organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Hy­dr­oxy-5-methyl­phen­yl)-3-(2-methyl­phen­yl)prop-2-en-1-one

aDepartment of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal 576 104, India, and bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 1 May 2011; accepted 15 May 2011; online 25 May 2011)

In the title compound, C17H16O2, the dihedral angle between the aromatic rings is 5.12 (13)° and an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring.

Related literature

For a related structure and background references to chalcones, see: Thippeswamy et al. (2011[Thippeswamy, G. B., Vijay Kumar, D., Jayashree, B. S., Sridhar, M. A. & Shashidhara Prasad, J. (2011). Acta Cryst. E67, o829.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O2

  • Mr = 252.30

  • Orthorhombic, P b c a

  • a = 13.3930 (11) Å

  • b = 14.1740 (16) Å

  • c = 14.5710 (15) Å

  • V = 2766.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.29 × 0.27 × 0.25 mm

Data collection
  • MacScience DIPLabo 32001 diffractometer

  • 8036 measured reflections

  • 2422 independent reflections

  • 1654 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.209

  • S = 1.15

  • 2422 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H18⋯O11 0.82 1.89 2.608 (3) 146

Data collection: XPRESS (MacScience, 2002[MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing structural studies of chalcones (Thippeswamy et al., 2011), we now report the synthesis and crystal structure of the title compound, (I), (Fig. 1).

The title compound, C17H16O2, consists of two methylphenyl rings attached at ei-ther sides of the propanone chain. The propanone unit is planar, which is confirmed by the r.m.s. deviation of 0.003 (3)Å from the mean plane. The dihedral angle between the least squares planes of 5-methylphenyl ring and 2-methylphenyl ring is 5.93 (13)° which indicates that 5-methylphenyl ring in +Syn-periplanar conformation with 2-methylphenyl ring. The bond lengths C1—O11, C1—C12, C1—C2, C2—C3, C3—C4 and bond angles C1—C2—C12,C1—C2—C3 are in good agreement with these of a similar compound reported earlier (Thippeswamy et al., 2011). The angles C2—C1—O11, C12—C1—O11 and C2—C1—C12 are 119.5 (2)°, 119.4 (2)° and 121.1 (2)° respectively which indicate that the position of C1 atom is nearly in trigonal geometry. An intramolecular O—H···O hydrogen bond occurs (Table 1).

Related literature top

For a related structure and background references to chalcones, see: Thippeswamy et al. (2011).

Experimental top

The title compound was prepared by dissolving 2-hydroxy-5- methoxyacetophenone 0.05 m mol in 15 ml of ethanol taken in a conical flask. To this 5 ml of 20° aqueous sodium hydroxide was added and kept for stirring at room temperature. To this mixture, 4-methylbenzaldehyde 0.05 m mol was added and continued stirring till the completion of reaction. The progress of the reaction was monitored by TLC using n-hexane and ethylacetate as solvent system. After completion of the reaction, the mixture was poured into ice cold water, mixed properly and acidified with dilute hydrochloric acid. The title compound separates as precipitate which was collected by filtration and crystallized from methanol as orange blocks of (I).

Computing details top

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram for (I).
1-(2-Hydroxy-5-methylphenyl)-3-(2-methylphenyl)prop-2-en-1-one top
Crystal data top
C17H16O2F(000) = 1072
Mr = 252.30Dx = 1.212 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8036 reflections
a = 13.3930 (11) Åθ = 2.4–25.0°
b = 14.1740 (16) ŵ = 0.08 mm1
c = 14.5710 (15) ÅT = 293 K
V = 2766.0 (5) Å3Block, orange
Z = 80.29 × 0.27 × 0.25 mm
Data collection top
MacScience DIPLabo 32001
diffractometer
1654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
Detector resolution: 10.0 pixels mm-1h = 1515
ω scansk = 1516
8036 measured reflectionsl = 1717
2422 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.209 w = 1/[σ2(Fo2) + (0.1131P)2 + 0.2932P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.009
2422 reflectionsΔρmax = 0.37 e Å3
175 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (4)
Crystal data top
C17H16O2V = 2766.0 (5) Å3
Mr = 252.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.3930 (11) ŵ = 0.08 mm1
b = 14.1740 (16) ÅT = 293 K
c = 14.5710 (15) Å0.29 × 0.27 × 0.25 mm
Data collection top
MacScience DIPLabo 32001
diffractometer
1654 reflections with I > 2σ(I)
8036 measured reflectionsRint = 0.044
2422 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 1.15Δρmax = 0.37 e Å3
2422 reflectionsΔρmin = 0.38 e Å3
175 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93869 (16)0.33849 (16)0.36305 (17)0.0641 (7)
C20.91789 (15)0.39731 (16)0.44755 (17)0.0667 (7)
H20.94470.37870.50360.080*
C30.86192 (16)0.47546 (16)0.44390 (17)0.0657 (7)
H30.83820.49190.38610.079*
C40.83271 (15)0.53964 (17)0.52070 (17)0.0686 (7)
C50.8504 (2)0.5140 (2)0.6137 (2)0.0882 (9)
H50.88040.45630.62660.106*
C60.8230 (3)0.5747 (3)0.6874 (2)0.1102 (11)
H60.83560.55700.74770.132*
C70.7767 (3)0.6617 (3)0.6682 (3)0.1179 (14)
H70.75870.70190.71590.141*
C80.7581 (2)0.6874 (2)0.5779 (3)0.1063 (12)
H80.72710.74490.56650.128*
C90.78464 (17)0.62923 (19)0.5019 (2)0.0812 (8)
C100.7635 (2)0.6625 (2)0.4032 (3)0.1076 (11)
H10A0.72930.72200.40480.161*
H10B0.72250.61670.37250.161*
H10C0.82540.66950.37070.161*
O110.91143 (13)0.36828 (12)0.28533 (12)0.0830 (6)
C120.98967 (15)0.24407 (16)0.37022 (17)0.0626 (6)
C131.02359 (15)0.20750 (17)0.45520 (17)0.0673 (7)
H131.01350.24280.50820.081*
C141.07221 (17)0.11945 (19)0.4623 (2)0.0772 (8)
C151.0858 (2)0.0661 (2)0.3793 (2)0.0908 (9)
H151.11800.00810.38250.109*
C161.0530 (2)0.0979 (2)0.2950 (2)0.0924 (9)
H161.06230.06110.24290.111*
C171.00483 (19)0.18723 (18)0.2883 (2)0.0749 (7)
O180.97406 (16)0.21620 (15)0.20261 (13)0.1000 (7)
H180.94750.26820.20660.150*
C191.1099 (2)0.0842 (2)0.5547 (2)0.0995 (10)
H19A1.18070.09440.55880.149*
H19B1.09600.01810.56050.149*
H19C1.07700.11800.60310.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0505 (11)0.0700 (14)0.0717 (16)0.0065 (10)0.0030 (10)0.0002 (12)
C20.0521 (12)0.0733 (14)0.0748 (17)0.0036 (11)0.0079 (11)0.0016 (12)
C30.0485 (11)0.0733 (14)0.0754 (16)0.0053 (11)0.0020 (10)0.0045 (12)
C40.0436 (11)0.0783 (15)0.0837 (19)0.0045 (11)0.0050 (11)0.0046 (12)
C50.0648 (15)0.109 (2)0.091 (2)0.0065 (14)0.0051 (14)0.0096 (17)
C60.0821 (19)0.159 (3)0.089 (2)0.025 (2)0.0116 (17)0.026 (2)
C70.081 (2)0.140 (3)0.133 (3)0.025 (2)0.036 (2)0.057 (3)
C80.0632 (16)0.095 (2)0.161 (4)0.0030 (15)0.030 (2)0.030 (2)
C90.0486 (13)0.0778 (16)0.117 (2)0.0026 (12)0.0137 (13)0.0063 (16)
C100.0789 (18)0.094 (2)0.150 (3)0.0232 (17)0.0071 (19)0.0232 (19)
O110.0850 (12)0.0894 (12)0.0746 (13)0.0041 (10)0.0114 (9)0.0032 (9)
C120.0476 (11)0.0683 (13)0.0721 (16)0.0059 (10)0.0035 (10)0.0023 (11)
C130.0451 (11)0.0729 (14)0.0839 (18)0.0025 (11)0.0032 (11)0.0028 (12)
C140.0506 (13)0.0789 (16)0.102 (2)0.0035 (12)0.0047 (12)0.0072 (15)
C150.0686 (16)0.0779 (17)0.126 (3)0.0118 (14)0.0164 (17)0.0007 (17)
C160.0861 (18)0.0858 (19)0.105 (2)0.0037 (15)0.0221 (17)0.0233 (16)
C170.0698 (15)0.0801 (16)0.0749 (18)0.0078 (13)0.0117 (12)0.0047 (13)
O180.1154 (16)0.1075 (15)0.0771 (14)0.0001 (12)0.0056 (11)0.0128 (11)
C190.0693 (16)0.103 (2)0.126 (3)0.0179 (16)0.0041 (16)0.0227 (18)
Geometric parameters (Å, º) top
C1—O111.263 (3)C10—H10A0.9600
C1—C121.506 (3)C10—H10B0.9600
C1—C21.513 (3)C10—H10C0.9600
C2—C31.339 (3)C12—C131.417 (3)
C2—H20.9300C12—C171.454 (4)
C3—C41.494 (3)C13—C141.411 (3)
C3—H30.9300C13—H130.9300
C4—C51.423 (4)C14—C151.438 (4)
C4—C91.450 (4)C14—C191.523 (4)
C5—C61.423 (4)C15—C161.379 (4)
C5—H50.9300C15—H150.9300
C6—C71.409 (5)C16—C171.425 (4)
C6—H60.9300C16—H160.9300
C7—C81.387 (5)C17—O181.378 (3)
C7—H70.9300O18—H180.8200
C8—C91.425 (4)C19—H19A0.9600
C8—H80.9300C19—H19B0.9600
C9—C101.541 (4)C19—H19C0.9600
O11—C1—C12119.4 (2)H10A—C10—H10B109.5
O11—C1—C2119.5 (2)C9—C10—H10C109.5
C12—C1—C2121.1 (2)H10A—C10—H10C109.5
C3—C2—C1121.8 (2)H10B—C10—H10C109.5
C3—C2—H2119.1C13—C12—C17118.0 (2)
C1—C2—H2119.1C13—C12—C1122.1 (2)
C2—C3—C4128.4 (2)C17—C12—C1119.9 (2)
C2—C3—H3115.8C14—C13—C12122.4 (2)
C4—C3—H3115.8C14—C13—H13118.8
C5—C4—C9118.5 (2)C12—C13—H13118.8
C5—C4—C3120.9 (2)C13—C14—C15117.5 (3)
C9—C4—C3120.6 (2)C13—C14—C19120.5 (3)
C4—C5—C6121.4 (3)C15—C14—C19122.0 (2)
C4—C5—H5119.3C16—C15—C14122.4 (3)
C6—C5—H5119.3C16—C15—H15118.8
C7—C6—C5119.6 (3)C14—C15—H15118.8
C7—C6—H6120.2C15—C16—C17119.7 (3)
C5—C6—H6120.2C15—C16—H16120.1
C8—C7—C6119.7 (3)C17—C16—H16120.1
C8—C7—H7120.1O18—C17—C16117.6 (3)
C6—C7—H7120.1O18—C17—C12122.5 (2)
C7—C8—C9122.7 (3)C16—C17—C12119.9 (3)
C7—C8—H8118.6C17—O18—H18109.5
C9—C8—H8118.6C14—C19—H19A109.5
C8—C9—C4118.1 (3)C14—C19—H19B109.5
C8—C9—C10120.2 (3)H19A—C19—H19B109.5
C4—C9—C10121.7 (2)C14—C19—H19C109.5
C9—C10—H10A109.5H19A—C19—H19C109.5
C9—C10—H10B109.5H19B—C19—H19C109.5
O11—C1—C2—C37.3 (3)C2—C1—C12—C132.3 (3)
C12—C1—C2—C3171.5 (2)O11—C1—C12—C171.5 (3)
C1—C2—C3—C4178.5 (2)C2—C1—C12—C17177.34 (19)
C2—C3—C4—C510.4 (3)C17—C12—C13—C140.9 (3)
C2—C3—C4—C9170.3 (2)C1—C12—C13—C14179.4 (2)
C9—C4—C5—C60.8 (4)C12—C13—C14—C150.6 (3)
C3—C4—C5—C6179.9 (2)C12—C13—C14—C19178.3 (2)
C4—C5—C6—C70.5 (4)C13—C14—C15—C160.3 (4)
C5—C6—C7—C80.1 (4)C19—C14—C15—C16179.2 (2)
C6—C7—C8—C90.4 (5)C14—C15—C16—C170.9 (4)
C7—C8—C9—C40.2 (4)C15—C16—C17—O18179.5 (2)
C7—C8—C9—C10179.0 (3)C15—C16—C17—C120.6 (4)
C5—C4—C9—C80.4 (3)C13—C12—C17—O18179.6 (2)
C3—C4—C9—C8179.8 (2)C1—C12—C17—O180.1 (3)
C5—C4—C9—C10179.6 (2)C13—C12—C17—C160.3 (3)
C3—C4—C9—C101.0 (3)C1—C12—C17—C16180.0 (2)
O11—C1—C12—C13178.86 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O110.821.892.608 (3)146

Experimental details

Crystal data
Chemical formulaC17H16O2
Mr252.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.3930 (11), 14.1740 (16), 14.5710 (15)
V3)2766.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.29 × 0.27 × 0.25
Data collection
DiffractometerMacScience DIPLabo 32001
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8036, 2422, 1654
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.209, 1.15
No. of reflections2422
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.38

Computer programs: XPRESS (MacScience, 2002), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O110.821.892.608 (3)146
 

Acknowledgements

The authors are grateful to the DST/CSIR, New Delhi, and the University of Mysore for financial support and duly acknowledge Manipal College of Pharmaceutical Sciences for providing facilities to carry out the synthetic work.

References

First citationJohnson, C. K. (1976). ORTEPII. Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThippeswamy, G. B., Vijay Kumar, D., Jayashree, B. S., Sridhar, M. A. & Shashidhara Prasad, J. (2011). Acta Cryst. E67, o829.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds