrochemical and pharmaceutical fields (Ge et al., 2009, 2011). Some pyrazole derivatives which belong to this category have been of interest for their biological activities. Considerable effort has been devoted to the development of novel pyrazole compounds. We report here the crystal structure of the title compound, (I) (Fig. 1)

Related literature top

For the pharmacological activity of pyrazole compounds, see: Ge et al. (2007). For the synthesis of the title compound, see: Li et al. (2011). For the structure of ethyl 1-benzyl-3-(4-fluorophenyl)-1H-pyrazole-5-carboxylate, see: Han et al. (2011). For applications of nitrogen-containing heterocyclic compounds, see: Ge et al. (2009, 2011).

Experimental top

A mixture of ethyl 3-(4-fluorophenyl)-1H-pyrazole-5-carboxylate (0.02 mol), 1-chloro-4-(chloromethyl)benzene (0.0024 mol) and potassium carbonate (0.02 mol) in acetonitrile (100 ml) was heated to reflux for 3 h. The solvent was removed under reduced pressure and the product was isolated by column chromatography on silica gel (yield 88%). Crystals of (I) suitable for X-ray diffraction were obtained by allowing a refluxed solution of the product in ethyl acetate to cool slowly to room temperature and allowing the solvent to evaporate for 1 d.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups) and 0.96 Å (for CH3 groups), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH3 groups) the equivalent displacement parameter of their parent atoms.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
Ethyl 1-(4-chlorobenzyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxylate top
Crystal data top
C19H16ClFN2O2Z = 2
Mr = 358.79F(000) = 372
Triclinic, P1Dx = 1.354 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.267 (4) ÅCell parameters from 2637 reflections
b = 10.375 (5) Åθ = 2.3–28.0°
c = 11.368 (5) ŵ = 0.24 mm1
α = 109.128 (7)°T = 298 K
β = 93.269 (7)°Block, colourless
γ = 104.842 (7)°0.22 × 0.14 × 0.11 mm
V = 879.8 (7) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3091 independent reflections
Radiation source: fine-focus sealed tube2570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.949, Tmax = 0.974k = 712
4589 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.1997P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3091 reflectionsΔρmax = 0.20 e Å3
227 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.377 (15)
Crystal data top
C19H16ClFN2O2γ = 104.842 (7)°
Mr = 358.79V = 879.8 (7) Å3
Triclinic, P1Z = 2
a = 8.267 (4) ÅMo Kα radiation
b = 10.375 (5) ŵ = 0.24 mm1
c = 11.368 (5) ÅT = 298 K
α = 109.128 (7)°0.22 × 0.14 × 0.11 mm
β = 93.269 (7)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3091 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2570 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.974Rint = 0.017
4589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
3091 reflectionsΔρmin = 0.32 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.50553 (8)0.97753 (7)0.28534 (7)0.0902 (3)
F10.58679 (18)0.70217 (16)1.03659 (11)0.0901 (4)
O10.8333 (2)0.38223 (15)0.13974 (12)0.0730 (4)
O20.85036 (17)0.24464 (14)0.25387 (12)0.0635 (4)
N10.76250 (18)0.58191 (16)0.36486 (13)0.0520 (4)
N20.72669 (19)0.64677 (16)0.47978 (13)0.0538 (4)
C11.2960 (3)0.8828 (2)0.28289 (19)0.0623 (5)
C21.2032 (3)0.7838 (2)0.17127 (17)0.0613 (5)
H21.25100.76630.09760.074*
C31.0381 (3)0.7106 (2)0.17021 (16)0.0581 (5)
H30.97500.64300.09490.070*
C40.9639 (2)0.73540 (19)0.27895 (15)0.0530 (4)
C51.0613 (3)0.8359 (2)0.39014 (17)0.0665 (5)
H51.01420.85370.46410.080*
C61.2269 (3)0.9101 (2)0.39306 (19)0.0735 (6)
H61.29100.97740.46810.088*
C70.7810 (2)0.6583 (2)0.27612 (17)0.0589 (5)
H7A0.71680.72690.29680.071*
H7B0.73420.59100.19160.071*
C80.7893 (2)0.45469 (18)0.35425 (15)0.0489 (4)
C90.7673 (2)0.43606 (18)0.46724 (15)0.0502 (4)
H90.77640.35900.48900.060*
C100.7285 (2)0.55756 (18)0.54247 (15)0.0480 (4)
C110.6912 (2)0.59545 (18)0.67292 (15)0.0490 (4)
C120.7055 (2)0.5107 (2)0.74363 (17)0.0599 (5)
H120.73900.42910.70820.072*
C130.6705 (3)0.5465 (2)0.86630 (18)0.0663 (5)
H130.67980.48960.91330.080*
C140.6221 (2)0.6670 (2)0.91642 (17)0.0633 (5)
C150.6065 (3)0.7534 (2)0.85037 (18)0.0642 (5)
H150.57330.83490.88700.077*
C160.6412 (2)0.7171 (2)0.72777 (17)0.0564 (4)
H160.63090.77470.68170.068*
C170.8260 (2)0.35999 (19)0.23761 (16)0.0535 (4)
C180.8920 (3)0.1438 (2)0.1458 (2)0.0723 (6)
H18A0.98890.19200.11610.087*
H18B0.79700.10140.07760.087*
C190.9320 (3)0.0317 (3)0.1868 (3)0.0882 (7)
H19A1.02430.07510.25550.132*
H19B0.96310.03510.11770.132*
H19C0.83430.01710.21360.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0733 (4)0.0979 (5)0.1037 (5)0.0228 (3)0.0231 (3)0.0415 (4)
F10.1132 (10)0.1118 (10)0.0493 (7)0.0361 (8)0.0303 (6)0.0283 (7)
O10.1059 (11)0.0717 (9)0.0482 (8)0.0343 (8)0.0217 (7)0.0219 (7)
O20.0808 (9)0.0592 (8)0.0567 (8)0.0294 (7)0.0222 (6)0.0198 (6)
N10.0610 (9)0.0581 (9)0.0442 (8)0.0220 (7)0.0137 (6)0.0229 (7)
N20.0632 (9)0.0583 (9)0.0459 (8)0.0234 (7)0.0151 (6)0.0206 (7)
C10.0701 (12)0.0634 (11)0.0642 (12)0.0276 (9)0.0183 (9)0.0292 (10)
C20.0821 (13)0.0669 (12)0.0503 (10)0.0354 (10)0.0256 (9)0.0277 (9)
C30.0814 (13)0.0575 (10)0.0414 (9)0.0275 (9)0.0134 (8)0.0192 (8)
C40.0727 (11)0.0539 (10)0.0438 (9)0.0274 (9)0.0146 (8)0.0240 (8)
C50.0851 (14)0.0716 (13)0.0418 (10)0.0225 (11)0.0198 (9)0.0173 (9)
C60.0840 (15)0.0748 (14)0.0507 (11)0.0163 (11)0.0079 (10)0.0139 (10)
C70.0733 (12)0.0672 (11)0.0492 (10)0.0293 (9)0.0124 (8)0.0300 (9)
C80.0494 (9)0.0522 (9)0.0449 (9)0.0146 (7)0.0074 (7)0.0171 (7)
C90.0546 (10)0.0512 (9)0.0475 (9)0.0162 (8)0.0088 (7)0.0202 (8)
C100.0473 (9)0.0538 (10)0.0433 (9)0.0134 (7)0.0071 (7)0.0188 (7)
C110.0463 (9)0.0546 (10)0.0445 (9)0.0117 (7)0.0068 (7)0.0180 (8)
C120.0726 (12)0.0609 (11)0.0502 (10)0.0217 (9)0.0130 (8)0.0225 (9)
C130.0807 (13)0.0731 (13)0.0521 (11)0.0215 (11)0.0138 (9)0.0315 (10)
C140.0646 (11)0.0799 (13)0.0419 (9)0.0145 (10)0.0134 (8)0.0212 (9)
C150.0692 (12)0.0685 (12)0.0543 (11)0.0262 (10)0.0157 (9)0.0152 (9)
C160.0624 (11)0.0623 (11)0.0501 (10)0.0222 (9)0.0123 (8)0.0236 (8)
C170.0549 (10)0.0546 (10)0.0478 (10)0.0135 (8)0.0097 (7)0.0157 (8)
C180.0880 (14)0.0623 (12)0.0657 (12)0.0312 (11)0.0238 (10)0.0125 (10)
C190.0947 (17)0.0722 (14)0.112 (2)0.0396 (13)0.0408 (14)0.0357 (14)
Geometric parameters (Å, º) top
Cl1—C11.753 (2)C8—C91.375 (2)
F1—C141.363 (2)C8—C171.470 (2)
O1—C171.210 (2)C9—C101.398 (2)
O2—C171.331 (2)C9—H90.9300
O2—C181.454 (2)C10—C111.477 (2)
N1—N21.348 (2)C11—C161.390 (3)
N1—C81.362 (2)C11—C121.392 (2)
N1—C71.466 (2)C12—C131.388 (3)
N2—C101.343 (2)C12—H120.9300
C1—C21.373 (3)C13—C141.366 (3)
C1—C61.381 (3)C13—H130.9300
C2—C31.379 (3)C14—C151.368 (3)
C2—H20.9300C15—C161.387 (3)
C3—C41.389 (2)C15—H150.9300
C3—H30.9300C16—H160.9300
C4—C51.387 (3)C18—C191.488 (3)
C4—C71.512 (3)C18—H18A0.9700
C5—C61.380 (3)C18—H18B0.9700
C5—H50.9300C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C7—H7A0.9700C19—H19C0.9600
C7—H7B0.9700
C17—O2—C18115.92 (15)N2—C10—C11119.71 (15)
N2—N1—C8111.63 (13)C9—C10—C11129.52 (15)
N2—N1—C7118.43 (15)C16—C11—C12118.60 (17)
C8—N1—C7129.72 (15)C16—C11—C10120.50 (16)
C10—N2—N1105.41 (14)C12—C11—C10120.90 (16)
C2—C1—C6121.27 (19)C13—C12—C11120.85 (19)
C2—C1—Cl1119.37 (15)C13—C12—H12119.6
C6—C1—Cl1119.37 (17)C11—C12—H12119.6
C1—C2—C3118.90 (17)C14—C13—C12118.54 (18)
C1—C2—H2120.6C14—C13—H13120.7
C3—C2—H2120.6C12—C13—H13120.7
C2—C3—C4121.55 (17)F1—C14—C13118.73 (19)
C2—C3—H3119.2F1—C14—C15118.72 (19)
C4—C3—H3119.2C13—C14—C15122.55 (18)
C5—C4—C3118.05 (18)C14—C15—C16118.70 (19)
C5—C4—C7120.71 (16)C14—C15—H15120.6
C3—C4—C7121.22 (16)C16—C15—H15120.6
C6—C5—C4121.21 (18)C15—C16—C11120.75 (18)
C6—C5—H5119.4C15—C16—H16119.6
C4—C5—H5119.4C11—C16—H16119.6
C5—C6—C1119.02 (19)O1—C17—O2124.03 (17)
C5—C6—H6120.5O1—C17—C8125.40 (18)
C1—C6—H6120.5O2—C17—C8110.57 (15)
N1—C7—C4112.17 (14)O2—C18—C19107.60 (18)
N1—C7—H7A109.2O2—C18—H18A110.2
C4—C7—H7A109.2C19—C18—H18A110.2
N1—C7—H7B109.2O2—C18—H18B110.2
C4—C7—H7B109.2C19—C18—H18B110.2
H7A—C7—H7B107.9H18A—C18—H18B108.5
N1—C8—C9106.76 (15)C18—C19—H19A109.5
N1—C8—C17122.96 (15)C18—C19—H19B109.5
C9—C8—C17130.22 (17)H19A—C19—H19B109.5
C8—C9—C10105.43 (15)C18—C19—H19C109.5
C8—C9—H9127.3H19A—C19—H19C109.5
C10—C9—H9127.3H19B—C19—H19C109.5
N2—C10—C9110.77 (15)
C8—N1—N2—C100.88 (18)C8—C9—C10—N20.08 (19)
C7—N1—N2—C10175.99 (14)C8—C9—C10—C11179.54 (16)
C6—C1—C2—C30.1 (3)N2—C10—C11—C165.1 (2)
Cl1—C1—C2—C3179.55 (14)C9—C10—C11—C16174.51 (17)
C1—C2—C3—C40.3 (3)N2—C10—C11—C12174.77 (16)
C2—C3—C4—C50.5 (3)C9—C10—C11—C125.6 (3)
C2—C3—C4—C7177.88 (16)C16—C11—C12—C130.1 (3)
C3—C4—C5—C60.4 (3)C10—C11—C12—C13179.94 (17)
C7—C4—C5—C6177.99 (18)C11—C12—C13—C140.2 (3)
C4—C5—C6—C10.1 (3)C12—C13—C14—F1179.67 (17)
C2—C1—C6—C50.0 (3)C12—C13—C14—C150.2 (3)
Cl1—C1—C6—C5179.45 (16)F1—C14—C15—C16179.51 (17)
N2—N1—C7—C495.64 (18)C13—C14—C15—C160.0 (3)
C8—N1—C7—C478.4 (2)C14—C15—C16—C110.1 (3)
C5—C4—C7—N157.5 (2)C12—C11—C16—C150.1 (3)
C3—C4—C7—N1124.17 (18)C10—C11—C16—C15179.79 (16)
N2—N1—C8—C90.85 (19)C18—O2—C17—O11.5 (3)
C7—N1—C8—C9175.25 (16)C18—O2—C17—C8178.52 (16)
N2—N1—C8—C17178.25 (15)N1—C8—C17—O11.4 (3)
C7—N1—C8—C177.3 (3)C9—C8—C17—O1175.33 (19)
N1—C8—C9—C100.45 (18)N1—C8—C17—O2178.63 (15)
C17—C8—C9—C10177.60 (17)C9—C8—C17—O24.6 (3)
N1—N2—C10—C90.57 (18)C17—O2—C18—C19174.11 (17)
N1—N2—C10—C11179.09 (14)

Experimental details

Crystal data
Chemical formulaC19H16ClFN2O2
Mr358.79
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.267 (4), 10.375 (5), 11.368 (5)
α, β, γ (°)109.128 (7), 93.269 (7), 104.842 (7)
V3)879.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.22 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.949, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
4589, 3091, 2570
Rint0.017
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.05
No. of reflections3091
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.32

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This study was supported by the Natural Science Foundation of Shandong Province (Y2007C135).

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGe, Y.-Q., Dong, W.-L., Xia, Y., Wei, F. & Zhao, B.-X. (2007). Acta Cryst. E63, o1313–o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGe, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). Heterocycles, 78, 197–206.  CAS Google Scholar
First citationGe, Y. Q., Jia, J., Yang, H., Tao, X. T. & Wang, J. W. (2011). Dyes Pigm. 88, 344-349.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, Z., Zheng, H.-L. & Tian, X.-L. (2011). Acta Cryst. E67, o511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-Q., Jia, B.-X., Xiao, Y.-L. & Guo, F.-G. (2011). Acta Cryst. E67, o468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds