organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-4-(2-iodo­benzene­sulfonamido)­benzoic acid

aX-ray Diffraction and Crystallography Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan, bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and cThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia
*Correspondence e-mail: mnachemist@hotmail.com

(Received 28 April 2011; accepted 30 April 2011; online 7 May 2011)

In the title compound, C13H9ClINO4S, the dihedral angle between the aromatic rings is 81.04 (17)°. The disposition of the I and Cl atoms attached to the two rings is anti. In the crystal, mol­ecules are connected via O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For background to thia­zine heterocycles, see: Arshad et al. (2008,[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.] 2011[Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801-2805.]). For their biological activity, see: Medina et al. (1999[Medina, J. C., Roche, D., Shan, B., Learned, R. M., Frankmoelle, W. P., Clark, D. L., Rosen, T. & Jaen, J. C. (1999). Bioorg. Med. Chem. Lett. 9, 1843-1846.]). For related structures, see: Arshad et al. (2009a[Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009a). Acta Cryst. E65, o281.],b[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Sharif, H. M. A. (2009b). Acta Cryst. E65, o831.],c[Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009c). Acta Cryst. E65, o230.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClINO4S

  • Mr = 437.62

  • Monoclinic, P 21 /n

  • a = 14.1522 (8) Å

  • b = 7.3203 (4) Å

  • c = 14.7193 (8) Å

  • β = 104.892 (2)°

  • V = 1473.68 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.51 mm−1

  • T = 296 K

  • 0.18 × 0.15 × 0.09 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.661, Tmax = 0.806

  • 16645 measured reflections

  • 3668 independent reflections

  • 1876 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.129

  • S = 1.03

  • 3668 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −1.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.38 3.214 (6) 162
O1—H1O⋯O2ii 0.82 2.09 2.771 (6) 140
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound, (I), is an example of a halogenated sulfonamide, which are reported as inhibitors for the growth of multidrug resistant MCF-7/ADR cancer cells (Medina et al., 1999). In continuation to our researches with sulfonamides (Arshad et al., 2009a), the title compound has been prepared, as an intermediate for the preparation of thiazine related heterocycles (Arshad et al., 2008, 2011).

The crystal structure of (I) being reported here as an isomer of previously reported compound 2-chloro-5-(2-iodobenzenesulfonamido)benzoic acid (II), (Arshad, et al., 2009a). The bond lengths and bond angles are also compareable with the 5-benzenesulfonamido-2-chlorobenzoic acid (III), (Arshad, et al., 2009b) and 4-(2-Iodobenzenesulfonamido)benzoic acid monohydrate (IV) (Arshad, et al., 2009c). The two aromatic rings A (C1-C6) and B (C7-C12) are oriented at dihedral angle of 81.04 (17)° which is lower than in (IV i.e. 87.07 (6)°) and greater than in (II i.e. 74.46 (9)°) and (III i.e. 74.18 (17)°). No intramolecular hydrogen bonding interaction have been observed in the molecule. The intermolecular interaction of O—H···O and N—H···O forms three dimentional network to stabilize structure of molecule (Fig. 2 and Tab. 1).

Related literature top

For background to thiazine heterocycles, see: Arshad et al. (2008, 2011). For their biological activity, see: Medina et al. (1999). For related structures, see: Arshad et al. (2009a,b,c).

Experimental top

The title compound was prepared following the method of Arshad et al. (2009a). Red needles were recrystallised from methanol.

Refinement top

All the H-atoms were positioned with idealized geometry with C—H = 0.93 Å, N—H = 0.86 Å, O—H = 0.82 Å and were refined using a riding model with Uiso(H) = 1.2 Ueqfor aromatic C and N atoms and with Uiso(H) = 1.5 Ueqfor O atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing for (I) with hydrogen bonding shown as dashed lines.
2-Chloro-4-(2-iodobenzenesulfonamido)benzoic acid top
Crystal data top
C13H9ClINO4SF(000) = 848
Mr = 437.62Dx = 1.972 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2692 reflections
a = 14.1522 (8) Åθ = 2.9–22.2°
b = 7.3203 (4) ŵ = 2.51 mm1
c = 14.7193 (8) ÅT = 296 K
β = 104.892 (2)°Needle, red
V = 1473.68 (14) Å30.18 × 0.15 × 0.09 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3668 independent reflections
Radiation source: fine-focus sealed tube1876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1818
Tmin = 0.661, Tmax = 0.806k = 95
16645 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0383P)2 + 3.6338P]
where P = (Fo2 + 2Fc2)/3
3668 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 1.30 e Å3
Crystal data top
C13H9ClINO4SV = 1473.68 (14) Å3
Mr = 437.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.1522 (8) ŵ = 2.51 mm1
b = 7.3203 (4) ÅT = 296 K
c = 14.7193 (8) Å0.18 × 0.15 × 0.09 mm
β = 104.892 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3668 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1876 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.806Rint = 0.058
16645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.03Δρmax = 1.24 e Å3
3668 reflectionsΔρmin = 1.30 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.09820 (4)0.29186 (7)0.02615 (4)0.0813 (2)
Cl10.57812 (11)0.0907 (2)0.24047 (12)0.0606 (5)
S10.22376 (11)0.1302 (2)0.02876 (11)0.0446 (4)
O20.6990 (3)0.2380 (5)0.2686 (3)0.0522 (11)
O30.1453 (3)0.1280 (6)0.1113 (3)0.0608 (12)
O40.2813 (3)0.2894 (6)0.0053 (4)0.0685 (13)
O10.6486 (3)0.4890 (5)0.1868 (3)0.0587 (12)
H1O0.69580.53370.22470.088*
N10.2946 (3)0.0364 (6)0.0429 (3)0.0415 (12)
H10.28080.08970.09670.050*
C10.1801 (4)0.0725 (8)0.0698 (4)0.0443 (14)
C20.1285 (4)0.0854 (10)0.0765 (5)0.0549 (17)
C30.0945 (5)0.1169 (14)0.1543 (6)0.082 (3)
H30.06040.22370.15880.099*
C40.1104 (8)0.005 (2)0.2231 (8)0.116 (4)
H40.08600.01740.27490.140*
C50.1625 (7)0.1670 (17)0.2205 (6)0.102 (4)
H50.17400.25030.26980.122*
C60.1957 (5)0.1974 (11)0.1423 (6)0.070 (2)
H60.22950.30470.13800.085*
C70.3765 (4)0.1009 (7)0.0255 (4)0.0315 (12)
C80.4328 (4)0.0092 (7)0.0936 (4)0.0372 (13)
H80.41550.13090.09760.045*
C90.5151 (4)0.0594 (7)0.1565 (4)0.0350 (13)
C100.5457 (4)0.2393 (6)0.1501 (4)0.0297 (11)
C110.4845 (4)0.3480 (7)0.0827 (4)0.0390 (13)
H110.50060.47040.07880.047*
C120.4019 (4)0.2832 (7)0.0222 (4)0.0384 (13)
H120.36250.36110.02140.046*
C130.6385 (4)0.3173 (7)0.2090 (4)0.0364 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0650 (3)0.0593 (3)0.1146 (5)0.0148 (2)0.0143 (3)0.0042 (3)
Cl10.0512 (9)0.0458 (8)0.0741 (12)0.0036 (7)0.0037 (8)0.0291 (8)
S10.0403 (8)0.0417 (8)0.0510 (10)0.0072 (6)0.0103 (8)0.0130 (7)
O20.038 (2)0.048 (2)0.059 (3)0.0023 (18)0.010 (2)0.007 (2)
O30.055 (3)0.071 (3)0.051 (3)0.018 (2)0.003 (2)0.023 (2)
O40.060 (3)0.039 (2)0.105 (4)0.004 (2)0.020 (3)0.013 (2)
O10.069 (3)0.044 (2)0.045 (3)0.019 (2)0.017 (2)0.006 (2)
N10.037 (3)0.058 (3)0.027 (3)0.008 (2)0.005 (2)0.001 (2)
C10.034 (3)0.057 (4)0.041 (4)0.013 (3)0.006 (3)0.001 (3)
C20.034 (3)0.077 (5)0.053 (4)0.020 (3)0.010 (3)0.020 (4)
C30.062 (5)0.125 (7)0.075 (6)0.020 (5)0.045 (5)0.039 (6)
C40.091 (8)0.201 (13)0.070 (7)0.062 (8)0.045 (6)0.020 (8)
C50.082 (7)0.160 (10)0.057 (6)0.047 (7)0.009 (5)0.040 (7)
C60.053 (4)0.085 (5)0.070 (5)0.016 (4)0.009 (4)0.016 (4)
C70.030 (3)0.041 (3)0.026 (3)0.002 (2)0.013 (2)0.001 (2)
C80.037 (3)0.035 (3)0.042 (4)0.000 (2)0.013 (3)0.003 (3)
C90.036 (3)0.036 (3)0.034 (3)0.010 (2)0.012 (3)0.011 (2)
C100.029 (3)0.031 (3)0.031 (3)0.002 (2)0.011 (2)0.000 (2)
C110.042 (3)0.037 (3)0.036 (3)0.002 (2)0.006 (3)0.005 (2)
C120.036 (3)0.040 (3)0.036 (3)0.000 (2)0.002 (3)0.012 (3)
C130.041 (3)0.038 (3)0.031 (3)0.001 (2)0.012 (3)0.001 (2)
Geometric parameters (Å, º) top
I1—C22.102 (7)C4—C51.401 (14)
Cl1—C91.722 (5)C4—H40.9300
S1—O41.413 (4)C5—C61.368 (12)
S1—O31.420 (4)C5—H50.9300
S1—N11.626 (5)C6—H60.9300
S1—C11.767 (6)C7—C81.371 (7)
O2—C131.206 (6)C7—C121.386 (7)
O1—C131.315 (6)C8—C91.383 (7)
O1—H1O0.8200C8—H80.9300
N1—C71.407 (6)C9—C101.396 (7)
N1—H10.8600C10—C111.388 (7)
C1—C61.380 (9)C10—C131.489 (7)
C1—C21.384 (9)C11—C121.360 (7)
C2—C31.371 (9)C11—H110.9300
C3—C41.326 (14)C12—H120.9300
C3—H30.9300
O4—S1—O3119.6 (3)C5—C6—C1121.5 (8)
O4—S1—N1108.3 (3)C5—C6—H6119.3
O3—S1—N1104.7 (3)C1—C6—H6119.3
O4—S1—C1107.3 (3)C8—C7—C12119.0 (5)
O3—S1—C1109.8 (3)C8—C7—N1122.9 (5)
N1—S1—C1106.4 (2)C12—C7—N1118.1 (5)
C13—O1—H1O109.5C7—C8—C9120.5 (5)
C7—N1—S1125.6 (4)C7—C8—H8119.7
C7—N1—H1117.2C9—C8—H8119.7
S1—N1—H1117.2C8—C9—C10121.3 (5)
C6—C1—C2118.7 (6)C8—C9—Cl1116.1 (4)
C6—C1—S1117.2 (6)C10—C9—Cl1122.5 (4)
C2—C1—S1124.1 (5)C11—C10—C9116.2 (5)
C3—C2—C1120.3 (7)C11—C10—C13119.4 (4)
C3—C2—I1115.4 (6)C9—C10—C13124.4 (5)
C1—C2—I1124.3 (5)C12—C11—C10122.8 (5)
C4—C3—C2119.8 (9)C12—C11—H11118.6
C4—C3—H3120.1C10—C11—H11118.6
C2—C3—H3120.1C11—C12—C7120.0 (5)
C3—C4—C5122.4 (9)C11—C12—H12120.0
C3—C4—H4118.8C7—C12—H12120.0
C5—C4—H4118.8O2—C13—O1122.6 (5)
C6—C5—C4117.2 (9)O2—C13—C10126.4 (5)
C6—C5—H5121.4O1—C13—C10111.0 (5)
C4—C5—H5121.4
O4—S1—N1—C758.9 (5)S1—N1—C7—C830.4 (7)
O3—S1—N1—C7172.4 (4)S1—N1—C7—C12150.9 (4)
C1—S1—N1—C756.2 (5)C12—C7—C8—C91.7 (8)
O4—S1—C1—C68.9 (5)N1—C7—C8—C9177.0 (5)
O3—S1—C1—C6122.5 (5)C7—C8—C9—C102.8 (8)
N1—S1—C1—C6124.7 (5)C7—C8—C9—Cl1178.5 (4)
O4—S1—C1—C2173.7 (5)C8—C9—C10—C115.3 (7)
O3—S1—C1—C254.9 (5)Cl1—C9—C10—C11176.1 (4)
N1—S1—C1—C257.9 (5)C8—C9—C10—C13173.7 (5)
C6—C1—C2—C30.5 (9)Cl1—C9—C10—C134.9 (7)
S1—C1—C2—C3177.9 (5)C9—C10—C11—C123.6 (8)
C6—C1—C2—I1179.7 (4)C13—C10—C11—C12175.5 (5)
S1—C1—C2—I13.0 (7)C10—C11—C12—C70.7 (8)
C1—C2—C3—C40.6 (11)C8—C7—C12—C113.4 (8)
I1—C2—C3—C4179.8 (6)N1—C7—C12—C11175.3 (5)
C2—C3—C4—C50.9 (14)C11—C10—C13—O2178.6 (5)
C3—C4—C5—C61.2 (14)C9—C10—C13—O20.3 (9)
C4—C5—C6—C11.1 (12)C11—C10—C13—O10.3 (7)
C2—C1—C6—C50.9 (10)C9—C10—C13—O1179.2 (5)
S1—C1—C6—C5178.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.383.214 (6)162
O1—H1O···O2ii0.822.092.771 (6)140
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9ClINO4S
Mr437.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.1522 (8), 7.3203 (4), 14.7193 (8)
β (°) 104.892 (2)
V3)1473.68 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.51
Crystal size (mm)0.18 × 0.15 × 0.09
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.661, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
16645, 3668, 1876
Rint0.058
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.129, 1.03
No. of reflections3668
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 1.30

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.383.214 (6)162
O1—H1O···O2ii0.822.092.771 (6)140
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Footnotes

Materials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan.

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University, Lahore, Pakistan.

References

First citationArshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801–2805.  CAS Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Sharif, H. M. A. (2009b). Acta Cryst. E65, o831.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009a). Acta Cryst. E65, o281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009c). Acta Cryst. E65, o230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMedina, J. C., Roche, D., Shan, B., Learned, R. M., Frankmoelle, W. P., Clark, D. L., Rosen, T. & Jaen, J. C. (1999). Bioorg. Med. Chem. Lett. 9, 1843–1846.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds