organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3S)-Methyl 2-benzyl-6,7-dimeth­­oxy-1-phenyl-1,2,3,4-tetra­hydro­iso­quinoline-3-carboxyl­ate

aSchool of Pharmacy and Pharmacology, University of KwaZulu–Natal, Durban 4000, South Africa, and bSchool of Chemistry, University of KwaZulu–Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 4 March 2011; accepted 9 May 2011; online 14 May 2011)

In the title compound, C26H27NO4, the heterocyclic ring assumes a half-chair conformation and inter­molecular C—H⋯O inter­actions help to construct the three-dimensional network within the crystal packing.

Related literature

The title compound is a precursor to chiral catalysts bearing a tetra­hydro­isoquinoline (TIQ) backbone. TIQ catalyst precursors have shown to be efficient for several asymmetric transformations, see: Chakka et al. (2010[Chakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972-980.]); Kawthekar et al. (2010[Kawthekar, R. B., Chakka, S. K., Francis, V., Andersson, P. G., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 846-852.]). For related structures, see: Naicker et al. (2009[Naicker, T., McKay, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Acta Cryst. E65, o3278.], 2010[Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859-2867.], 2011[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100-o103.]). For the assignment of the absolute stereochemisty by NMR, see: Aubry et al. (2006[Aubry, S., Pellet-Rostaing, S., Faure, R. & Lemaire, M. (2006). J. Heterocycl. Chem. 443, 139-148.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27NO4

  • Mr = 417.49

  • Monoclinic, P 21

  • a = 9.7797 (7) Å

  • b = 5.4646 (4) Å

  • c = 20.6959 (15) Å

  • β = 96.986 (1)°

  • V = 1097.82 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.85 × 0.07 × 0.06 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.931, Tmax = 0.995

  • 20624 measured reflections

  • 3032 independent reflections

  • 2764 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.087

  • S = 1.05

  • 3032 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O3i 0.95 2.51 3.445 (2) 168
C25—H25A⋯O1ii 0.98 2.43 3.183 (2) 133
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009)[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chiral catalysts containing a tetrahydroisoquinoline (TIQ) backbone have proven to be very successful in our research group. These TIQ catalyst precursors have shown to be efficient for several asymmetric transformations. (Chakka et al., 2010, Kawthekar et al.,2010 and Naicker et al., 2010) The title compound (Fig. 1) is a precursor in the synthesis of several novel chiral ligands containing the TIQ framework.

The absolute stereochemistry of the crystal was confirmed to be S,S at C1 and C9 positions respectively by proton NMR spectroscopy. We recently reported the crystal structure of the R,S diastereomer at the C1 and C9 positions respectively. (Naicker et al., 2009)

Interestingly, there are several significant differences between these diasteromeric crystals. The title compound crystallizes with monoclinic (P21) symmetry while its diastereomer has triclinic (P1)symmetry. Also the N-containing six membered ring assumes a half chair conformation [Q=0.5312 (16) Å, θ= 53.39 (17)° and ϕ=324.7 (2)°] as apposed to a half boat conformation (Fig. 1). This heterocyclic ring shape affects the position of the ester moiety relative to the phenyl ring at the C1 position. The torsion angle for C1—N1—C9—C10 is -171.7 (1)° while for the diastereomer this angle was 66.0 (2)°. In addition, the N-benzyl and phenyl ring at C1 exisit in a cis orientation along the N1—C9 bond with a dihedral angle of 70.2 (2)° while for the diasteromer they are trans to each other with a dihedral angle of -64.7 (1)°. From the plain formed by the atoms C1—C2—C7—C8—N1—C9 the maximum displacement from planarity for N1 is 0.334 Å and for C9 0.360 Å.

A single intramolecular interaction between H11B and the phenyl ring attached to C12 (2.862 Å) is evident (Fig. 1). Two specific intermolecular short contacts originating from methoxy O1 and the ester O3 to different C–H groups (Fig. 2) link the molecules together in the crystal (Table 1). This arrangement results in chains parallel to the a axis. In the chain, the molecules are arranged so that their tails, linked by these C—H···O interactions, protrude to the outer edges of the chain, and their heads point towards the core of the chain.

Related literature top

The title compound is a precursor to chiral catalysts bearing a tetrahydroisoquinoline (TIQ) backbone. TIQ catalyst precursors have shown to be efficient for several asymmetric transformations, see: Chakka et al. (2010); Kawthekar et al. (2010). For related structures, see: Naicker et al. (2009, 2010, 2011). For assignment of absolute stereochemisty by NMR, see: Aubry et al. (2006).

Experimental top

To a solution of (1S,3S)-methyl 6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (500 mg, 1.52 mmol) in acetonitrile (20 ml), solid K2CO3 (635 mg, 4.58 mmol) was added followed by benzyl bromide (286 mg, 1.67 mmol) at ambient temperature. There after the reaction mixture was refluxed for 3 h. Completion of the reaction was monitored with TLC using hexane/ethyl acetate (60:40, Rf =0.5). The solvent was evaporated and 30 ml of ethylacetate was added, washed with 2 × 10 ml of water, the organic layer was separated, and dried over anhydrous MgSO4. The solvent was evaporated under reduced pressure to afford crude product, which was purified by column chromatography using hexane:ethyl acetate (60:40) as the eluent to yield pure product. (0.44 g, 90%) as a white solid.

Melting point: 420 K. [α]20D +3.03 (c 0.1 in CHCl3).

IR (neat): 2925, 1729, 1513, 1216, 747 cm-1.

1H NMR (400 MHz, CDCl3) δ 7.37 (d, J = 7.7 Hz, 4H), 7.24 (ddt, J = 14.3, 12.9, 7.1 Hz, 6H), 6.66 (s, 1H), 6.31 (s, 1H), 4.77 (s, 1H), 3.94 (d, J = 14.2 Hz, 1H), 3.89 – 3.77 (m, 4H), 3.70 – 3.58 (m, 4H), 3.39 (s, 3H), 3.10 (dd, J = 15.3, 7.4 Hz, 1H), 2.89 (dd, J = 15.3, 5.0 Hz, 1H).

13C NMR (101 MHz, CDCl3) δ 174.02, 147.81, 147.39, 143.22, 138.71, 129.63, 129.14, 129.12, 128.14, 127.98, 127.09, 126.98, 125.94, 111.44, 110.71, 64.79, 60.69, 59.07, 55.93, 55.90, 51.53, 30.55.

Recrystallization from ethyl acetate at room temperature afforded colourless crystals suitable for X-ray analysis.

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.95 Å to 1.00 Å and refined as riding on their parent atoms with Uiso (H) = 1.2 - 1.5 Ueq (C). With unmerged reflections the Flack x parameter equals to 0.7580 with e.s.d. 0.7487. In the final refinement Friedel pairs were averaged and the R factor is 0.0314.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme and the intramolecular C11—H11B···π interaction. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A partial projection of the title compound, viewed along the [100] plane.
(1S,3S)-Methyl 2-benzyl-6,7-dimethoxy- 1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate top
Crystal data top
C26H27NO4F(000) = 444
Mr = 417.49Dx = 1.263 Mg m3
Monoclinic, P21Melting point: 420 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.7797 (7) ÅCell parameters from 20624 reflections
b = 5.4646 (4) Åθ = 2.0–28.4°
c = 20.6959 (15) ŵ = 0.09 mm1
β = 96.986 (1)°T = 173 K
V = 1097.82 (14) Å3Needle, yellow
Z = 20.85 × 0.07 × 0.06 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3032 independent reflections
Radiation source: fine-focus sealed tube2764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
0.5° ϕ scans and ωθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1313
Tmin = 0.931, Tmax = 0.995k = 77
20624 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.1593P]
where P = (Fo2 + 2Fc2)/3
3032 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C26H27NO4V = 1097.82 (14) Å3
Mr = 417.49Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.7797 (7) ŵ = 0.09 mm1
b = 5.4646 (4) ÅT = 173 K
c = 20.6959 (15) Å0.85 × 0.07 × 0.06 mm
β = 96.986 (1)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3032 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2764 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.995Rint = 0.030
20624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.087H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
3032 reflectionsΔρmin = 0.19 e Å3
280 parameters
Special details top

Experimental. Half sphere of data collected using the Bruker SAINT software package. Crystal to detector distance = 30 mm; combination of ϕ and ω scans of 0.5°, 50 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59208 (12)0.2130 (3)0.07345 (6)0.0400 (3)
O20.53131 (12)0.1159 (3)0.15604 (6)0.0370 (3)
O31.13983 (13)0.2008 (3)0.41963 (6)0.0382 (3)
O41.06894 (12)0.5827 (3)0.43713 (6)0.0371 (3)
N11.07939 (12)0.4482 (3)0.28290 (6)0.0250 (3)
C10.99153 (14)0.5106 (3)0.22148 (7)0.0248 (3)
H10.95720.68190.22520.030*
C20.86750 (14)0.3416 (3)0.20811 (7)0.0241 (3)
C30.78789 (15)0.3561 (3)0.14696 (7)0.0290 (3)
H30.81170.47130.11580.035*
C40.67576 (15)0.2054 (4)0.13156 (7)0.0290 (3)
C50.64159 (15)0.0305 (3)0.17670 (7)0.0278 (3)
C60.71774 (15)0.0206 (3)0.23736 (7)0.0261 (3)
H60.69430.09530.26840.031*
C70.82981 (14)0.1801 (3)0.25388 (7)0.0238 (3)
C80.90596 (15)0.1782 (3)0.32152 (7)0.0262 (3)
H8A0.96730.03360.32670.031*
H8B0.83900.16470.35360.031*
C90.99109 (14)0.4091 (3)0.33493 (7)0.0246 (3)
H90.92780.55230.33640.030*
C101.07737 (14)0.3815 (4)0.40099 (7)0.0279 (3)
C111.1481 (2)0.5762 (5)0.50083 (9)0.0495 (5)
H11A1.13570.73030.52360.074*
H11B1.24590.55410.49610.074*
H11C1.11650.43970.52590.074*
C121.17749 (15)0.6521 (3)0.29833 (8)0.0291 (3)
H12A1.13100.78080.32130.035*
H12B1.19980.72340.25690.035*
C131.31095 (14)0.5860 (3)0.33944 (7)0.0270 (3)
C141.38533 (17)0.3781 (4)0.32668 (9)0.0355 (4)
H141.34780.26470.29450.043*
C151.51460 (19)0.3358 (4)0.36092 (11)0.0469 (5)
H151.56560.19480.35160.056*
C161.56899 (19)0.4983 (5)0.40837 (11)0.0501 (5)
H161.65730.46910.43170.060*
C171.4954 (2)0.7017 (5)0.42181 (10)0.0482 (5)
H171.53250.81250.45470.058*
C181.36621 (17)0.7465 (4)0.38741 (9)0.0369 (4)
H181.31580.88790.39690.044*
C191.07526 (15)0.4993 (3)0.16403 (8)0.0280 (3)
C201.16294 (16)0.3043 (3)0.15664 (8)0.0322 (4)
H201.17610.18140.18930.039*
C211.23198 (19)0.2875 (4)0.10159 (9)0.0409 (4)
H211.29370.15580.09730.049*
C221.2103 (2)0.4635 (5)0.05320 (10)0.0481 (5)
H221.25560.45040.01520.058*
C231.1231 (2)0.6574 (5)0.06006 (10)0.0489 (5)
H231.10790.77720.02670.059*
C241.05718 (18)0.6783 (4)0.11589 (9)0.0380 (4)
H240.99970.81530.12110.046*
C250.60475 (19)0.4241 (4)0.03433 (8)0.0400 (4)
H25A0.54090.41100.00590.060*
H25B0.69940.43610.02360.060*
H25C0.58270.57050.05840.060*
C260.4896 (2)0.2845 (4)0.20218 (9)0.0442 (5)
H26A0.41060.37920.18210.066*
H26B0.46360.19480.23980.066*
H26C0.56600.39570.21640.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0368 (6)0.0521 (9)0.0288 (5)0.0133 (7)0.0052 (4)0.0025 (6)
O20.0323 (6)0.0430 (8)0.0351 (6)0.0161 (6)0.0015 (5)0.0048 (6)
O30.0354 (6)0.0417 (8)0.0358 (6)0.0060 (6)0.0023 (5)0.0019 (6)
O40.0308 (6)0.0452 (8)0.0345 (6)0.0012 (6)0.0007 (5)0.0165 (6)
N10.0212 (5)0.0238 (7)0.0298 (6)0.0033 (5)0.0022 (4)0.0016 (5)
C10.0225 (6)0.0217 (7)0.0303 (7)0.0023 (6)0.0035 (5)0.0001 (6)
C20.0204 (6)0.0245 (8)0.0276 (7)0.0022 (6)0.0039 (5)0.0023 (6)
C30.0267 (6)0.0321 (9)0.0283 (7)0.0059 (7)0.0041 (5)0.0028 (7)
C40.0247 (6)0.0364 (9)0.0257 (7)0.0032 (7)0.0018 (5)0.0022 (7)
C50.0232 (6)0.0307 (9)0.0301 (7)0.0066 (6)0.0059 (5)0.0064 (7)
C60.0251 (6)0.0262 (8)0.0281 (7)0.0040 (6)0.0072 (5)0.0010 (6)
C70.0213 (6)0.0250 (7)0.0257 (6)0.0006 (6)0.0046 (5)0.0027 (6)
C80.0241 (6)0.0280 (8)0.0265 (6)0.0014 (6)0.0030 (5)0.0002 (7)
C90.0211 (6)0.0251 (8)0.0272 (6)0.0028 (6)0.0012 (5)0.0044 (6)
C100.0211 (6)0.0339 (9)0.0291 (7)0.0001 (6)0.0046 (5)0.0046 (7)
C110.0402 (9)0.0716 (16)0.0348 (9)0.0054 (11)0.0031 (7)0.0192 (11)
C120.0232 (7)0.0226 (8)0.0403 (8)0.0013 (6)0.0003 (6)0.0016 (7)
C130.0211 (6)0.0266 (8)0.0338 (7)0.0012 (6)0.0054 (5)0.0013 (7)
C140.0328 (8)0.0311 (9)0.0430 (9)0.0040 (7)0.0056 (7)0.0025 (8)
C150.0338 (9)0.0422 (12)0.0649 (13)0.0124 (9)0.0070 (8)0.0056 (10)
C160.0280 (8)0.0554 (13)0.0630 (12)0.0030 (9)0.0095 (8)0.0129 (11)
C170.0363 (9)0.0501 (13)0.0539 (11)0.0081 (10)0.0119 (8)0.0049 (11)
C180.0279 (7)0.0333 (10)0.0481 (9)0.0010 (7)0.0003 (7)0.0072 (8)
C190.0240 (7)0.0270 (8)0.0332 (7)0.0086 (6)0.0047 (5)0.0008 (7)
C200.0303 (7)0.0307 (9)0.0360 (8)0.0057 (7)0.0059 (6)0.0047 (7)
C210.0372 (9)0.0410 (11)0.0464 (10)0.0078 (8)0.0129 (7)0.0133 (9)
C220.0468 (10)0.0592 (14)0.0421 (9)0.0157 (11)0.0204 (8)0.0061 (10)
C230.0505 (11)0.0531 (14)0.0451 (10)0.0139 (10)0.0135 (8)0.0131 (10)
C240.0352 (8)0.0349 (10)0.0448 (9)0.0070 (8)0.0085 (7)0.0067 (8)
C250.0412 (9)0.0465 (11)0.0308 (8)0.0035 (9)0.0019 (7)0.0022 (9)
C260.0437 (9)0.0465 (12)0.0438 (9)0.0241 (10)0.0108 (7)0.0077 (10)
Geometric parameters (Å, º) top
O1—C41.3705 (17)C12—H12A0.9900
O1—C251.423 (3)C12—H12B0.9900
O2—C51.3688 (18)C13—C181.384 (2)
O2—C261.422 (2)C13—C141.391 (2)
O3—C101.200 (2)C14—C151.391 (3)
O4—C101.338 (2)C14—H140.9500
O4—C111.446 (2)C15—C161.382 (3)
N1—C91.4755 (18)C15—H150.9500
N1—C121.480 (2)C16—C171.371 (3)
N1—C11.4849 (18)C16—H160.9500
C1—C21.523 (2)C17—C181.394 (2)
C1—C191.525 (2)C17—H170.9500
C1—H11.0000C18—H180.9500
C2—C71.378 (2)C19—C201.388 (2)
C2—C31.405 (2)C19—C241.392 (3)
C3—C41.377 (2)C20—C211.396 (2)
C3—H30.9500C20—H200.9500
C4—C51.405 (2)C21—C221.386 (3)
C5—C61.381 (2)C21—H210.9500
C6—C71.409 (2)C22—C231.378 (4)
C6—H60.9500C22—H220.9500
C7—C81.5035 (19)C23—C241.395 (3)
C8—C91.519 (2)C23—H230.9500
C8—H8A0.9900C24—H240.9500
C8—H8B0.9900C25—H25A0.9800
C9—C101.524 (2)C25—H25B0.9800
C9—H91.0000C25—H25C0.9800
C11—H11A0.9800C26—H26A0.9800
C11—H11B0.9800C26—H26B0.9800
C11—H11C0.9800C26—H26C0.9800
C12—C131.513 (2)
C4—O1—C25116.09 (14)C13—C12—H12A108.4
C5—O2—C26116.63 (13)N1—C12—H12B108.4
C10—O4—C11115.28 (16)C13—C12—H12B108.4
C9—N1—C12111.91 (12)H12A—C12—H12B107.4
C9—N1—C1109.20 (11)C18—C13—C14119.07 (15)
C12—N1—C1107.71 (12)C18—C13—C12119.12 (16)
N1—C1—C2112.42 (12)C14—C13—C12121.58 (15)
N1—C1—C19110.39 (11)C15—C14—C13120.17 (18)
C2—C1—C19108.97 (12)C15—C14—H14119.9
N1—C1—H1108.3C13—C14—H14119.9
C2—C1—H1108.3C16—C15—C14120.2 (2)
C19—C1—H1108.3C16—C15—H15119.9
C7—C2—C3119.35 (13)C14—C15—H15119.9
C7—C2—C1122.51 (13)C17—C16—C15119.92 (17)
C3—C2—C1118.13 (13)C17—C16—H16120.0
C4—C3—C2120.88 (15)C15—C16—H16120.0
C4—C3—H3119.6C16—C17—C18120.29 (19)
C2—C3—H3119.6C16—C17—H17119.9
O1—C4—C3123.96 (15)C18—C17—H17119.9
O1—C4—C5116.04 (14)C13—C18—C17120.35 (19)
C3—C4—C5119.99 (13)C13—C18—H18119.8
O2—C5—C6125.36 (15)C17—C18—H18119.8
O2—C5—C4115.59 (13)C20—C19—C24119.15 (15)
C6—C5—C4119.04 (14)C20—C19—C1121.00 (15)
C5—C6—C7120.93 (14)C24—C19—C1119.72 (16)
C5—C6—H6119.5C19—C20—C21120.48 (18)
C7—C6—H6119.5C19—C20—H20119.8
C2—C7—C6119.65 (13)C21—C20—H20119.8
C2—C7—C8120.07 (13)C22—C21—C20119.81 (19)
C6—C7—C8120.27 (13)C22—C21—H21120.1
C7—C8—C9111.28 (13)C20—C21—H21120.1
C7—C8—H8A109.4C23—C22—C21120.08 (17)
C9—C8—H8A109.4C23—C22—H22120.0
C7—C8—H8B109.4C21—C22—H22120.0
C9—C8—H8B109.4C22—C23—C24120.2 (2)
H8A—C8—H8B108.0C22—C23—H23119.9
N1—C9—C8110.08 (12)C24—C23—H23119.9
N1—C9—C10111.08 (11)C19—C24—C23120.3 (2)
C8—C9—C10108.24 (14)C19—C24—H24119.9
N1—C9—H9109.1C23—C24—H24119.9
C8—C9—H9109.1O1—C25—H25A109.5
C10—C9—H9109.1O1—C25—H25B109.5
O3—C10—O4124.06 (14)H25A—C25—H25B109.5
O3—C10—C9125.08 (16)O1—C25—H25C109.5
O4—C10—C9110.79 (14)H25A—C25—H25C109.5
O4—C11—H11A109.5H25B—C25—H25C109.5
O4—C11—H11B109.5O2—C26—H26A109.5
H11A—C11—H11B109.5O2—C26—H26B109.5
O4—C11—H11C109.5H26A—C26—H26B109.5
H11A—C11—H11C109.5O2—C26—H26C109.5
H11B—C11—H11C109.5H26A—C26—H26C109.5
N1—C12—C13115.70 (14)H26B—C26—H26C109.5
N1—C12—H12A108.4
C9—N1—C1—C246.18 (17)C1—N1—C9—C10171.68 (14)
C12—N1—C1—C2167.91 (12)C7—C8—C9—N152.11 (16)
C9—N1—C1—C19168.08 (13)C7—C8—C9—C10173.69 (12)
C12—N1—C1—C1970.19 (16)C11—O4—C10—O33.4 (2)
N1—C1—C2—C710.8 (2)C11—O4—C10—C9179.57 (14)
C19—C1—C2—C7133.55 (15)N1—C9—C10—O376.9 (2)
N1—C1—C2—C3170.35 (13)C8—C9—C10—O344.1 (2)
C19—C1—C2—C347.65 (19)N1—C9—C10—O4106.16 (15)
C7—C2—C3—C42.2 (2)C8—C9—C10—O4132.88 (14)
C1—C2—C3—C4178.97 (15)C9—N1—C12—C1385.52 (16)
C25—O1—C4—C314.8 (2)C1—N1—C12—C13154.45 (13)
C25—O1—C4—C5165.37 (15)N1—C12—C13—C18140.47 (16)
C2—C3—C4—O1178.63 (16)N1—C12—C13—C1445.0 (2)
C2—C3—C4—C51.5 (3)C18—C13—C14—C151.3 (3)
C26—O2—C5—C62.6 (2)C12—C13—C14—C15173.24 (17)
C26—O2—C5—C4176.36 (16)C13—C14—C15—C160.9 (3)
O1—C4—C5—O22.0 (2)C14—C15—C16—C170.1 (3)
C3—C4—C5—O2177.87 (15)C15—C16—C17—C180.5 (3)
O1—C4—C5—C6177.02 (15)C14—C13—C18—C170.8 (3)
C3—C4—C5—C63.1 (2)C12—C13—C18—C17173.86 (17)
O2—C5—C6—C7180.00 (15)C16—C17—C18—C130.1 (3)
C4—C5—C6—C71.1 (2)N1—C1—C19—C2045.6 (2)
C3—C2—C7—C64.2 (2)C2—C1—C19—C2078.34 (17)
C1—C2—C7—C6177.02 (14)N1—C1—C19—C24138.67 (15)
C3—C2—C7—C8174.44 (14)C2—C1—C19—C2497.42 (18)
C1—C2—C7—C84.3 (2)C24—C19—C20—C210.1 (2)
C5—C6—C7—C22.6 (2)C1—C19—C20—C21175.66 (15)
C5—C6—C7—C8176.03 (14)C19—C20—C21—C221.6 (3)
C2—C7—C8—C916.00 (19)C20—C21—C22—C231.4 (3)
C6—C7—C8—C9162.63 (14)C21—C22—C23—C240.5 (3)
C12—N1—C9—C8172.39 (12)C20—C19—C24—C232.0 (3)
C1—N1—C9—C868.45 (16)C1—C19—C24—C23173.83 (16)
C12—N1—C9—C1052.52 (18)C22—C23—C24—C192.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O3i0.952.513.445 (2)168
C25—H25A···O1ii0.982.433.183 (2)133
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC26H27NO4
Mr417.49
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)9.7797 (7), 5.4646 (4), 20.6959 (15)
β (°) 96.986 (1)
V3)1097.82 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.85 × 0.07 × 0.06
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.931, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
20624, 3032, 2764
Rint0.030
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.087, 1.05
No. of reflections3032
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O3i0.952.513.445 (2)168
C25—H25A···O1ii0.982.433.183 (2)133
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z.
 

Acknowledgements

The authors wish to thank Dr Hong Su from the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection.

References

First citationAubry, S., Pellet-Rostaing, S., Faure, R. & Lemaire, M. (2006). J. Heterocycl. Chem. 443, 139–148.  CrossRef Google Scholar
First citationChakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972–980.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKawthekar, R. B., Chakka, S. K., Francis, V., Andersson, P. G., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 846–852.  Web of Science CrossRef CAS Google Scholar
First citationNaicker, T., McKay, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Acta Cryst. E65, o3278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100–o103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859–2867.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds