metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(2,2′-bi­pyridine-6,6′-di­carboxyl­ato)nickel(II)

aKey Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China, and bCollege of Chemistry and Materials Science, Northwest University, Xi'an 710069, People's Republic of China
*Correspondence e-mail: chemhu1@nwu.edu.cn, liul2001@yahoo.com.cn

(Received 28 April 2011; accepted 30 April 2011; online 7 May 2011)

In the title compound, [Ni(C12H6N2O4)(H2O)2], the NiII atom (site symmetry 2) displays a distorted cis-NiN2O4 octa­hedral coordination geometry with two N atoms and two O atoms of the tetra­dentate 2,2′-bipyridine-6,6′-dicarboxyl­ate ligand in the equatorial plane and two water mol­ecules in axial positions. The complete dianionic ligand is generated by crystallographic twofold symmetry. In the crystal, a two-dimensional supra­molecular structure parallel to (001) is formed through O—H⋯O hydrogen-bond inter­actions between the coordinated water mol­ecules and the O atoms of nearby carboxyl­ate groups.

Related literature

For transition metal complexes with the title ligand, see: Knight et al. (2006[Knight, J. C., Amoroso, A. J., Edwards, P. G. & Ooi, L.-L. (2006). Acta Cryst. E62, m3306-m3308.]); Duan et al. (2009[Duan, L., Fischer, A., Xu, Y. & Sun, L. (2009). J. Am. Chem. Soc. 131, 10397-10399.]); Wang et al. (2009[Wang, H., Su, H., Xu, J., Bai, F. & Gao, Y. (2009). Acta Cryst. E65, m352-m353.]). For lanthanide metal complexes with the title ligand, see: Bunzli et al. (2000[Bunzli, J.-C. G., Charbonniere, L. J. & Ziessel, R. F. (2000). J. Chem. Soc. Dalton Trans. pp. 1917-1923.]); Wang et al. (2010[Wang, C., Wang, Z., Gu, F. & Guo, G. (2010). J. Mol. Struct. 979, 92-100.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H6N2O4)(H2O)2]

  • Mr = 336.93

  • Orthorhombic, P c c n

  • a = 7.1056 (9) Å

  • b = 11.3608 (15) Å

  • c = 15.3334 (19) Å

  • V = 1237.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 296 K

  • 0.24 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.766, Tmax = 0.857

  • 6269 measured reflections

  • 1274 independent reflections

  • 1098 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.06

  • 1274 reflections

  • 102 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 1.9975 (19)
Ni1—O3 2.0553 (18)
Ni1—O1 2.1335 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.81 (2) 1.90 (2) 2.708 (2) 176 (3)
O3—H3B⋯O2ii 0.83 (2) 1.95 (2) 2.772 (3) 172 (3)
Symmetry codes: (i) [-x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridyl carboxylic acid is an important class of organic ligands and has been widely used in coordination chemistry. 2,2'-Bipyridine-6,6'-dicarboxylate ligand is coordinated woth transition metal (Duan et al., 2009; Knight et al., 2006 and Wang et al., 2009) and lanthanide metal ions (Bunzli et al., 2000 and Wang et al., 2010). Herein, we report crystal structure of a new nickel complex with 2,2'-bipyridine-6,6'-dicarboxylate ligand.

The atom-numbering scheme of (I) is shown in Fig. 1. The NiII atom displays a distorted octahedral coordination geometry with two N atoms and two O atoms of 2,2'-bipyridine-6,6'-dicarboxylate in equatorial plane and two water molecules in apical positions. A two-dimensional supramolecular structure is formed through hydrogen interactions between the oxygen atoms of coordination water molecules and the oxygen atoms of carboxylate groups [O3—H3A···O2i, 2.708 (3) Å, 176 (3) °, symmetric code i: (-x - 1/2, -y + 3/2, z); O3—H3B···O2ii, 2.772 (3) Å, 172 (3) °, symmetric code ii: (-x, y - 1/2, -z + 1/2)].

Related literature top

For transition metal complexes with the title ligand, see: Knight et al. (2006); Duan et al. (2009); Wang et al. (2009). For lanthanide metal complexes with the title ligand, see: Bunzli et al. (2000); Wang et al. (2010).

Experimental top

The title compound was prepared by the reaction of Ni(NO3)2 with 2,2'-bipyridine-6,6'-dicarboxylic acid (H2bpdc) in a water solution. Ni(NO3)2.6H2O (0.2 mmol) and H2bpdc (0.2 mmol) were dissolved in 25 ml deionized water and adjusted the pH to 7 with 0.05 mol L-1 NaOH aqueous solution. After one week, green blocks were obtained. Elmental analysis for C12H10N2NiO6 calculated: C 42.78, H 2.99, N 8.32%; found: C 42.57, H 2.89, N 8.46%.

Refinement top

The water H atoms were located in a difference Fourier map and refined with restrained O—H bond lengths [0.85 (2) Å] and fixed isotropic displancement parameters (Uiso(H) = 1.2 Ueq(O)). The carbon H atoms were placed at calculated positions (C—H = 0.93–0.96 Å) and refined as riding model with Uiso(H) = 1.2 Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. Atoms labelled with the suffix A are at the symmetry position (-x + 1/2, -y + 3/2, z).
[Figure 2] Fig. 2. View of a two-dimensional supramolecular structure constructed through hydrogen bonding interactions in (I). Hydrogen atoms of carbon atoms have been omitted for clarity.
Diaqua(2,2'-bipyridine-6,6'-dicarboxylato)nickel(II) top
Crystal data top
[Ni(C12H6N2O4)(H2O)2]F(000) = 688
Mr = 336.93Dx = 1.808 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1650 reflections
a = 7.1056 (9) Åθ = 3.2–25.2°
b = 11.3608 (15) ŵ = 1.60 mm1
c = 15.3334 (19) ÅT = 296 K
V = 1237.8 (3) Å3Block, green
Z = 40.24 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1274 independent reflections
Radiation source: fine-focus sealed tube1098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.766, Tmax = 0.857k = 1314
6269 measured reflectionsl = 1019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.5888P]
where P = (Fo2 + 2Fc2)/3
1274 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.48 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Ni(C12H6N2O4)(H2O)2]V = 1237.8 (3) Å3
Mr = 336.93Z = 4
Orthorhombic, PccnMo Kα radiation
a = 7.1056 (9) ŵ = 1.60 mm1
b = 11.3608 (15) ÅT = 296 K
c = 15.3334 (19) Å0.24 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1274 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1098 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.857Rint = 0.036
6269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0322 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.48 e Å3
1274 reflectionsΔρmin = 0.23 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.75000.16327 (3)0.02540 (16)
N10.0931 (3)0.80137 (16)0.06211 (12)0.0285 (4)
O10.0167 (2)0.83346 (15)0.22531 (11)0.0360 (4)
O20.2446 (2)0.93408 (18)0.19595 (16)0.0517 (6)
C10.1035 (3)0.8756 (2)0.17424 (18)0.0348 (6)
C20.0683 (4)0.8569 (2)0.07707 (17)0.0332 (6)
C30.1808 (4)0.8936 (2)0.0083 (2)0.0464 (7)
H30.29340.93320.01820.056*
C40.1204 (5)0.8695 (3)0.0750 (2)0.0563 (9)
H40.19510.89150.12210.068*
C50.0486 (5)0.8132 (2)0.09017 (18)0.0506 (8)
H50.08940.79820.14670.061*
C60.1564 (4)0.7796 (2)0.01856 (16)0.0348 (6)
O30.1216 (2)0.58888 (16)0.17647 (13)0.0380 (5)
H3A0.009 (3)0.584 (3)0.1803 (18)0.046*
H3B0.169 (4)0.545 (2)0.2135 (15)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0254 (3)0.0293 (3)0.0215 (2)0.00250 (16)0.0000.000
N10.0341 (11)0.0256 (10)0.0260 (11)0.0004 (9)0.0053 (9)0.0005 (8)
O10.0336 (9)0.0402 (10)0.0343 (10)0.0040 (8)0.0046 (8)0.0040 (8)
O20.0263 (10)0.0466 (12)0.0821 (15)0.0055 (8)0.0004 (9)0.0232 (11)
C10.0248 (12)0.0269 (12)0.0526 (17)0.0047 (10)0.0005 (12)0.0078 (11)
C20.0316 (13)0.0217 (12)0.0464 (16)0.0021 (10)0.0109 (11)0.0021 (10)
C30.0437 (15)0.0291 (14)0.067 (2)0.0016 (11)0.0276 (15)0.0050 (13)
C40.073 (2)0.0378 (16)0.059 (2)0.0073 (15)0.0407 (18)0.0134 (14)
C50.085 (2)0.0380 (16)0.0289 (15)0.0094 (16)0.0177 (15)0.0061 (11)
C60.0530 (17)0.0261 (12)0.0252 (12)0.0045 (11)0.0073 (12)0.0018 (9)
O30.0259 (9)0.0364 (10)0.0519 (12)0.0001 (8)0.0044 (9)0.0117 (8)
Geometric parameters (Å, º) top
Ni1—N1i1.9975 (19)C2—C31.387 (4)
Ni1—N11.9975 (19)C3—C41.375 (5)
Ni1—O3i2.0553 (18)C3—H30.9300
Ni1—O32.0553 (18)C4—C51.381 (5)
Ni1—O1i2.1335 (16)C4—H40.9300
Ni1—O12.1335 (16)C5—C61.392 (4)
N1—C21.329 (3)C5—H50.9300
N1—C61.339 (3)C6—C6i1.491 (5)
O1—C11.254 (3)O3—H3A0.806 (18)
O2—C11.247 (3)O3—H3B0.827 (17)
C1—C21.526 (4)
N1i—Ni1—N178.11 (11)O2—C1—C2117.8 (2)
N1i—Ni1—O3i95.10 (8)O1—C1—C2116.4 (2)
N1—Ni1—O3i93.67 (8)N1—C2—C3120.6 (3)
N1i—Ni1—O393.67 (8)N1—C2—C1112.1 (2)
N1—Ni1—O395.10 (8)C3—C2—C1127.3 (3)
O3i—Ni1—O3168.70 (11)C4—C3—C2117.8 (3)
N1i—Ni1—O1i77.45 (7)C4—C3—H3121.1
N1—Ni1—O1i155.48 (8)C2—C3—H3121.1
O3i—Ni1—O1i90.40 (7)C3—C4—C5121.4 (3)
O3—Ni1—O1i84.56 (7)C3—C4—H4119.3
N1i—Ni1—O1155.48 (8)C5—C4—H4119.3
N1—Ni1—O177.45 (7)C4—C5—C6118.2 (3)
O3i—Ni1—O184.56 (7)C4—C5—H5120.9
O3—Ni1—O190.40 (7)C6—C5—H5120.9
O1i—Ni1—O1127.04 (9)N1—C6—C5119.5 (3)
C2—N1—C6122.5 (2)N1—C6—C6i112.53 (14)
C2—N1—Ni1119.11 (17)C5—C6—C6i127.93 (19)
C6—N1—Ni1118.41 (17)Ni1—O3—H3A121 (2)
C1—O1—Ni1114.88 (15)Ni1—O3—H3B115 (2)
O2—C1—O1125.7 (3)H3A—O3—H3B108 (3)
N1i—Ni1—N1—C2178.6 (2)Ni1—N1—C2—C3179.86 (17)
O3i—Ni1—N1—C284.19 (18)C6—N1—C2—C1177.4 (2)
O3—Ni1—N1—C288.68 (18)Ni1—N1—C2—C11.8 (3)
O1i—Ni1—N1—C2176.75 (16)O2—C1—C2—N1175.2 (2)
O1—Ni1—N1—C20.59 (17)O1—C1—C2—N12.6 (3)
N1i—Ni1—N1—C60.53 (13)O2—C1—C2—C33.1 (4)
O3i—Ni1—N1—C694.98 (18)O1—C1—C2—C3179.2 (2)
O3—Ni1—N1—C692.15 (18)N1—C2—C3—C40.6 (4)
O1i—Ni1—N1—C64.1 (3)C1—C2—C3—C4178.7 (2)
O1—Ni1—N1—C6178.57 (19)C2—C3—C4—C51.5 (4)
N1i—Ni1—O1—C13.7 (3)C3—C4—C5—C61.0 (4)
N1—Ni1—O1—C10.96 (16)C2—N1—C6—C51.6 (4)
O3i—Ni1—O1—C194.04 (17)Ni1—N1—C6—C5179.24 (19)
O3—Ni1—O1—C196.09 (17)C2—N1—C6—C6i177.8 (2)
O1i—Ni1—O1—C1179.58 (17)Ni1—N1—C6—C6i1.4 (3)
Ni1—O1—C1—O2175.4 (2)C4—C5—C6—N10.6 (4)
Ni1—O1—C1—C22.1 (3)C4—C5—C6—C6i178.7 (3)
C6—N1—C2—C31.0 (4)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.81 (2)1.90 (2)2.708 (2)176 (3)
O3—H3B···O2iii0.83 (2)1.95 (2)2.772 (3)172 (3)
Symmetry codes: (ii) x1/2, y+3/2, z; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C12H6N2O4)(H2O)2]
Mr336.93
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)296
a, b, c (Å)7.1056 (9), 11.3608 (15), 15.3334 (19)
V3)1237.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.24 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.766, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
6269, 1274, 1098
Rint0.036
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.06
No. of reflections1274
No. of parameters102
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N11.9975 (19)Ni1—O12.1335 (16)
Ni1—O32.0553 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.806 (18)1.904 (18)2.708 (2)176 (3)
O3—H3B···O2ii0.827 (17)1.950 (17)2.772 (3)172 (3)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y1/2, z+1/2.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunzli, J.-C. G., Charbonniere, L. J. & Ziessel, R. F. (2000). J. Chem. Soc. Dalton Trans. pp. 1917–1923.  Google Scholar
First citationDuan, L., Fischer, A., Xu, Y. & Sun, L. (2009). J. Am. Chem. Soc. 131, 10397–10399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnight, J. C., Amoroso, A. J., Edwards, P. G. & Ooi, L.-L. (2006). Acta Cryst. E62, m3306–m3308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Su, H., Xu, J., Bai, F. & Gao, Y. (2009). Acta Cryst. E65, m352–m353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C., Wang, Z., Gu, F. & Guo, G. (2010). J. Mol. Struct. 979, 92–100.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds