organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-3,5-bis­­(4-methyl­benzyl­­idene)-4-oxopiperidin-1-ium chloride acetic acid monosolvate

aBinzhou Medical College, Yantai 264003, People's Republic of China
*Correspondence e-mail: sjf.xzy@163.com

(Received 22 April 2011; accepted 28 April 2011; online 7 May 2011)

In the title solvated mol­ecular salt, C28H28NO+·Cl·C2H4O2, the central piperidinium ring of the cation adopts an envelope conformation with the N atom displaced by 0.798 (2) Å from the mean plane of the five C atoms. In the crystal, the components are linked by N—H⋯Cl and O—H⋯Cl hydrogen bonds into trimeric assemblies. C—H⋯Cl and C—H⋯π inter­actions further consolidate the packing.

Related literature

For background to the use of piperidone derivatives in medicine, see: Dimmock et al. (2003[Dimmock, J. R., Jha, A., Zello, G. A., Sharma, R. K., Shrivastav, A., Selvakumar, P., Allen, T. M., Santos, C. L., Balzarini, J., Clercq, E. D., Manavathu, E. K. & Stables, J. P. (2003). J. Enzyme Inhib. Med. Chem. 18, 325-332.]); El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Pati et al. (2009[Pati, H. N., Das, U., Das, S. & Bandy, B. (2009). Eur. J. Med. Chem. 44, 54-62.]); Das et al. (2009[Das, S., Das, U., Selvakumar, P., Sharma, R. K., Balzarini, J., Clercq, E. D., Molnar, J., Serly, J., Barath, Z., Schatte, G., Bandy, B., Gorecki, D. K. J. & Dimmock, J. R. (2009). Chem. Med. Chem. 4, 1831-1840.], 2010[Das, U., Sakagami, H., Chu, Q., Wang, Q., Kawase, M., Selvakuma, P., Sharma, R. K. & Dimmock, J. R. (2010). Bioorg. Med. Chem. Lett. 20, 912-917.]). For the synthesis, see: Pati et al. (2009[Pati, H. N., Das, U., Das, S. & Bandy, B. (2009). Eur. J. Med. Chem. 44, 54-62.]).

[Scheme 1]

Experimental

Crystal data
  • C28H28NO+·Cl·C2H4O2

  • Mr = 490.02

  • Triclinic, [P \overline 1]

  • a = 7.1488 (5) Å

  • b = 11.2799 (7) Å

  • c = 17.6271 (11) Å

  • α = 103.181 (6)°

  • β = 98.087 (6)°

  • γ = 92.407 (6)°

  • V = 1366.16 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 288 K

  • 0.61 × 0.54 × 0.52 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction, Yarnton, England.]) Tmin = 0.804, Tmax = 1.000

  • 16829 measured reflections

  • 5549 independent reflections

  • 3895 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.158

  • S = 1.03

  • 5549 reflections

  • 320 parameters

  • 39 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.91 2.15 3.0490 (17) 171
O3—H3⋯Cl1 0.82 2.26 3.053 (2) 162
C11—H11A⋯Cl1i 0.97 2.72 3.602 (2) 151
C25—H25⋯Cg3ii 0.93 2.85 3.582 (4) 137
C30—H30CCg3iii 0.97 2.96 3.675 (4) 133
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y-1, -z; (iii) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

At present, a series of N-substituted-3,5-bis(arylidene)-4-piperidone derivatives have been synthesized and proved to be a kind of lead tumor-specific cytotoxin which induces apoptosis and autophagy with multidrug-resistance reverting properties (Pati et al. 2009; Das et al. 2009; Das et al. 2010). These compounds have a marked affinity for thiols in contrast to amino and hydroxyl groups found in nucleic acids (Dimmock et al. 2003). Thus development of these compounds as candidate cytotoxics may lead to drugs which are lack of the genotoxic properties present in various antineoplastic agents (El-Subbagh et al. 2000). Here, we report the title compound (I), whose IC50M) to HL-60 and HSC-2 cells are 59.80 and 105.09 could be used as a basic unit to prepare antineoplastic compounds.

The molecular structure of the title compound (I) is shown in Fig. 1. The hydrogen proton of hydrogen chloride have completely transferred to N1, resulting in the formation of ammonium salt, in which the hydrogen-bonding donors and acceptors reside separately on the cations and anions. In the crystal, weak intermolecular N—H···Cl hydrogen bonds, C—H···Cl hydrogen bonds, O—H···Cl hydrogen bonds and C—H···π stacking interactions contribute to the crystal packing arrangement (Table 1).

Related literature top

For background to the use of piperidone derivatives in medicine, see: Dimmock et al. (2003); El-Subbagh et al. (2000); Pati et al. (2009); Das et al. (2009, 2010). For the synthesis, see: Pati et al. (2009).

Experimental top

The title compound was synthesized according to the literature (Pati et al. 2009). Dry hydrogen chloride was continuously bubbled into a solution of N-benzyl-4-piperidone (0.005 mol) and p-tolualdehyde (0.01 mol) in acetic acid (15 ml) at room temperature. And then the mixture was stirred at room temperature for 12 h. When the produced precipitate was collected, they were added to a solution of aqueous potassium carbonate solution (25%, w/v). The desired product was obtained after the solid was crystallized by the mixed solvents of ethanol and chloroform (5:1, v/v) in a yield of 74.8%. Yellow blocks of (I) were obtained by slow evaporation of the reacting solution of the title compound in acetic acid.

Refinement top

The H atoms were all located in a different map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
1-Benzyl-3,5-bis(4-methylbenzylidene)-4-oxopiperidin-1-ium chloride acetic acid monosolvate top
Crystal data top
C28H28NO+·Cl·C2H4O2Z = 2
Mr = 490.02F(000) = 520
Triclinic, P1Dx = 1.191 Mg m3
a = 7.1488 (5) ÅMo Kα radiation, λ = 0.7107 Å
b = 11.2799 (7) ÅCell parameters from 6467 reflections
c = 17.6271 (11) Åθ = 3.3–28.9°
α = 103.181 (6)°µ = 0.17 mm1
β = 98.087 (6)°T = 288 K
γ = 92.407 (6)°Block, yellow
V = 1366.16 (16) Å30.61 × 0.54 × 0.52 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
5549 independent reflections
Radiation source: Enhance (Mo) X-ray Source3895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.0355 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1414
Tmin = 0.804, Tmax = 1.000l = 2222
16829 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.3122P]
where P = (Fo2 + 2Fc2)/3
5549 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.30 e Å3
39 restraintsΔρmin = 0.29 e Å3
Crystal data top
C28H28NO+·Cl·C2H4O2γ = 92.407 (6)°
Mr = 490.02V = 1366.16 (16) Å3
Triclinic, P1Z = 2
a = 7.1488 (5) ÅMo Kα radiation
b = 11.2799 (7) ŵ = 0.17 mm1
c = 17.6271 (11) ÅT = 288 K
α = 103.181 (6)°0.61 × 0.54 × 0.52 mm
β = 98.087 (6)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
5549 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3895 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 1.000Rint = 0.029
16829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05439 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
5549 reflectionsΔρmin = 0.29 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.08804 (8)0.75303 (7)0.28289 (4)0.0748 (3)
N10.5035 (2)0.71709 (14)0.26944 (10)0.0393 (4)
H10.38390.73420.27810.047*
C90.3879 (3)0.65470 (19)0.12495 (12)0.0419 (5)
O10.2783 (2)0.82076 (15)0.07466 (10)0.0620 (5)
C130.3747 (3)0.7863 (2)0.12748 (13)0.0449 (5)
C120.4888 (3)0.87647 (18)0.19513 (12)0.0416 (5)
C110.6027 (3)0.82996 (18)0.25930 (12)0.0426 (5)
H11A0.72710.81230.24570.051*
H11B0.61920.89200.30840.051*
C100.4892 (3)0.61825 (18)0.19628 (12)0.0437 (5)
H10A0.42180.54620.20350.052*
H10B0.61560.59730.18710.052*
C50.3050 (3)0.4412 (2)0.03506 (12)0.0469 (5)
C80.3123 (3)0.5739 (2)0.05816 (13)0.0468 (5)
H80.25360.60940.01930.056*
C140.4858 (3)0.9947 (2)0.19560 (13)0.0498 (5)
H140.39961.01320.15610.060*
C40.1820 (3)0.3827 (2)0.03376 (13)0.0538 (6)
H40.11320.42990.06290.065*
C220.5994 (3)0.6717 (2)0.33817 (12)0.0502 (5)
H22A0.53010.59700.34020.060*
H22B0.72610.65180.32880.060*
C230.6138 (3)0.7602 (2)0.41694 (13)0.0522 (6)
C60.4122 (3)0.3656 (2)0.07377 (14)0.0543 (6)
H60.50100.40040.11800.065*
C150.5982 (4)1.0990 (2)0.24915 (13)0.0557 (6)
C20.2600 (3)0.1835 (2)0.01829 (14)0.0571 (6)
C280.7816 (4)0.8286 (3)0.45080 (15)0.0677 (7)
H280.88540.82180.42400.081*
C30.1601 (3)0.2573 (2)0.05945 (14)0.0591 (6)
H3A0.07670.22180.10520.071*
C70.3887 (4)0.2404 (2)0.04754 (14)0.0583 (6)
H70.46150.19270.07490.070*
C240.4610 (4)0.7721 (3)0.45812 (16)0.0724 (8)
H240.34590.72790.43600.087*
C200.7861 (4)1.0932 (2)0.28108 (15)0.0649 (7)
H200.84301.01980.26990.078*
C190.8889 (5)1.1962 (3)0.32947 (17)0.0867 (9)
H191.01471.19170.35020.104*
C10.2305 (5)0.0466 (2)0.04400 (18)0.0793 (8)
H1A0.12020.02390.08360.119*
H1B0.21320.01400.00050.119*
H1C0.33940.01450.06530.119*
C160.5197 (5)1.2108 (2)0.26610 (17)0.0773 (8)
H160.39621.21740.24340.093*
C270.7962 (5)0.9078 (3)0.52492 (17)0.0869 (10)
H270.90940.95420.54720.104*
C180.8059 (6)1.3060 (3)0.34730 (18)0.0944 (10)
C250.4813 (6)0.8509 (4)0.53299 (19)0.0936 (11)
H250.38000.85730.56110.112*
C260.6465 (7)0.9179 (3)0.56492 (18)0.0940 (11)
H260.65760.97100.61440.113*
C170.6200 (6)1.3104 (3)0.3151 (2)0.0997 (11)
H170.56201.38310.32730.120*
O20.1938 (3)0.4138 (2)0.24132 (14)0.0879 (6)
O30.0627 (3)0.4934 (2)0.19550 (14)0.0900 (7)
H30.01030.55530.22650.135*
C290.0411 (4)0.4005 (3)0.19967 (18)0.0713 (8)
C300.0443 (5)0.2837 (3)0.1471 (2)0.0894 (9)
H30A0.05680.29010.09320.134*
H30B0.16710.26560.15960.134*
H30C0.03550.21950.15410.134*
C210.9236 (8)1.4166 (4)0.4024 (3)0.1380 (15)
H21A1.05081.39540.41560.207*
H21B0.86851.44100.44960.207*
H21C0.92551.48280.37650.207*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0409 (4)0.1028 (6)0.0838 (5)0.0246 (3)0.0192 (3)0.0190 (4)
N10.0316 (8)0.0463 (9)0.0458 (9)0.0111 (7)0.0108 (7)0.0182 (7)
C90.0290 (10)0.0530 (12)0.0471 (12)0.0065 (8)0.0079 (8)0.0170 (9)
O10.0554 (10)0.0650 (10)0.0671 (11)0.0056 (8)0.0080 (8)0.0292 (8)
C130.0328 (10)0.0563 (12)0.0514 (12)0.0071 (9)0.0078 (9)0.0233 (10)
C120.0329 (10)0.0491 (11)0.0488 (12)0.0089 (8)0.0123 (8)0.0193 (9)
C110.0359 (11)0.0452 (11)0.0491 (12)0.0067 (8)0.0065 (9)0.0155 (9)
C100.0402 (11)0.0442 (11)0.0488 (12)0.0089 (9)0.0074 (9)0.0138 (9)
C50.0365 (11)0.0590 (13)0.0461 (12)0.0046 (9)0.0107 (9)0.0114 (10)
C80.0339 (11)0.0616 (13)0.0488 (12)0.0076 (9)0.0064 (9)0.0207 (10)
C140.0503 (13)0.0547 (13)0.0508 (12)0.0127 (10)0.0088 (10)0.0232 (10)
C40.0383 (12)0.0723 (16)0.0496 (13)0.0066 (11)0.0051 (9)0.0123 (11)
C220.0541 (13)0.0519 (12)0.0509 (13)0.0162 (10)0.0073 (10)0.0235 (10)
C230.0595 (14)0.0587 (13)0.0469 (12)0.0178 (11)0.0111 (10)0.0258 (10)
C60.0517 (14)0.0603 (14)0.0477 (12)0.0081 (11)0.0014 (10)0.0093 (10)
C150.0758 (16)0.0502 (12)0.0460 (12)0.0097 (11)0.0086 (11)0.0211 (10)
C20.0551 (14)0.0621 (14)0.0543 (14)0.0026 (11)0.0239 (11)0.0060 (11)
C280.0702 (18)0.0816 (18)0.0539 (15)0.0056 (14)0.0070 (13)0.0229 (13)
C30.0421 (13)0.0734 (16)0.0532 (13)0.0062 (11)0.0077 (10)0.0008 (12)
C70.0685 (16)0.0557 (14)0.0511 (13)0.0095 (12)0.0099 (11)0.0123 (11)
C240.0694 (18)0.098 (2)0.0609 (16)0.0197 (15)0.0209 (13)0.0324 (15)
C200.0783 (17)0.0536 (13)0.0644 (15)0.0023 (12)0.0025 (13)0.0235 (11)
C190.107 (2)0.0785 (17)0.0695 (17)0.0101 (15)0.0170 (15)0.0289 (14)
C10.095 (2)0.0636 (17)0.0759 (18)0.0121 (15)0.0294 (16)0.0030 (14)
C160.114 (2)0.0523 (14)0.0656 (16)0.0224 (14)0.0013 (15)0.0184 (12)
C270.113 (3)0.086 (2)0.0567 (17)0.0024 (19)0.0056 (17)0.0195 (15)
C180.150 (3)0.0600 (15)0.0632 (17)0.0108 (17)0.0071 (18)0.0127 (13)
C250.112 (3)0.125 (3)0.0609 (18)0.046 (2)0.0394 (18)0.0355 (19)
C260.144 (4)0.092 (2)0.0497 (17)0.034 (2)0.017 (2)0.0177 (15)
C170.149 (3)0.0584 (16)0.085 (2)0.0182 (17)0.004 (2)0.0138 (14)
O20.0612 (13)0.1007 (15)0.1090 (16)0.0147 (11)0.0039 (12)0.0436 (13)
O30.0621 (13)0.1004 (16)0.1116 (18)0.0188 (12)0.0014 (11)0.0401 (14)
C290.0529 (16)0.095 (2)0.0828 (19)0.0131 (15)0.0192 (14)0.0479 (17)
C300.085 (2)0.092 (2)0.096 (2)0.0020 (18)0.0156 (18)0.0338 (19)
C210.181 (3)0.100 (2)0.105 (2)0.017 (2)0.024 (2)0.001 (2)
Geometric parameters (Å, º) top
N1—H10.9100C2—C11.504 (4)
N1—C111.490 (3)C28—H280.9300
N1—C101.488 (3)C28—C271.392 (4)
N1—C221.510 (3)C3—H3A0.9300
C9—C131.482 (3)C7—H70.9300
C9—C101.510 (3)C24—H240.9300
C9—C81.341 (3)C24—C251.398 (4)
O1—C131.225 (2)C20—H200.9300
C13—C121.492 (3)C20—C191.385 (4)
C12—C111.505 (3)C19—H190.9300
C12—C141.333 (3)C19—C181.386 (5)
C11—H11A0.9700C1—H1A0.9600
C11—H11B0.9700C1—H1B0.9600
C10—H10A0.9700C1—H1C0.9600
C10—H10B0.9700C16—H160.9300
C5—C81.456 (3)C16—C171.356 (4)
C5—C41.402 (3)C27—H270.9300
C5—C61.397 (3)C27—C261.357 (5)
C8—H80.9300C18—C171.377 (5)
C14—H140.9300C18—C211.528 (5)
C14—C151.457 (3)C25—H250.9300
C4—H40.9300C25—C261.352 (5)
C4—C31.378 (3)C26—H260.9300
C22—H22A0.9700C17—H170.9300
C22—H22B0.9700O2—C291.210 (3)
C22—C231.501 (3)O3—H30.8200
C23—C281.379 (4)O3—C291.320 (3)
C23—C241.388 (3)C29—C301.478 (4)
C6—H60.9300C30—H30A0.9600
C6—C71.377 (3)C30—H30B0.9600
C15—C201.392 (4)C30—H30C0.9600
C15—C161.389 (3)C21—H21A0.9600
C2—C31.382 (4)C21—H21B0.9600
C2—C71.384 (3)C21—H21C0.9600
C11—N1—H1108.1C23—C28—C27120.2 (3)
C11—N1—C22113.02 (16)C27—C28—H28119.9
C10—N1—H1108.1C4—C3—C2121.1 (2)
C10—N1—C11110.26 (16)C4—C3—H3A119.4
C10—N1—C22109.03 (14)C2—C3—H3A119.4
C22—N1—H1108.1C6—C7—C2122.0 (2)
C13—C9—C10118.82 (17)C6—C7—H7119.0
C8—C9—C13117.84 (18)C2—C7—H7119.0
C8—C9—C10123.32 (19)C23—C24—H24120.2
C9—C13—C12117.95 (17)C23—C24—C25119.6 (3)
O1—C13—C9121.50 (19)C25—C24—H24120.2
O1—C13—C12120.50 (19)C15—C20—H20119.9
C13—C12—C11118.64 (17)C19—C20—C15120.3 (3)
C14—C12—C13118.29 (19)C19—C20—H20119.9
C14—C12—C11123.07 (19)C20—C19—H19119.7
N1—C11—C12109.89 (16)C20—C19—C18120.6 (3)
N1—C11—H11A109.7C18—C19—H19119.7
N1—C11—H11B109.7C2—C1—H1A109.5
C12—C11—H11A109.7C2—C1—H1B109.5
C12—C11—H11B109.7C2—C1—H1C109.5
H11A—C11—H11B108.2H1A—C1—H1B109.5
N1—C10—C9112.41 (15)H1A—C1—H1C109.5
N1—C10—H10A109.1H1B—C1—H1C109.5
N1—C10—H10B109.1C15—C16—H16119.4
C9—C10—H10A109.1C17—C16—C15121.1 (3)
C9—C10—H10B109.1C17—C16—H16119.4
H10A—C10—H10B107.9C28—C27—H27119.7
C4—C5—C8117.3 (2)C26—C27—C28120.5 (3)
C6—C5—C8126.42 (19)C26—C27—H27119.7
C6—C5—C4116.3 (2)C19—C18—C21118.7 (4)
C9—C8—C5132.1 (2)C17—C18—C19118.4 (3)
C9—C8—H8113.9C17—C18—C21122.8 (3)
C5—C8—H8113.9C24—C25—H25119.7
C12—C14—H14115.4C26—C25—C24120.7 (3)
C12—C14—C15129.2 (2)C26—C25—H25119.7
C15—C14—H14115.4C27—C26—H26119.9
C5—C4—H4119.0C25—C26—C27120.2 (3)
C3—C4—C5121.9 (2)C25—C26—H26119.9
C3—C4—H4119.0C16—C17—C18121.4 (3)
N1—C22—H22A108.6C16—C17—H17119.3
N1—C22—H22B108.6C18—C17—H17119.3
H22A—C22—H22B107.5C29—O3—H3109.5
C23—C22—N1114.79 (16)O2—C29—O3121.5 (3)
C23—C22—H22A108.6O2—C29—C30124.9 (3)
C23—C22—H22B108.6O3—C29—C30113.5 (3)
C28—C23—C22120.3 (2)C29—C30—H30A109.5
C28—C23—C24118.8 (2)C29—C30—H30B109.5
C24—C23—C22120.9 (2)C29—C30—H30C109.5
C5—C6—H6119.4H30A—C30—H30B109.5
C7—C6—C5121.1 (2)H30A—C30—H30C109.5
C7—C6—H6119.4H30B—C30—H30C109.5
C20—C15—C14122.6 (2)C18—C21—H21A109.5
C16—C15—C14119.2 (2)C18—C21—H21B109.5
C16—C15—C20118.1 (2)C18—C21—H21C109.5
C3—C2—C7117.4 (2)H21A—C21—H21B109.5
C3—C2—C1121.4 (2)H21A—C21—H21C109.5
C7—C2—C1121.2 (2)H21B—C21—H21C109.5
C23—C28—H28119.9
N1—C22—C23—C28100.9 (2)C14—C15—C20—C19177.7 (2)
N1—C22—C23—C2481.1 (3)C14—C15—C16—C17179.5 (3)
C9—C13—C12—C113.3 (3)C4—C5—C8—C9167.5 (2)
C9—C13—C12—C14176.39 (18)C4—C5—C6—C73.6 (3)
O1—C13—C12—C11179.07 (19)C22—N1—C11—C12174.39 (16)
O1—C13—C12—C141.3 (3)C22—N1—C10—C9177.83 (17)
C13—C9—C10—N120.4 (3)C22—C23—C28—C27178.0 (2)
C13—C9—C8—C5178.0 (2)C22—C23—C24—C25177.0 (2)
C13—C12—C11—N132.5 (2)C23—C28—C27—C260.6 (4)
C13—C12—C14—C15172.7 (2)C23—C24—C25—C261.6 (5)
C12—C14—C15—C2035.2 (4)C6—C5—C8—C914.1 (4)
C12—C14—C15—C16148.4 (3)C6—C5—C4—C33.5 (3)
C11—N1—C10—C957.5 (2)C15—C20—C19—C180.5 (5)
C11—N1—C22—C2360.2 (2)C15—C16—C17—C182.9 (5)
C11—C12—C14—C157.0 (4)C28—C23—C24—C251.1 (4)
C10—N1—C11—C1263.3 (2)C28—C27—C26—C250.0 (5)
C10—N1—C22—C23176.78 (19)C3—C2—C7—C62.7 (4)
C10—C9—C13—O1172.6 (2)C7—C2—C3—C42.8 (3)
C10—C9—C13—C129.8 (3)C24—C23—C28—C270.0 (4)
C10—C9—C8—C50.4 (4)C24—C25—C26—C271.1 (5)
C5—C4—C3—C20.3 (4)C20—C15—C16—C172.9 (4)
C5—C6—C7—C20.6 (4)C20—C19—C18—C170.6 (5)
C8—C9—C13—O19.0 (3)C20—C19—C18—C21178.7 (3)
C8—C9—C13—C12168.70 (18)C19—C18—C17—C161.0 (5)
C8—C9—C10—N1161.29 (19)C1—C2—C3—C4177.3 (2)
C8—C5—C4—C3178.0 (2)C1—C2—C7—C6177.4 (2)
C8—C5—C6—C7178.0 (2)C16—C15—C20—C191.2 (4)
C14—C12—C11—N1147.8 (2)C21—C18—C17—C16179.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.912.153.0490 (17)171
O3—H3···Cl10.822.263.053 (2)162
C11—H11A···Cl1i0.972.723.602 (2)151
C25—H25···Cg3ii0.932.853.582 (4)137
C30—H30C···Cg3iii0.972.963.675 (4)133
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC28H28NO+·Cl·C2H4O2
Mr490.02
Crystal system, space groupTriclinic, P1
Temperature (K)288
a, b, c (Å)7.1488 (5), 11.2799 (7), 17.6271 (11)
α, β, γ (°)103.181 (6), 98.087 (6), 92.407 (6)
V3)1366.16 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.61 × 0.54 × 0.52
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.804, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16829, 5549, 3895
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.158, 1.03
No. of reflections5549
No. of parameters320
No. of restraints39
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.912.153.0490 (17)171
O3—H3···Cl10.822.263.053 (2)162
C11—H11A···Cl1i0.972.723.602 (2)151
C25—H25···Cg3ii0.932.853.582 (4)137
C30—H30C···Cg3iii0.972.963.675 (4)133
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x, y1, z.
 

Acknowledgements

The authors are grateful to Binzhou Medical College for financial support.

References

First citationDas, S., Das, U., Selvakumar, P., Sharma, R. K., Balzarini, J., Clercq, E. D., Molnar, J., Serly, J., Barath, Z., Schatte, G., Bandy, B., Gorecki, D. K. J. & Dimmock, J. R. (2009). Chem. Med. Chem. 4, 1831–1840.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDas, U., Sakagami, H., Chu, Q., Wang, Q., Kawase, M., Selvakuma, P., Sharma, R. K. & Dimmock, J. R. (2010). Bioorg. Med. Chem. Lett. 20, 912–917.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDimmock, J. R., Jha, A., Zello, G. A., Sharma, R. K., Shrivastav, A., Selvakumar, P., Allen, T. M., Santos, C. L., Balzarini, J., Clercq, E. D., Manavathu, E. K. & Stables, J. P. (2003). J. Enzyme Inhib. Med. Chem. 18, 325–332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction, Yarnton, England.  Google Scholar
First citationPati, H. N., Das, U., Das, S. & Bandy, B. (2009). Eur. J. Med. Chem. 44, 54–62.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds