organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1445-o1446

7-Chloro-5-cyclo­propyl-9-methyl-5H-4,5,6,10-tetra­aza­dibenzo[a,d]cyclo­hepten-11(10H)-one

aDepartment of Physics, Sri Bhagawan Mahaveer Jain College of Engineering, Jain University, Bangalore 562 112, India, bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, cDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and dSri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, 515 134, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 16 April 2011; accepted 12 May 2011; online 20 May 2011)

In the title compound, C15H13ClN4O, which is a chloro derivative of the drug Nevirapine, the diazepine ring is in a twisted boat conformation. The pyridine rings fused to the diazepine fragment form a dihedral angle of 58.44 (10)° and the mol­ecule adopts a butterfly shape. The mol­ecules are joined via N—H⋯N hydrogen bonding into polymeric chains down the b axis. All weaker C—H⋯O inter­actions involve the carbonyl O atom as acceptor.

Related literature

For background to the chemistry of azepines, see: Le Count (1996[Le Count, D. J. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 9, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 1-44. Oxford: Pergamon Press.]). The title compound is a chloro derivative of the anti-HIV drug nevirapine (systematic name 11-cyclo­propyl-4-methyl-5,11-dihydro-6H-dipyrido[3,2-b:2′,3′-e][1,4]diazepin-6-one) and was synthesised as a basic scaffold, see: Matsumoto et al. (1984[Matsumoto, J., Miyamoto, T., Minamida, A., Nishimura, Y., Egawa, H. & Nishimura, H. (1984). J. Heterocycl. Chem. 21, 673-679.]). We have also synthesized its derivatives and tested for secretory phospho­lipase A2 with anti-inflammatory activity, see: Thimmegowda et al. (2007[Thimmegowda, N. R., Dharmappa, K. K., Ananda Kumar, C. S., Sadashiva, M. P., Sathish, A. D., Nanda, B. L., Vishwanath, B. S. & Rangappa, K. S. (2007). Curr. Top. Med. Chem. 7, 811-820.]). For a related structure, see: Thimmegowda et al. (2008[Thimmegowda, N. R., Sarala, G., Ananda Kumar, C. S., Chandrappa, S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2008). Mol. Cryst. Liq. Cryst. 482, 135-144.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN4O

  • Mr = 300.74

  • Orthorhombic, P b c a

  • a = 12.7750 (6) Å

  • b = 13.5870 (7) Å

  • c = 16.4920 (9) Å

  • V = 2862.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.27 × 0.25 × 0.25 mm

Data collection
  • MacScience DIPLabo 32001 diffractometer

  • 4721 measured reflections

  • 2525 independent reflections

  • 2155 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.03

  • 2525 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯N14i 0.86 2.16 2.963 (2) 155
C5—H5⋯O21ii 0.93 2.54 3.308 (2) 140
C11—H11⋯O21iii 0.93 2.58 3.193 (2) 124
C16—H16⋯O21iv 0.98 2.52 3.492 (2) 171
C20—H20A⋯O21ii 0.96 2.58 3.412 (3) 145
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) -x, -y, -z; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: XPRESS (MacScience, 2002[MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by Carter, C. W. Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by Carter, C. W. Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The investigation of the chemistry of azepines continues to be an active area of heterocyclic chemistry (Le Count, 1996). The title diazepine compound is a chloro derivative of the well known anti-HIV drug Nevirapine. The drug Nevirapine is the first human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase (RT) inhibitor to reach regulatory approval. The title compound has been synthesized as a basic scaffold as reported earlier (Matsumoto et al., 1984). We have also synthesized its derivatives and tested for secretory phospholipase A2 with anti-inflammatory activity (Thimmegowda et al., 2007). We have identified a few derivatives with good activity. In view of this we have crystallized the title compound and finally the structure was confirmed by the X-ray diffraction studies.

A perspective view of the title molecule is shown in Fig. 1. The atoms N1 and N8 deviate -0.4953 (16) Å and -0.2666 (17) Å respectively with respect to the Cremer and Pople plane (Cremer & Pople, 1975) defined by the atoms C7/C9/C10/C15/C2 of the diazepine ring. The diazepine ring in the molecule adopts a twisted boat conformation as indicated by the puckering parameters Q2 = 0.8015 (18) Å, Q3 = 0.1262 (19) Å, ϕ2 = 182.80 (14)°, ϕ3 = 181.4 (9)°, and the total puckering amplitude QT = 0.8111 (18) Å. Chloromethylpyridine and pyridine units are planar with a maximum deviation of -0.015 (2) Å and 0.019 (2) Å for the atoms C7 and C12, respectively. As a result of the twisted boat conformation of the diazepine ring the molecule as a whole adopts a butterfly shape which is essential for the association of the inhibition pocket. The dihedral angle between the least squares planes of the pyridine N3/C4/C5/C6/C7/C2 and the best plane of the seven membered diaazepine ring C7/N8/C9/C10/C15/N1/C2 is 30.23 (9)°, and that between the diazepine ring and the pyridine ring C10/C11/C12/C13/N14/C15 is 28.49 (9)°.

The pyridine and the keto group at C10 and C9 are gauche oriented with respect to each other as indicated by the C11—C10—C9—O21 torsion angle value of 32.8 (3)° . The C15—N1—C16—C17 torsion angle for the cyclopropyl ring of -77.4 (2)° indicates that the cyclopropyl ring is in equatorial position with respect to the diazepine ring. This value is low when compared to the corresponding value of 90.60 (2)° reported earlier (Thimmegowda et al., 2008). The C9–N8 = 1.352 (2) Å bond length in the seven membered ring system is longer than a typical C=N bond (1.28 Å), but shorter than the C–N bond (C–N = 1.47 Å). The bond lengths N1–C15 = 1.416 (2) Å, N1–C2 =1.419 (2) Å, C7–N8 = 1.413 (2) Å indicates π-electron delocalization in the ring. As a result of the difference in the environment, there is a difference in the C–N bond lengths in the diazepine ring (C9–N8 = 1.352 (2)Å and C7–N8 = 1.413 (2) Å).

The structure exhibits intermolecular hydrogen bonds of the N—H···N and C—H···O type. The oxygen atom attatched to the diazepine ring accepts four intermolecular C—H···O hydrogen bonds.

Related literature top

For background to the chemistry of azepines, see: Le Count (1996). The title compound is a chloro derivative of the anti-HIV drug nevirapine (systematic name 11-cyclopropyl-4-methyl-5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one) and was synthesised as a basic scaffold, see: Matsumoto et al. (1984). We have also synthesized its derivatives and tested for secretory phospholipase A2 with anti-inflammatory activity, see: Thimmegowda et al. (2007). For a related structure, see: Thimmegowda et al. (2008). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized as per the procedure reported earlier (Matsumoto et al., 1984). After synthesis and purification, the resultant pure product obtained was dissolved in ethyl acetate and was left undisturbed for slow evaporation of the solvent. Brown crystals grew after five days.

Refinement top

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C–H distances in the range 0.93–0.98 Å and N-H distance 0.86 Å; Uiso(H) = 1.2Ueq(carrier atom) for all H atoms.

Computing details top

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with 50% probability displacement ellipsoids.
7-Chloro-5-cyclopropyl-9-methyl-5H-4,5,6,10- tetraazadibenzo[a,d]cyclohepten-11(10H)-one top
Crystal data top
C15H13ClN4OF(000) = 1248
Mr = 300.74Dx = 1.396 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4721 reflections
a = 12.7750 (6) Åθ = 2.5–25.0°
b = 13.5870 (7) ŵ = 0.27 mm1
c = 16.4920 (9) ÅT = 293 K
V = 2862.6 (3) Å3Block, brown
Z = 80.27 × 0.25 × 0.25 mm
Data collection top
MacScience DIPLabo 32001
diffractometer
2155 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.0°, θmin = 3.2°
Detector resolution: 10.0 pixels mm-1h = 1515
ω scansk = 1616
4721 measured reflectionsl = 1919
2525 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.059P)2 + 1.1189P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.013
2525 reflectionsΔρmax = 0.34 e Å3
192 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (7)
Crystal data top
C15H13ClN4OV = 2862.6 (3) Å3
Mr = 300.74Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.7750 (6) ŵ = 0.27 mm1
b = 13.5870 (7) ÅT = 293 K
c = 16.4920 (9) Å0.27 × 0.25 × 0.25 mm
Data collection top
MacScience DIPLabo 32001
diffractometer
2155 reflections with I > 2σ(I)
4721 measured reflectionsRint = 0.014
2525 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
2525 reflectionsΔρmin = 0.39 e Å3
192 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl190.26118 (5)0.13670 (5)0.51234 (4)0.0776 (3)
O210.00487 (10)0.08660 (9)0.11274 (8)0.0483 (4)
N10.00616 (11)0.11150 (10)0.29568 (8)0.0364 (4)
N30.12574 (12)0.11681 (11)0.39490 (9)0.0434 (5)
N80.07762 (12)0.06760 (11)0.23540 (9)0.0421 (5)
N140.01401 (12)0.23835 (11)0.19903 (9)0.0445 (5)
C20.08540 (13)0.07028 (12)0.33068 (10)0.0360 (5)
C40.21102 (16)0.07779 (15)0.42695 (12)0.0490 (6)
C50.26156 (16)0.00449 (16)0.39890 (12)0.0524 (7)
C60.22027 (15)0.05343 (14)0.33216 (12)0.0462 (6)
C70.12823 (14)0.01540 (12)0.29831 (10)0.0378 (5)
C90.03801 (13)0.03110 (13)0.16565 (10)0.0365 (5)
C100.03435 (13)0.07739 (13)0.15357 (10)0.0371 (5)
C110.04651 (16)0.11305 (14)0.07545 (11)0.0449 (6)
C120.03218 (17)0.21156 (15)0.05952 (12)0.0521 (7)
C130.00047 (17)0.27026 (15)0.12274 (12)0.0530 (7)
C150.00547 (13)0.14368 (12)0.21449 (10)0.0344 (5)
C160.07237 (15)0.16871 (13)0.34905 (10)0.0419 (5)
C170.18729 (17)0.15434 (18)0.33813 (13)0.0600 (7)
C180.13242 (19)0.11117 (17)0.41005 (13)0.0626 (8)
C200.27121 (18)0.14459 (17)0.29923 (18)0.0685 (8)
H50.322200.027100.424000.0630*
H80.071300.130100.242300.0510*
H110.064400.070300.033700.0540*
H120.043500.237300.008000.0630*
H130.011800.336500.112000.0640*
H160.048000.234400.364800.0500*
H17A0.210300.109700.295800.0720*
H17B0.232700.210500.347200.0720*
H18A0.144700.141200.462500.0750*
H18B0.122400.040400.411200.0750*
H20A0.333400.158600.329800.1030*
H20B0.289300.134500.243300.1030*
H20C0.223500.199000.303500.1030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl190.0725 (4)0.0946 (5)0.0656 (4)0.0017 (3)0.0270 (3)0.0291 (3)
O210.0605 (9)0.0418 (7)0.0425 (7)0.0021 (6)0.0068 (6)0.0094 (6)
N10.0424 (8)0.0363 (8)0.0306 (7)0.0038 (6)0.0007 (6)0.0004 (6)
N30.0483 (9)0.0435 (9)0.0384 (8)0.0026 (7)0.0034 (7)0.0029 (6)
N80.0541 (9)0.0305 (7)0.0417 (8)0.0012 (6)0.0085 (7)0.0020 (6)
N140.0589 (9)0.0352 (8)0.0393 (8)0.0042 (7)0.0000 (7)0.0018 (6)
C20.0397 (9)0.0355 (9)0.0327 (8)0.0036 (7)0.0003 (7)0.0023 (7)
C40.0498 (11)0.0538 (12)0.0435 (10)0.0054 (9)0.0078 (9)0.0036 (9)
C50.0459 (11)0.0594 (12)0.0520 (11)0.0021 (9)0.0134 (9)0.0010 (10)
C60.0451 (10)0.0427 (10)0.0508 (11)0.0018 (8)0.0051 (8)0.0015 (8)
C70.0435 (9)0.0337 (9)0.0363 (9)0.0023 (7)0.0044 (7)0.0027 (7)
C90.0378 (9)0.0380 (9)0.0338 (9)0.0012 (7)0.0005 (7)0.0042 (7)
C100.0389 (9)0.0388 (9)0.0337 (9)0.0011 (7)0.0017 (7)0.0010 (7)
C110.0526 (11)0.0495 (11)0.0326 (9)0.0007 (9)0.0012 (8)0.0032 (8)
C120.0684 (13)0.0528 (11)0.0351 (10)0.0018 (10)0.0012 (9)0.0085 (9)
C130.0744 (14)0.0393 (11)0.0454 (11)0.0031 (9)0.0005 (10)0.0091 (8)
C150.0373 (9)0.0336 (8)0.0324 (8)0.0004 (7)0.0018 (7)0.0000 (7)
C160.0513 (10)0.0386 (9)0.0359 (9)0.0038 (8)0.0054 (8)0.0023 (7)
C170.0479 (11)0.0705 (14)0.0615 (13)0.0062 (10)0.0079 (10)0.0075 (11)
C180.0743 (15)0.0587 (13)0.0549 (13)0.0029 (11)0.0254 (11)0.0067 (10)
C200.0592 (13)0.0570 (13)0.0892 (17)0.0176 (11)0.0199 (12)0.0173 (13)
Geometric parameters (Å, º) top
Cl19—C41.742 (2)C10—C111.385 (2)
O21—C91.229 (2)C11—C121.376 (3)
N1—C21.420 (2)C12—C131.374 (3)
N1—C151.416 (2)C16—C181.487 (3)
N1—C161.447 (2)C16—C171.492 (3)
N3—C21.337 (2)C17—C181.497 (3)
N3—C41.322 (3)C5—H50.9300
N8—C71.413 (2)C11—H110.9300
N8—C91.351 (2)C12—H120.9300
N14—C131.344 (2)C13—H130.9300
N14—C151.335 (2)C16—H160.9800
N8—H80.8600C17—H17A0.9700
C2—C71.393 (2)C17—H17B0.9700
C4—C51.371 (3)C18—H18A0.9700
C5—C61.390 (3)C18—H18B0.9700
C6—C201.501 (3)C20—H20A0.9600
C6—C71.400 (3)C20—H20B0.9600
C9—C101.488 (2)C20—H20C0.9600
C10—C151.399 (2)
Cl19···H17Bi3.1100C7···H13iv2.9100
O21···C12ii3.343 (2)C7···H17Avii3.0900
O21···C11ii3.193 (2)C13···H8v2.7600
O21···C20iii3.412 (3)C15···H17A3.1000
O21···C5iii3.308 (2)C20···H82.7300
O21···H16iv2.5200H5···H20A2.3700
O21···H11ii2.5800H5···H11viii2.3900
O21···H112.6100H5···O21vii2.5400
O21···H5iii2.5400H8···C202.7300
O21···H20Aiii2.5800H8···H20C2.3800
N1···N82.838 (2)H8···N14iv2.1600
N3···C183.308 (3)H8···C13iv2.7600
N8···C13iv3.365 (3)H8···H13iv2.5600
N8···N12.838 (2)H8···H16iv2.5700
N8···N14iv2.963 (2)H11···O212.6100
N14···C173.386 (3)H11···H5ix2.3900
N14···N8v2.963 (2)H11···O21ii2.5800
N3···H12vi2.9200H12···N3x2.9200
N3···H162.7800H13···C7v2.9100
N8···H20C2.8100H13···H8v2.5600
N8···H20B2.8600H16···N32.7800
N14···H162.7700H16···N142.7700
N14···H8v2.1600H16···O21v2.5200
N14···H20Cv2.8100H16···H8v2.5700
C5···O21vii3.308 (2)H17A···C153.1000
C7···C13iv3.589 (3)H17A···C7iii3.0900
C11···O21ii3.193 (2)H17B···Cl19xi3.1100
C12···O21ii3.343 (2)H18B···C23.0000
C13···N8v3.365 (3)H20A···H52.3700
C13···C7v3.589 (3)H20A···O21vii2.5800
C17···N143.386 (3)H20B···N82.8600
C18···N33.308 (3)H20C···N82.8100
C20···O21vii3.412 (3)H20C···H82.3800
C2···H18B3.0000H20C···N14iv2.8100
C2—N1—C15114.82 (13)N1—C16—C18115.50 (16)
C2—N1—C16116.50 (13)N1—C16—C17115.56 (15)
C15—N1—C16118.07 (13)C17—C16—C1860.35 (14)
C2—N3—C4116.41 (16)C16—C17—C1859.67 (14)
C7—N8—C9127.75 (15)C16—C18—C1759.98 (14)
C13—N14—C15117.66 (16)C4—C5—H5121.00
C9—N8—H8116.00C6—C5—H5121.00
C7—N8—H8116.00C10—C11—H11120.00
N3—C2—C7123.20 (16)C12—C11—H11120.00
N1—C2—N3116.95 (14)C11—C12—H12121.00
N1—C2—C7119.85 (15)C13—C12—H12121.00
Cl19—C4—C5118.30 (16)N14—C13—H13118.00
Cl19—C4—N3116.24 (15)C12—C13—H13118.00
N3—C4—C5125.46 (18)N1—C16—H16118.00
C4—C5—C6118.59 (19)C17—C16—H16118.00
C5—C6—C7117.25 (17)C18—C16—H16118.00
C7—C6—C20121.62 (18)C16—C17—H17A118.00
C5—C6—C20121.12 (19)C16—C17—H17B118.00
N8—C7—C6119.44 (15)C18—C17—H17A118.00
N8—C7—C2121.41 (15)C18—C17—H17B118.00
C2—C7—C6119.04 (16)H17A—C17—H17B115.00
O21—C9—C10120.14 (15)C16—C18—H18A118.00
O21—C9—N8120.57 (16)C16—C18—H18B118.00
N8—C9—C10119.30 (15)C17—C18—H18A118.00
C11—C10—C15118.19 (16)C17—C18—H18B118.00
C9—C10—C15123.36 (15)H18A—C18—H18B115.00
C9—C10—C11117.87 (15)C6—C20—H20A109.00
C10—C11—C12120.19 (17)C6—C20—H20B110.00
C11—C12—C13117.32 (18)C6—C20—H20C109.00
N14—C13—C12124.33 (19)H20A—C20—H20B109.00
N1—C15—N14117.29 (14)H20A—C20—H20C110.00
N14—C15—C10122.17 (15)H20B—C20—H20C109.00
N1—C15—C10120.52 (15)
C15—N1—C2—N3117.40 (16)N3—C2—C7—N8173.78 (16)
C15—N1—C2—C763.2 (2)N3—C2—C7—C62.5 (3)
C16—N1—C2—N326.7 (2)Cl19—C4—C5—C6178.23 (15)
C16—N1—C2—C7152.68 (16)N3—C4—C5—C61.3 (3)
C2—N1—C15—N14121.30 (16)C4—C5—C6—C70.6 (3)
C2—N1—C15—C1059.9 (2)C4—C5—C6—C20179.2 (2)
C16—N1—C15—N1422.2 (2)C5—C6—C7—N8174.00 (17)
C16—N1—C15—C10156.65 (16)C5—C6—C7—C22.4 (3)
C2—N1—C16—C17139.70 (16)C20—C6—C7—N84.6 (3)
C2—N1—C16—C1872.0 (2)C20—C6—C7—C2179.04 (18)
C15—N1—C16—C1777.4 (2)O21—C9—C10—C1132.9 (2)
C15—N1—C16—C18145.11 (17)O21—C9—C10—C15138.19 (18)
C4—N3—C2—N1179.96 (16)N8—C9—C10—C11147.41 (17)
C4—N3—C2—C70.7 (3)N8—C9—C10—C1541.5 (2)
C2—N3—C4—Cl19178.26 (13)C9—C10—C11—C12172.74 (18)
C2—N3—C4—C51.2 (3)C15—C10—C11—C121.2 (3)
C9—N8—C7—C248.6 (3)C9—C10—C15—N110.1 (2)
C9—N8—C7—C6135.18 (19)C9—C10—C15—N14168.66 (16)
C7—N8—C9—O21173.00 (16)C11—C10—C15—N1178.83 (16)
C7—N8—C9—C107.3 (3)C11—C10—C15—N142.4 (3)
C15—N14—C13—C121.2 (3)C10—C11—C12—C133.3 (3)
C13—N14—C15—N1177.66 (16)C11—C12—C13—N142.2 (3)
C13—N14—C15—C103.5 (3)N1—C16—C17—C18106.08 (18)
N1—C2—C7—N85.5 (2)N1—C16—C18—C17106.17 (18)
N1—C2—C7—C6178.18 (16)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z; (iii) x1/2, y, z+1/2; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y, z+1/2; (ix) x+1/2, y, z1/2; (x) x, y+1/2, z1/2; (xi) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···N14iv0.862.162.963 (2)155
C5—H5···O21vii0.932.543.308 (2)140
C11—H11···O21ii0.932.583.193 (2)124
C16—H16···O21v0.982.523.492 (2)171
C20—H20A···O21vii0.962.583.412 (3)145
Symmetry codes: (ii) x, y, z; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13ClN4O
Mr300.74
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.7750 (6), 13.5870 (7), 16.4920 (9)
V3)2862.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.27 × 0.25 × 0.25
Data collection
DiffractometerMacScience DIPLabo 32001
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4721, 2525, 2155
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.03
No. of reflections2525
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.39

Computer programs: XPRESS (MacScience, 2002), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···N14i0.862.162.963 (2)155
C5—H5···O21ii0.932.543.308 (2)140
C11—H11···O21iii0.932.583.193 (2)124
C16—H16···O21iv0.982.523.492 (2)171
C20—H20A···O21ii0.962.583.412 (3)145
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x, y, z; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the DST and the Government of India (project SP/I2/FOO/93) and the University of Mysore for financial assistance. HRM would like to thank the UGC–BRS and the University of Mysore for the awarding of a fellowship.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLe Count, D. J. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 9, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 1–44. Oxford: Pergamon Press.  Google Scholar
First citationMacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationMatsumoto, J., Miyamoto, T., Minamida, A., Nishimura, Y., Egawa, H. & Nishimura, H. (1984). J. Heterocycl. Chem. 21, 673–679.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by Carter, C. W. Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThimmegowda, N. R., Dharmappa, K. K., Ananda Kumar, C. S., Sadashiva, M. P., Sathish, A. D., Nanda, B. L., Vishwanath, B. S. & Rangappa, K. S. (2007). Curr. Top. Med. Chem. 7, 811–820.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThimmegowda, N. R., Sarala, G., Ananda Kumar, C. S., Chandrappa, S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2008). Mol. Cryst. Liq. Cryst. 482, 135–144.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1445-o1446
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds