organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{2-[2-(1,3-Dioxoisoindol-2-yl)eth­­oxy]eth­yl}iso­indole-1,3-dione

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 83, Tashkent 100125, Uzbekistan, bThe National University of Uzbekistan named after Mirzo Ulugbek, Faculty of Chemistry, University Str. 6, Tashkent 100779, Uzbekistan, cTashkent Institute of Irrigation and Melioration, Qori-Niyoziy Str. 39, Tashkent 100000, Uzbekistan, and dS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: zokir_k@mail.ru

(Received 7 April 2011; accepted 16 May 2011; online 20 May 2011)

In the mol­ecule of the title compound, C20H16N2O5, the phthalimide fragments are almost planar, with r.m.s. deviations of 0.018 and 0.020 Å, and make a dihedral angle of 53.64 (3)°. The mol­ecular and crystal structures are stabilized by a weak inter­molecular C—H⋯O, C—H⋯π and C=O⋯π [2.883 (1) Å] inter­actions and aromatic ππ stacking inter­actions with a centroid–centroid distance of 3.6189 (7) Å.

Related literature

For related structures, see: Valle et al. (1986[Valle, G., Toniolo, C. & Jung, G. (1986). Liebigs Ann. Chem. pp. 1809-1822.]); Sheng et al. (2007[Sheng, X., Wu, D.-H., Jia, Z.-L., Shao, Y. & Lu, G.-Y. (2007). Acta Cryst. E63, o3614.]). For the preparation, see: Yatsimirskii et al. (1987[Yatsimirskii, K. B., Kolchinskii, A. G., Pavlishuk, V. V. & Talanova, G. G. (1987). Sintez Makrotciklicheskikh Soedinenii, p. 280. Kiev: Nauka dumka.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N2O5

  • Mr = 364.35

  • Monoclinic, P 21 /n

  • a = 10.8928 (1) Å

  • b = 11.9656 (1) Å

  • c = 14.3572 (2) Å

  • β = 111.633 (1)°

  • V = 1739.49 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.333, Tmax = 1.000

  • 14673 measured reflections

  • 3575 independent reflections

  • 3075 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.115

  • S = 1.07

  • 3575 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C2/C3/C5–C8 and C14/C15/C17–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O5i 0.93 2.47 3.171 (2) 132
C19—H19A⋯O5ii 0.93 2.45 3.286 (4) 150
C11—H11BCg3iii 0.97 2.84 3.624 (2) 139
C12—H12BCg4iv 0.97 2.94 3.567 (2) 123
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit contains one molecule of the title compound (Figure 1). In the molecule phthalimide fragments are planar, with r.m.s. deviations of 0.018Å and 0.020Å, respectively. The angle between planes is 53.64 (3)°. The observed structure is stabilized by weak C—H···O and C-H···π(ring) hydrogen bonds (Table 1), as well as C=O···π(ring) (C4=O2···Cg2 distance is 2.883 (1), where Cg2 is N2C13C14C15C16 ring centroid) and aromatic π···π stacking interactions. A centrosymmetric π···π stacking interactions are observed between maleimide rings (Cg2···Cg2i distance is 3.4805 (9) Å, where i = 1-x, -y, -z) and benzene rings (Cg3···Cg3ii distance 3.6189 (7)Å, where Cg3 is C2C3C5C6C7C8 ring centroid, ii = 1-x, -y, 1-z) (Figure 2).

Related literature top

For related structures, see: Valle et al. (1986); Sheng et al. (2007). For the preparation, see: Yatsimirskii et al. (1987).

Experimental top

The title compound is received by the slightly modified technique (Yatsimirskii et al.,1987). 24 g (0.12 mole) potassium phthalimide and 8 ml (0.05 mole) β,β'-dichloroethyl ether were taken in a three-necked round-battomed flask supplied with a reflux condenser and a mechanical stirrer. Reaction is carried out at 463-473 K within 2.5 hours by stirring. After corresponding chemical treatments (Yatsimirskii et al.,1987) reaction product was recrystallized from 1:1 mixture of ethanol and chloroform. 13.99 g (56 %) title compound , with m.p. of 421-423 K was received.

Refinement top

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and were refined with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. View of the crystal structure along the b-axis showing a C=O···π and π···π stacking interactions (dashed lines).
2-{2-[2-(1,3-Dioxoisoindol-2-yl)ethoxy]ethyl}isoindole-1,3-dione top
Crystal data top
C20H16N2O5F(000) = 760
Mr = 364.35Dx = 1.391 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 9302 reflections
a = 10.8928 (1) Åθ = 3.3–75.5°
b = 11.9656 (1) ŵ = 0.85 mm1
c = 14.3572 (2) ÅT = 293 K
β = 111.633 (1)°Prism, colourless
V = 1739.49 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3575 independent reflections
Radiation source: Enhance (Cu) X-ray Source3075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.2576 pixels mm-1θmax = 75.6°, θmin = 4.4°
ω scansh = 1310
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1415
Tmin = 0.333, Tmax = 1.000l = 1417
14673 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.1804P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3575 reflectionsΔρmax = 0.21 e Å3
245 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0094 (6)
Crystal data top
C20H16N2O5V = 1739.49 (3) Å3
Mr = 364.35Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.8928 (1) ŵ = 0.85 mm1
b = 11.9656 (1) ÅT = 293 K
c = 14.3572 (2) Å0.40 × 0.30 × 0.20 mm
β = 111.633 (1)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3575 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3075 reflections with I > 2σ(I)
Tmin = 0.333, Tmax = 1.000Rint = 0.025
14673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
3575 reflectionsΔρmin = 0.14 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20673 (10)0.08438 (9)0.31107 (8)0.0482 (3)
N20.37536 (10)0.01311 (9)0.06449 (8)0.0456 (3)
O10.14477 (11)0.03279 (11)0.44214 (8)0.0705 (3)
O20.32443 (10)0.15162 (9)0.21829 (7)0.0564 (3)
O30.19329 (8)0.09719 (7)0.16698 (6)0.0470 (2)
O40.26607 (11)0.11689 (10)0.05545 (9)0.0714 (3)
O50.52801 (11)0.10263 (11)0.19907 (8)0.0726 (3)
C10.22559 (13)0.07069 (11)0.41171 (10)0.0491 (3)
C20.36170 (13)0.11145 (10)0.46882 (9)0.0445 (3)
C30.41737 (12)0.14479 (10)0.40088 (9)0.0423 (3)
C40.31715 (12)0.12978 (10)0.29806 (9)0.0444 (3)
C50.43090 (15)0.11709 (11)0.57083 (10)0.0524 (3)
H5A0.39290.09480.61620.063*
C60.55940 (14)0.15730 (12)0.60309 (10)0.0554 (3)
H6A0.60840.16250.67140.067*
C70.61590 (14)0.18991 (11)0.53518 (11)0.0541 (3)
H7A0.70240.21610.55880.065*
C80.54558 (13)0.18413 (10)0.43237 (10)0.0485 (3)
H8A0.58330.20590.38670.058*
C90.08711 (13)0.05067 (13)0.22883 (11)0.0547 (3)
H9A0.07670.09630.17060.066*
H9B0.01140.06380.24760.066*
C100.09011 (13)0.07152 (12)0.20170 (10)0.0514 (3)
H10A0.10080.11690.26010.062*
H10B0.00610.09100.15000.062*
C110.15869 (12)0.07463 (12)0.06348 (9)0.0483 (3)
H11A0.13350.00320.05000.058*
H11B0.08390.12040.02460.058*
C120.27467 (14)0.09957 (12)0.03325 (10)0.0521 (3)
H12A0.31370.17020.06270.062*
H12B0.24350.10740.03900.062*
C130.35959 (14)0.09081 (11)0.01785 (10)0.0511 (3)
C140.47835 (15)0.15636 (13)0.07673 (12)0.0603 (4)
C150.55826 (14)0.08926 (15)0.15356 (11)0.0613 (4)
C160.49218 (13)0.02092 (13)0.14666 (10)0.0514 (3)
C170.5109 (2)0.26603 (16)0.06645 (19)0.0904 (7)
H17A0.45690.31120.01490.108*
C180.6273 (3)0.3050 (2)0.1364 (3)0.1217 (11)
H18A0.65280.37820.13120.146*
C190.7070 (3)0.2397 (3)0.2133 (2)0.1250 (12)
H19A0.78380.27000.25970.150*
C200.67502 (18)0.1286 (2)0.22309 (15)0.0915 (7)
H20A0.72980.08330.27410.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0457 (5)0.0535 (6)0.0441 (6)0.0019 (4)0.0151 (4)0.0071 (5)
N20.0453 (5)0.0485 (6)0.0437 (5)0.0008 (4)0.0174 (4)0.0006 (4)
O10.0660 (7)0.0886 (8)0.0673 (7)0.0175 (6)0.0368 (6)0.0077 (6)
O20.0646 (6)0.0640 (6)0.0431 (5)0.0003 (5)0.0229 (4)0.0004 (4)
O30.0425 (4)0.0523 (5)0.0423 (5)0.0002 (4)0.0109 (4)0.0008 (4)
O40.0706 (7)0.0761 (7)0.0661 (7)0.0161 (6)0.0235 (6)0.0212 (6)
O50.0626 (6)0.0927 (8)0.0602 (6)0.0190 (6)0.0200 (5)0.0223 (6)
C10.0514 (7)0.0497 (7)0.0498 (7)0.0015 (5)0.0230 (6)0.0062 (5)
C20.0505 (6)0.0402 (6)0.0429 (6)0.0016 (5)0.0175 (5)0.0023 (5)
C30.0477 (6)0.0364 (5)0.0423 (6)0.0028 (5)0.0161 (5)0.0017 (4)
C40.0481 (6)0.0423 (6)0.0439 (6)0.0032 (5)0.0183 (5)0.0038 (5)
C50.0642 (8)0.0498 (7)0.0421 (7)0.0009 (6)0.0183 (6)0.0007 (5)
C60.0626 (8)0.0480 (7)0.0431 (7)0.0028 (6)0.0046 (6)0.0008 (5)
C70.0482 (7)0.0448 (7)0.0592 (8)0.0001 (5)0.0080 (6)0.0011 (6)
C80.0492 (6)0.0418 (6)0.0551 (7)0.0002 (5)0.0200 (6)0.0002 (5)
C90.0416 (6)0.0640 (8)0.0531 (7)0.0026 (6)0.0111 (6)0.0078 (6)
C100.0432 (6)0.0584 (8)0.0508 (7)0.0081 (5)0.0155 (5)0.0058 (6)
C110.0424 (6)0.0540 (7)0.0423 (6)0.0051 (5)0.0085 (5)0.0002 (5)
C120.0562 (7)0.0503 (7)0.0493 (7)0.0044 (6)0.0189 (6)0.0074 (5)
C130.0561 (7)0.0511 (7)0.0542 (7)0.0052 (6)0.0299 (6)0.0029 (6)
C140.0673 (9)0.0585 (8)0.0724 (9)0.0078 (7)0.0461 (8)0.0103 (7)
C150.0520 (7)0.0842 (10)0.0571 (8)0.0144 (7)0.0312 (7)0.0201 (7)
C160.0451 (6)0.0700 (9)0.0421 (6)0.0044 (6)0.0194 (5)0.0004 (6)
C170.1166 (16)0.0630 (10)0.1294 (17)0.0240 (10)0.0896 (15)0.0194 (10)
C180.152 (3)0.0986 (18)0.165 (3)0.0711 (18)0.118 (2)0.0610 (18)
C190.1109 (19)0.170 (3)0.124 (2)0.091 (2)0.0779 (17)0.086 (2)
C200.0641 (10)0.144 (2)0.0739 (11)0.0364 (11)0.0341 (9)0.0386 (12)
Geometric parameters (Å, º) top
N1—C11.3922 (16)C8—H8A0.9300
N1—C41.3937 (17)C9—C101.517 (2)
N1—C91.4561 (16)C9—H9A0.9700
N2—C161.3830 (16)C9—H9B0.9700
N2—C131.3926 (17)C10—H10A0.9700
N2—C121.4531 (17)C10—H10B0.9700
O1—C11.2062 (16)C11—C121.5092 (19)
O2—C41.2055 (15)C11—H11A0.9700
O3—C111.4178 (15)C11—H11B0.9700
O3—C101.4209 (16)C12—H12A0.9700
O4—C131.2051 (17)C12—H12B0.9700
O5—C161.2075 (18)C13—C141.482 (2)
C1—C21.4873 (18)C14—C171.381 (2)
C2—C51.3798 (18)C14—C151.382 (2)
C2—C31.3836 (17)C15—C201.378 (2)
C3—C81.3823 (18)C15—C161.488 (2)
C3—C41.4884 (17)C17—C181.376 (4)
C5—C61.388 (2)C17—H17A0.9300
C5—H5A0.9300C18—C191.369 (4)
C6—C71.387 (2)C18—H18A0.9300
C6—H6A0.9300C19—C201.395 (4)
C7—C81.3917 (19)C19—H19A0.9300
C7—H7A0.9300C20—H20A0.9300
C1—N1—C4112.37 (10)O3—C10—H10B108.9
C1—N1—C9123.68 (11)C9—C10—H10B108.9
C4—N1—C9123.90 (11)H10A—C10—H10B107.8
C16—N2—C13112.47 (11)O3—C11—C12109.66 (10)
C16—N2—C12124.58 (11)O3—C11—H11A109.7
C13—N2—C12122.82 (11)C12—C11—H11A109.7
C11—O3—C10112.80 (10)O3—C11—H11B109.7
O1—C1—N1124.89 (13)C12—C11—H11B109.7
O1—C1—C2129.50 (13)H11A—C11—H11B108.2
N1—C1—C2105.61 (11)N2—C12—C11112.77 (11)
C5—C2—C3121.62 (12)N2—C12—H12A109.0
C5—C2—C1130.14 (12)C11—C12—H12A109.0
C3—C2—C1108.24 (11)N2—C12—H12B109.0
C8—C3—C2121.35 (12)C11—C12—H12B109.0
C8—C3—C4130.44 (12)H12A—C12—H12B107.8
C2—C3—C4108.21 (11)O4—C13—N2124.47 (13)
O2—C4—N1125.04 (12)O4—C13—C14129.80 (14)
O2—C4—C3129.43 (12)N2—C13—C14105.74 (12)
N1—C4—C3105.53 (10)C17—C14—C15121.74 (18)
C2—C5—C6117.40 (13)C17—C14—C13130.25 (18)
C2—C5—H5A121.3C15—C14—C13107.95 (13)
C6—C5—H5A121.3C20—C15—C14121.39 (18)
C7—C6—C5121.13 (12)C20—C15—C16130.21 (18)
C7—C6—H6A119.4C14—C15—C16108.34 (13)
C5—C6—H6A119.4O5—C16—N2124.80 (14)
C6—C7—C8121.21 (13)O5—C16—C15129.70 (14)
C6—C7—H7A119.4N2—C16—C15105.51 (12)
C8—C7—H7A119.4C18—C17—C14116.6 (2)
C3—C8—C7117.29 (12)C18—C17—H17A121.7
C3—C8—H8A121.4C14—C17—H17A121.7
C7—C8—H8A121.4C19—C18—C17122.3 (2)
N1—C9—C10112.19 (11)C19—C18—H18A118.8
N1—C9—H9A109.2C17—C18—H18A118.8
C10—C9—H9A109.2C18—C19—C20121.2 (2)
N1—C9—H9B109.2C18—C19—H19A119.4
C10—C9—H9B109.2C20—C19—H19A119.4
H9A—C9—H9B107.9C15—C20—C19116.8 (2)
O3—C10—C9113.15 (11)C15—C20—H20A121.6
O3—C10—H10A108.9C19—C20—H20A121.6
C9—C10—H10A108.9
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C2/C3/C5–C8 and C14/C15/C17–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O5i0.932.473.171 (2)132
C19—H19A···O5ii0.932.453.286 (4)150
C11—H11B···Cg3iii0.972.843.624 (2)139
C12—H12B···Cg4iv0.972.943.567 (2)123
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H16N2O5
Mr364.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.8928 (1), 11.9656 (1), 14.3572 (2)
β (°) 111.633 (1)
V3)1739.49 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.85
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.333, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14673, 3575, 3075
Rint0.025
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.115, 1.07
No. of reflections3575
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C2/C3/C5–C8 and C14/C15/C17–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O5i0.932.473.171 (2)132
C19—H19A···O5ii0.932.453.286 (4)150
C11—H11B···Cg3iii0.972.843.624 (2)139
C12—H12B···Cg4iv0.972.943.567 (2)123
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by a grant for fundamental research from the Center of Science and Technology, Uzbek­istan (No. FA-F3-T-141).

References

First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, X., Wu, D.-H., Jia, Z.-L., Shao, Y. & Lu, G.-Y. (2007). Acta Cryst. E63, o3614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationValle, G., Toniolo, C. & Jung, G. (1986). Liebigs Ann. Chem. pp. 1809–1822.  CrossRef Google Scholar
First citationYatsimirskii, K. B., Kolchinskii, A. G., Pavlishuk, V. V. & Talanova, G. G. (1987). Sintez Makrotciklicheskikh Soedinenii, p. 280. Kiev: Nauka dumka.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds