organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,2S)-[(R)-1-(2-Hy­dr­oxy­naphthalen-1-yl)naphthalen-2-yl] 2-ethynyl­cyclo­propane-1-carboxyl­ate

aCollege of Science, China Agricultural University, 100094 Beijing, People's Republic of China
*Correspondence e-mail: qinzhaohai@263.net

(Received 1 November 2010; accepted 29 March 2011; online 7 May 2011)

In the crystal structure of the title compound, C26H18O3, mol­ecules with stereochemistry (1R,2S,R), are connected by O—H⋯O hydrogen bonds, forming chains.

Related literature

The title structure is a stable cyclo­propane formate ester inter­mediate in the synthesis of abscisic acid analogues. (1S)-(+)-Abscisic acid is an important phytohormone with many functions in higher plants including roles in seed germination, development and dormancy, regulating the stomatal movements and improving stress tolerance, see: Frey et al. (1999[Frey, A., Audran, C., Marin, E., Sotta, B. & Marion-Poll, A. (1999). Plant Mol. Biol. 39, 1267-1274.]); Jiang & Zhang (2004[Jiang, M. Y. & Zhang, J. H. (2004). Acta Bot. Sin. 46, 1-9.]). For the synthesis of cyclo­propane formate ester, see: Reichelt & Martin (2006[Reichelt, A. & Martin, S. F. (2006). Acc. Chem. Res. 39, 433-442.]); Boche & Lohrenz (2001[Boche, G. & Lohrenz, J. C. W. (2001). Chem. Rev. 101, 697-756.]); Lebel et al. (2003[Lebel, H., Marcoux, J. F., Molinaro, C. & Charette, A. B. (2003). Chem. Rev. 103, 977-1050.]); Molander & Etter (1987[Molander, G. A. & Etter, J. B. (1987). J. Org. Chem. 52, 3942-3944.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18O3

  • Mr = 378.40

  • Orthorhombic, P 21 21 21

  • a = 8.0376 (11) Å

  • b = 12.0600 (17) Å

  • c = 20.324 (3) Å

  • V = 1970.1 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 173 K

  • 0.65 × 0.48 × 0.35 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.673, Tmax = 0.801

  • 13939 measured reflections

  • 3554 independent reflections

  • 3391 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.074

  • S = 1.07

  • 3554 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1471 Friedel pairs

  • Flack parameter: −0.06 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.84 2.01 2.8520 (16) 177
Symmetry code: (i) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

(1S)-(+)-Abscisic acid (ABA) is an important phytohormone with many functions in higher plants including roles in seed germination, development and dormancy, regulating the stomatal movements and improving stress tolerance (Frey et al., 1999; Jiang et al., 2004). The title structure, C26H18O3, is a stable cyclopropane formate ester intermediate in the synthesis of Abscisic acid analoge. During the course of our study, we remove the protected group, trimethanesilicon, from the compound of (1R,2S)-((R)-2'-hydroxy-1,1'-binaphthyl-2-yl) 2-((trimethylsilyl)ethynyl)cyclopropanecarboxylate, to obtain the title compoud. In this paper, we reported crystal structure of the title compound.

The crystal structure is shown in Figure1. The crystal structure consists of one three-membered rings(A) and two naphthalene nucleus(B/C). The C22 is R configuration with the dihedral angles C22—C23—C24—C25 = 109.07 (51)°. The C24 is S configuration with the dihedral angles C21—C22—C24—C23 = 108.01 (53)°. The two naphthalene nucleus(B/C) is R configuration with the dihedral angles C(1)—C(10)—C(11)—C(20) = 92.85 (07)°. the compounds are connected by O1—H1A···O3i,hydrogen bonds (2.852, Symmetry code: (i) x + 1, y, z.).

Related literature top

The title structure is a stable cyclopropane formate ester intermediate in the synthesis of abscisic acid analogues. (1S)-(+)-Abscisic acid is an important phytohormone with many functions in higher plants including roles in seed germination, development and dormancy, regulating the stomatal movements and improving stress tolerance, see: Frey et al. (1999); Jiang & Zhang (2004). For the synthesis of cyclopropane formate ester, see: Reichelt & Martin (2006); Boche & Lohrenz (2001); Lebel et al. (2003); Molander & Etter (1987).

Experimental top

A solution of (1R,2S)-((R)-2'-hydroxy-1,1'-binaphthyl-2-yl) 2-((trimethylsilyl)ethynyl)cyclopropanecarboxylate (360 mg, 0.775 mmol) was cooled to 0 °C, and TBAF (1.0 M THF solution, 1.16 ml, 1.16 mmol) was added. The resulting solution was stirred for 3 h at 0°C. Saturated NH4Cl solution was added, and the aqueous phase was extracted with Et2O. The organic phase was washed with brine, dried over Na2SO4, filtered, and concentrated. The residue was purified by column chromatography on silica gel (1:1 hexane/benzene) to provide 23a (229.4 mg, 78.3%). 1H NMR (500 MHz, CDCl3,TMS): δ 0.9566–1.1.0282 (m,1H), 1.0925 - 1.1524(m, 1H), 1.6355–1.7887 (m, 2 H), 1.9454–1.9527 (d, 1 H), 5.3893 (s, 1 H), 7.0617–7.0659(q,1 H), 7.2167–7.3231 (m, 6H), 7.4202–7.4686(q, 2 H), 7.8104–7.9397 (ddd,3H), 8.0015–8.0309(d, 1 H); 13 C NMR (75 MHz, CDCl3): δ10.027, 14.828, 20.324, 29.639, 68.373, 80.191, 114.146, 118.643, 121.931, 123.372, 124.595, 125.744, 126.186, 126.542, 127.313, 127.910, 128.984, 130.116, 130.545, 132.182, 133.450, 133.577. The compound was redissolved in n-hexane (20 ml) and dichloromethane (5 ml), and crystals suitable for X-ray analysis were grown from slow evaporation of the solvent at room temperature.

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95 - 0.99 Å and thereafter treated as riding. Uiso for H were assigned as 1.2 times Ueq of the attached C atom. The result of refinement is R[F2 > 2σ(F2)] =0.032, wR(F2) = 0.074, Flack parameter: -0.06 (19), so the absolute configuration can be determined.

Computing details top

Data collection: RAPID-AUTO (Rigaku 1998); cell refinement: RAPID-AUTO (Rigaku 1998); data reduction: RAPID-AUTO (Rigaku 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
[Figure 2] Fig. 2. Packing diagram.
(1R,2S)-[(R)-1-(2-hydroxynaphthalen-1-yl)naphthalen-2-yl] 2-ethynylcyclopropane-1-carboxylate top
Crystal data top
C26H18O3F(000) = 792
Mr = 378.40Dx = 1.276 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54186 Å
Hall symbol: P 2ac 2abCell parameters from 14013 reflections
a = 8.0376 (11) Åθ = 3.1–68.2°
b = 12.0600 (17) ŵ = 0.66 mm1
c = 20.324 (3) ÅT = 173 K
V = 1970.1 (5) Å3Block, colorless
Z = 40.65 × 0.48 × 0.35 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3554 independent reflections
Radiation source: rotating anode3391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 68.2°, θmin = 4.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
h = 99
Tmin = 0.673, Tmax = 0.801k = 1214
13939 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.3717P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3554 reflectionsΔρmax = 0.11 e Å3
262 parametersΔρmin = 0.13 e Å3
0 restraintsAbsolute structure: Flack (1983), 1471 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (19)
Crystal data top
C26H18O3V = 1970.1 (5) Å3
Mr = 378.40Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.0376 (11) ŵ = 0.66 mm1
b = 12.0600 (17) ÅT = 173 K
c = 20.324 (3) Å0.65 × 0.48 × 0.35 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3554 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
3391 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.801Rint = 0.032
13939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.11 e Å3
S = 1.07Δρmin = 0.13 e Å3
3554 reflectionsAbsolute structure: Flack (1983), 1471 Friedel pairs
262 parametersAbsolute structure parameter: 0.06 (19)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82773 (14)0.36744 (9)0.81560 (6)0.0412 (3)
H1A0.92410.38400.80300.062*
O20.41585 (13)0.38707 (9)0.74612 (5)0.0360 (3)
O30.15312 (14)0.43096 (11)0.77423 (6)0.0443 (3)
C10.75354 (19)0.45851 (13)0.84229 (7)0.0294 (3)
C20.84313 (19)0.55862 (13)0.85081 (8)0.0326 (3)
H2A0.95560.56320.83670.039*
C30.7695 (2)0.64824 (13)0.87909 (7)0.0329 (4)
H3A0.83130.71470.88470.039*
C40.6014 (2)0.64350 (13)0.90027 (7)0.0306 (3)
C50.5215 (2)0.73583 (14)0.92935 (8)0.0374 (4)
H5A0.58080.80350.93400.045*
C60.3614 (2)0.72960 (14)0.95074 (8)0.0415 (4)
H6A0.31030.79200.97090.050*
C70.2721 (2)0.63017 (15)0.94282 (8)0.0402 (4)
H7A0.15990.62600.95730.048*
C80.3447 (2)0.53947 (14)0.91456 (8)0.0350 (4)
H8A0.28210.47320.90970.042*
C90.51197 (19)0.54257 (12)0.89239 (7)0.0280 (3)
C100.59105 (18)0.44935 (12)0.86295 (7)0.0270 (3)
C110.50195 (18)0.34074 (12)0.85607 (7)0.0279 (3)
C120.4190 (2)0.31262 (13)0.79970 (7)0.0319 (3)
C130.3400 (2)0.21003 (15)0.79066 (8)0.0419 (4)
H13A0.28610.19370.75020.050*
C140.3408 (2)0.13429 (14)0.83998 (9)0.0406 (4)
H14A0.28800.06460.83380.049*
C150.4194 (2)0.15809 (13)0.90047 (8)0.0341 (4)
C160.4193 (2)0.08122 (14)0.95328 (9)0.0411 (4)
H16A0.36700.01120.94770.049*
C170.4927 (2)0.10604 (15)1.01160 (10)0.0460 (4)
H17A0.49170.05341.04630.055*
C180.5704 (2)0.20966 (16)1.02082 (9)0.0460 (4)
H18A0.61970.22711.06200.055*
C190.5753 (2)0.28568 (15)0.97044 (8)0.0363 (4)
H19A0.62970.35480.97700.044*
C200.50037 (19)0.26228 (13)0.90897 (7)0.0296 (3)
C210.2672 (2)0.43827 (14)0.73624 (8)0.0355 (4)
C220.2674 (2)0.49921 (16)0.67393 (9)0.0469 (4)
H22A0.37800.50940.65220.056*
C230.1432 (3)0.59106 (16)0.66459 (12)0.0627 (6)
H23A0.06690.60750.70160.075*
H23B0.17900.65680.63910.075*
C240.1168 (2)0.48554 (16)0.62786 (9)0.0482 (5)
H24A0.14270.48880.57980.058*
C250.0173 (2)0.41205 (15)0.64584 (9)0.0424 (4)
C260.1269 (3)0.35242 (17)0.66089 (10)0.0527 (5)
H260.21530.30430.67300.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (6)0.0372 (6)0.0561 (7)0.0033 (5)0.0157 (5)0.0033 (6)
O20.0278 (6)0.0474 (7)0.0327 (5)0.0075 (5)0.0028 (5)0.0014 (5)
O30.0312 (6)0.0593 (8)0.0424 (6)0.0025 (6)0.0080 (5)0.0005 (6)
C10.0271 (8)0.0314 (8)0.0295 (7)0.0030 (6)0.0028 (6)0.0018 (6)
C20.0255 (8)0.0375 (9)0.0348 (8)0.0076 (7)0.0016 (6)0.0075 (7)
C30.0351 (9)0.0309 (8)0.0326 (8)0.0127 (7)0.0058 (7)0.0051 (7)
C40.0351 (9)0.0284 (8)0.0283 (7)0.0050 (7)0.0044 (6)0.0023 (6)
C50.0478 (11)0.0284 (8)0.0360 (8)0.0054 (7)0.0053 (7)0.0035 (7)
C60.0493 (11)0.0341 (9)0.0410 (9)0.0048 (8)0.0017 (8)0.0082 (8)
C70.0348 (9)0.0434 (10)0.0426 (9)0.0005 (8)0.0057 (7)0.0074 (8)
C80.0319 (8)0.0348 (9)0.0384 (8)0.0041 (7)0.0026 (7)0.0075 (7)
C90.0282 (7)0.0293 (8)0.0265 (7)0.0046 (6)0.0021 (6)0.0001 (6)
C100.0246 (7)0.0278 (8)0.0284 (7)0.0051 (6)0.0003 (6)0.0008 (6)
C110.0212 (7)0.0294 (8)0.0330 (8)0.0031 (6)0.0055 (6)0.0057 (6)
C120.0268 (8)0.0353 (8)0.0336 (8)0.0046 (7)0.0062 (6)0.0031 (7)
C130.0388 (10)0.0458 (10)0.0411 (9)0.0132 (8)0.0013 (7)0.0116 (8)
C140.0368 (9)0.0315 (9)0.0536 (10)0.0108 (7)0.0050 (8)0.0121 (8)
C150.0264 (8)0.0299 (8)0.0458 (9)0.0004 (7)0.0098 (7)0.0029 (7)
C160.0326 (9)0.0274 (8)0.0633 (11)0.0020 (7)0.0120 (8)0.0060 (8)
C170.0343 (9)0.0432 (10)0.0604 (11)0.0055 (8)0.0063 (9)0.0200 (9)
C180.0352 (9)0.0567 (11)0.0461 (10)0.0030 (9)0.0038 (8)0.0114 (9)
C190.0289 (8)0.0394 (9)0.0405 (9)0.0038 (7)0.0004 (7)0.0037 (7)
C200.0219 (8)0.0285 (8)0.0385 (8)0.0010 (6)0.0056 (6)0.0024 (6)
C210.0280 (8)0.0412 (10)0.0374 (8)0.0076 (7)0.0006 (7)0.0033 (7)
C220.0373 (10)0.0528 (11)0.0505 (10)0.0067 (8)0.0051 (8)0.0117 (9)
C230.0663 (14)0.0381 (10)0.0838 (15)0.0042 (10)0.0040 (12)0.0158 (11)
C240.0474 (11)0.0546 (12)0.0426 (9)0.0085 (9)0.0007 (8)0.0120 (9)
C250.0414 (10)0.0404 (10)0.0452 (10)0.0136 (8)0.0111 (8)0.0059 (8)
C260.0463 (12)0.0469 (11)0.0649 (12)0.0016 (9)0.0109 (9)0.0083 (10)
Geometric parameters (Å, º) top
O1—C11.3623 (18)C13—C141.356 (2)
O1—H1A0.8400C13—H13A0.9500
O2—C211.3596 (19)C14—C151.412 (2)
O2—C121.4116 (18)C14—H14A0.9500
O3—C211.2021 (19)C15—C161.418 (2)
C1—C101.376 (2)C15—C201.426 (2)
C1—C21.416 (2)C16—C171.357 (3)
C2—C31.360 (2)C16—H16A0.9500
C2—H2A0.9500C17—C181.410 (3)
C3—C41.419 (2)C17—H17A0.9500
C3—H3A0.9500C18—C191.375 (2)
C4—C51.415 (2)C18—H18A0.9500
C4—C91.423 (2)C19—C201.415 (2)
C5—C61.360 (3)C19—H19A0.9500
C5—H5A0.9500C21—C221.464 (2)
C6—C71.407 (2)C22—C231.503 (3)
C6—H6A0.9500C22—C241.539 (3)
C7—C81.366 (2)C22—H22A1.0000
C7—H7A0.9500C23—C241.491 (3)
C8—C91.418 (2)C23—H23A0.9900
C8—H8A0.9500C23—H23B0.9900
C9—C101.423 (2)C24—C251.442 (3)
C10—C111.4994 (19)C24—H24A1.0000
C11—C121.368 (2)C25—C261.178 (3)
C11—C201.432 (2)C26—H260.9500
C12—C131.403 (2)
C1—O1—H1A109.5C15—C14—H14A119.7
C21—O2—C12114.75 (12)C14—C15—C16121.74 (15)
O1—C1—C10118.17 (13)C14—C15—C20119.28 (15)
O1—C1—C2120.89 (13)C16—C15—C20118.98 (15)
C10—C1—C2120.90 (14)C17—C16—C15121.09 (16)
C3—C2—C1120.53 (14)C17—C16—H16A119.5
C3—C2—H2A119.7C15—C16—H16A119.5
C1—C2—H2A119.7C16—C17—C18120.29 (17)
C2—C3—C4120.70 (14)C16—C17—H17A119.9
C2—C3—H3A119.6C18—C17—H17A119.9
C4—C3—H3A119.6C19—C18—C17120.31 (17)
C5—C4—C3121.82 (15)C19—C18—H18A119.8
C5—C4—C9119.42 (14)C17—C18—H18A119.8
C3—C4—C9118.77 (14)C18—C19—C20120.81 (15)
C6—C5—C4121.29 (15)C18—C19—H19A119.6
C6—C5—H5A119.4C20—C19—H19A119.6
C4—C5—H5A119.4C19—C20—C15118.50 (14)
C5—C6—C7119.55 (16)C19—C20—C11121.81 (13)
C5—C6—H6A120.2C15—C20—C11119.69 (14)
C7—C6—H6A120.2O3—C21—O2122.84 (15)
C8—C7—C6120.84 (16)O3—C21—C22126.36 (16)
C8—C7—H7A119.6O2—C21—C22110.79 (14)
C6—C7—H7A119.6C21—C22—C23118.58 (17)
C7—C8—C9121.15 (15)C21—C22—C24118.15 (15)
C7—C8—H8A119.4C23—C22—C2458.66 (13)
C9—C8—H8A119.4C21—C22—H22A116.4
C8—C9—C4117.75 (14)C23—C22—H22A116.4
C8—C9—C10122.41 (14)C24—C22—H22A116.4
C4—C9—C10119.84 (13)C24—C23—C2261.87 (13)
C1—C10—C9119.25 (13)C24—C23—H23A117.6
C1—C10—C11119.66 (13)C22—C23—H23A117.6
C9—C10—C11121.06 (12)C24—C23—H23B117.6
C12—C11—C20117.42 (13)C22—C23—H23B117.6
C12—C11—C10121.83 (13)H23A—C23—H23B114.7
C20—C11—C10120.75 (13)C25—C24—C23120.26 (17)
C11—C12—C13123.30 (15)C25—C24—C22119.94 (15)
C11—C12—O2119.81 (13)C23—C24—C2259.47 (13)
C13—C12—O2116.85 (14)C25—C24—H24A115.3
C14—C13—C12119.67 (15)C23—C24—H24A115.3
C14—C13—H13A120.2C22—C24—H24A115.3
C12—C13—H13A120.2C26—C25—C24179.6 (2)
C13—C14—C15120.59 (15)C25—C26—H26180.0
C13—C14—H14A119.7
O1—C1—C2—C3178.23 (13)C11—C12—C13—C141.5 (3)
C10—C1—C2—C30.6 (2)O2—C12—C13—C14179.06 (15)
C1—C2—C3—C40.4 (2)C12—C13—C14—C150.5 (3)
C2—C3—C4—C5179.49 (15)C13—C14—C15—C16178.77 (16)
C2—C3—C4—C91.1 (2)C13—C14—C15—C200.9 (2)
C3—C4—C5—C6178.58 (15)C14—C15—C16—C17178.77 (16)
C9—C4—C5—C60.9 (2)C20—C15—C16—C170.9 (2)
C4—C5—C6—C71.1 (2)C15—C16—C17—C180.2 (3)
C5—C6—C7—C80.7 (3)C16—C17—C18—C191.2 (3)
C6—C7—C8—C90.0 (3)C17—C18—C19—C201.1 (2)
C7—C8—C9—C40.3 (2)C18—C19—C20—C150.1 (2)
C7—C8—C9—C10179.83 (15)C18—C19—C20—C11179.15 (15)
C5—C4—C9—C80.1 (2)C14—C15—C20—C19178.64 (15)
C3—C4—C9—C8179.33 (14)C16—C15—C20—C191.1 (2)
C5—C4—C9—C10179.75 (13)C14—C15—C20—C110.4 (2)
C3—C4—C9—C100.8 (2)C16—C15—C20—C11179.84 (14)
O1—C1—C10—C9178.55 (13)C12—C11—C20—C19176.82 (15)
C2—C1—C10—C90.9 (2)C10—C11—C20—C193.0 (2)
O1—C1—C10—C110.4 (2)C12—C11—C20—C152.2 (2)
C2—C1—C10—C11177.20 (14)C10—C11—C20—C15177.97 (13)
C8—C9—C10—C1179.69 (14)C12—O2—C21—O38.2 (2)
C4—C9—C10—C10.2 (2)C12—O2—C21—C22170.69 (13)
C8—C9—C10—C112.2 (2)O3—C21—C22—C2322.1 (3)
C4—C9—C10—C11177.90 (13)O2—C21—C22—C23159.11 (16)
C1—C10—C11—C1287.34 (18)O3—C21—C22—C2445.6 (3)
C9—C10—C11—C1294.59 (18)O2—C21—C22—C24133.24 (16)
C1—C10—C11—C2092.87 (17)C21—C22—C23—C24107.30 (19)
C9—C10—C11—C2085.20 (17)C22—C23—C24—C25109.08 (18)
C20—C11—C12—C132.8 (2)C21—C22—C24—C251.6 (3)
C10—C11—C12—C13177.41 (15)C23—C22—C24—C25109.6 (2)
C20—C11—C12—O2179.69 (12)C21—C22—C24—C23108.0 (2)
C10—C11—C12—O20.1 (2)C23—C24—C25—C2613 (38)
C21—O2—C12—C11107.04 (16)C22—C24—C25—C2657 (38)
C21—O2—C12—C1375.28 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.842.012.8520 (16)177
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H18O3
Mr378.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)8.0376 (11), 12.0600 (17), 20.324 (3)
V3)1970.1 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.65 × 0.48 × 0.35
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 2001)
Tmin, Tmax0.673, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
13939, 3554, 3391
Rint0.032
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 1.07
No. of reflections3554
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.13
Absolute structureFlack (1983), 1471 Friedel pairs
Absolute structure parameter0.06 (19)

Computer programs: RAPID-AUTO (Rigaku 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.842.012.8520 (16)177.3
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 20972184)

References

First citationBoche, G. & Lohrenz, J. C. W. (2001). Chem. Rev. 101, 697–756.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrey, A., Audran, C., Marin, E., Sotta, B. & Marion-Poll, A. (1999). Plant Mol. Biol. 39, 1267–1274.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJiang, M. Y. & Zhang, J. H. (2004). Acta Bot. Sin. 46, 1–9.  CAS Google Scholar
First citationLebel, H., Marcoux, J. F., Molinaro, C. & Charette, A. B. (2003). Chem. Rev. 103, 977–1050.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolander, G. A. & Etter, J. B. (1987). J. Org. Chem. 52, 3942–3944.  CrossRef CAS Google Scholar
First citationReichelt, A. & Martin, S. F. (2006). Acc. Chem. Res. 39, 433–442.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds