metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m773-m774

[4′-(4-Amino­phen­yl)-2,2′:6′,2′′-terpyridine]­chloridopalladium(II) chloride

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 May 2011; accepted 12 May 2011; online 20 May 2011)

The PdII atom in the complex cation of the title compound, [PdCl(C21H16N4)]Cl, is coordinated by three N atoms derived from the terpyridine ligand and a chloride ion, which define a distorted PdClN3 square-planar coordination geometry. In the crystal, the presence of N—H⋯Cl hydrogen bonds involving the amino H atom and chloride anions link two cations and two anions into a four-ion aggregate via centrosymmetric eight-membered [⋯H—N—H⋯Cl]2 synthons. Layers of cations are inter­spersed with the chloride anions with stabilization provided by C—H⋯Cl inter­actions involving both Cl atoms, as well as ππ inter­actions [the closest inter­action of 3.489 (6) Å occurs between a chelate ring and a pyridyl residue].

Related literature

For background to metal–terpyridine complexes, see: Storrier et al. (1997[Storrier, G. D., Colbran, S. B. & Craig, D. C. (1997). J. Chem Soc. Dalton Trans. pp. 3011-3028.]); Hofmeier & Schubert (2004[Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373-399.]); Eryazici et al. (2008[Eryazici, I., Moorefield, C. N. & Newkome, G. R. (2008). Chem. Rev. 108, 1834-1895.]). For the synthesis, see: Tu et al. (2007[Tu, S., Jia, R., Jiang, B., Zhang, J., Zhang, Y., Yao, C. & Ji, S. (2007). Tetrahedron, 63, 381-388.]); Laine et al. (2002[Laine, P., Bedioui, F., Ochsenbein, P., Marvaud, V., Bonin, M. & Amouyal, E. (2002). J. Am. Chem. Soc. 124, 1364-1377.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl(C21H16N4)]Cl

  • Mr = 501.68

  • Monoclinic, P 21 /n

  • a = 10.853 (3) Å

  • b = 13.151 (3) Å

  • c = 13.654 (3) Å

  • β = 105.215 (6)°

  • V = 1880.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 98 K

  • 0.10 × 0.04 × 0.04 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.412, Tmax = 1

  • 15599 measured reflections

  • 3296 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.098

  • wR(F2) = 0.239

  • S = 1.16

  • 3296 reflections

  • 259 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 3.59 e Å−3

  • Δρmin = −2.15 e Å−3

Table 1
Selected bond lengths (Å)

Pd—N1 2.034 (10)
Pd—N2 1.922 (9)
Pd—N3 2.022 (10)
Pd—Cl1 2.290 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1n⋯Cl2 0.88 (9) 2.42 (7) 3.287 (11) 167 (8)
N4—H2n⋯Cl2i 0.88 (7) 2.48 (8) 3.352 (10) 173 (10)
C13—H13⋯Cl1ii 0.95 2.61 3.493 (14) 156
C15—H15⋯Cl2iii 0.95 2.56 3.449 (12) 155
Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: PATTY in DIRDIF (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Interest in transition metal terpyridine complexes (Hofmeier & Schubert, 2004; Eryazici et al., 2008) led to the synthesis and characterization of the title PdII complex, (I), featuring a rare example of a 4'-(4-anilino)-2,2':6',2''-terpyridine ligand (Storrier et al., 1997).

Complex (I) comprises a [Pd{4'-(4-anilino)-2,2':6',2''-terpyridine}Cl] cation and a chloride anion, Fig. 1. The PdII center is coordinated by three N atoms derived from the tridentate terpyridine ligand, and the square planar geometry is completed by a Cl atom, Table 1. The Pd—N2 bond distance is significantly shorter than the remaining Pd—N bonds, an observation correlated with the restricted bite angles of the ligand (N1—Pd—N3 = 161.6 (4) °). Each of the five-membered chelate rings is essentially planar (r.m.s. = 0.021 and 0.028 Å) and the dihedral angle formed between these rings = 1.7 (4) °. With reference to the central N2-containing pyridyl ring, the N1- and N3-pyridyl rings form dihedral angles of 4.0 (6) and 6.0 (5) °, respectively; the dihedral angle between the wing pyridyl rings = 6.7 (6) °. A slight twist is found around the C8—C16 bond as seen in the C7—C8—C16—C17 torsion angle of 171.5 (9)°; the dihedral angle formed between these rings is 8.6 (5) °.

The most prominent feature of the crystal packing is the formation of N—H···Cl hydrogen bonds, Table 2, whereby cations are connected via centrosymmetric eight-membered [···H—N—H···Cl]2 synthons, Fig. 2. Globally, the cations aggregate into layers interspersed by the Cl anions. The are significant intralayer C—H···Cl contacts involving the covalently bound Cl as well as interlayer C—H···Cl- contacts, Table 2. This pattern brings into proximity several π-systems with the closest ππ contact of 3.489 (6) Å occurring between the Pd,N1,N2,C2 chelate ring and a symmetry related N3-pyridyl ring [angle of inclination = 4.1 (2) ° for symmetry operation 1 - x, 1 - y, -z]. A view of the unit-cell contents is shown in Fig. 3.

Related literature top

For background to metal–terpyridine complexes, see: Storrier et al. (1997); Hofmeier & Schubert (2004); Eryazici et al. (2008). For the synthesis, see: Tu et al. (2007); Laine et al. (2002).

Experimental top

Synthesis of 4'-(4-nitrophenyl)-2,2':6',2''-terpyridine, the precursor used for the synthesis of 4'-(4-anilino)-2,2':6',2''-terpyridine (L1). 4-Nitrobenzaldehyde (0.302 g, 2.00 mmol), 2-acetylpyridine (0.450 ml, 4.00 mmol), and ammonium acetate (0.308 g, 4.00 mmol) were mixed in a 10 ml reaction vial, suitable for microwave irradiation. Deionized H2O (2.00 ml) was added using a syringe to the reaction vial. The reaction vial was capped, and the mixture was irradiated via microwave at 200 W, 200 PSI, and at 403 K for 22 minutes with stirring (Tu et al., 2007). The crude product was filtered, and dissolved in 100 ml 1-propanol. This solution was filtered via gravity filtration, concentrated and crystallized. Product was recrystallized in a 95% ethanol solution to afford a brown precipitate (0.098 g, 27.7%); M.pt. 434–435 K.

Synthesis of L1: 4'-4-nitrophenyl)-2,2':6',2''-terpyridine (0.098 g, 0.277 mmol) and Pd—C 10% (0.030 g) in 20 ml e thanol were refluxed for 1 h under nitrogen. Hydrazine hydrate solution (N2H4 55%, 0.320 ml, 5.80 mmol, 21 equiv.) was added drop wise using a syringe. Reflux was carried out for an additional 30 minutes. The reaction mixture was cooled to room temperature and gravity filtered over cotton-wool. The catalyst was washed with CH2Cl2 (100 ml). The organic filtrates were washed with deionized H2O until neutrality was reached. The organic phase was dried over magnesium sulfate and filtered. The solvent was evaporated under heat, to yield a light brown microcrystalline product (Laine et al., 2002). This was recrystallized from 95% ethanol to afford a yellow microcrystalline product (0.035 g, 36.7%); M.pt. 507–511 K.

Synthesis of [Pd{4'-(4-anilino)-2,2':6',2''-terpyridine}Cl]Cl: L1 (11.5 mg, 0.034 mmol) was dissolved in 10 ml me thanol and added to a solution of K2PdCl4 (11.0 mg, 0.034 mmol) in 10 ml me thanol in a 100 ml beaker. The solution was heated gently with stirring for 30 minutes and evaporated to afford a dark red crystalline product (9.80 mg, 53.3%). Red prisms of (I) were obtained by recrystallization from ethanol solution by vapor diffusion of diethylether.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The N-bound H-atoms were located in a difference Fourier map and refined with an N—H restraint of 0.880±0.001 Å, a H···H restraint of 1.43±0.01 Å, and with Uiso(H) = 1.2Ueq(N). The maximum and minimum residual electron density peaks of 3.59 and 2.15 e Å-3, respectively, were located 0.93 Å and 0.80 Å from the Pd atom.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: PATTY in DIRDIF (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Four-ion aggregate in (I) mediated by N—H···Cl (orange dashed lines) hydrogen bonds.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I). The N—H···Cl, C—H···Cl and ππ interactions are shown as orange, blue and purple dashed lines, respectively.
[4'-(4-Aminophenyl)-2,2':6',2''-terpyridine]chloridopalladium(II) chloride top
Crystal data top
[PdCl(C21H16N4)]ClF(000) = 1000
Mr = 501.68Dx = 1.772 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 7657 reflections
a = 10.853 (3) Åθ = 2.1–30.3°
b = 13.151 (3) ŵ = 1.29 mm1
c = 13.654 (3) ÅT = 98 K
β = 105.215 (6)°Prism, red
V = 1880.5 (7) Å30.10 × 0.04 × 0.04 mm
Z = 4
Data collection top
Rigaku AFC12/SATURN724
diffractometer
3296 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1211
Tmin = 0.412, Tmax = 1k = 1515
15599 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.098Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.094P)2 + 20.7984P]
where P = (Fo2 + 2Fc2)/3
3296 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 3.59 e Å3
3 restraintsΔρmin = 2.15 e Å3
Crystal data top
[PdCl(C21H16N4)]ClV = 1880.5 (7) Å3
Mr = 501.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.853 (3) ŵ = 1.29 mm1
b = 13.151 (3) ÅT = 98 K
c = 13.654 (3) Å0.10 × 0.04 × 0.04 mm
β = 105.215 (6)°
Data collection top
Rigaku AFC12/SATURN724
diffractometer
3296 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2809 reflections with I > 2σ(I)
Tmin = 0.412, Tmax = 1Rint = 0.079
15599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0983 restraints
wR(F2) = 0.239H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.094P)2 + 20.7984P]
where P = (Fo2 + 2Fc2)/3
3296 reflectionsΔρmax = 3.59 e Å3
259 parametersΔρmin = 2.15 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.52238 (8)0.61084 (7)0.12448 (6)0.0406 (4)
Cl10.3256 (3)0.6393 (3)0.2332 (2)0.0602 (9)
Cl21.5657 (3)0.6930 (2)0.4574 (2)0.0521 (8)
N10.5776 (9)0.7570 (7)0.0888 (7)0.042 (2)
N20.6866 (8)0.5872 (7)0.0316 (6)0.037 (2)
N30.5215 (8)0.4571 (7)0.1273 (6)0.038 (2)
N41.4174 (9)0.4831 (8)0.3621 (7)0.044 (2)
H1N1.469 (9)0.534 (5)0.387 (7)0.053*
H2N1.428 (11)0.435 (5)0.408 (6)0.053*
C10.5076 (12)0.8421 (10)0.1202 (9)0.051 (3)
H10.42490.83650.16560.061*
C20.5559 (14)0.9367 (9)0.0865 (10)0.053 (3)
H20.50490.99540.10740.063*
C30.6765 (15)0.9472 (10)0.0233 (10)0.057 (4)
H30.71081.01250.00210.068*
C40.7472 (13)0.8592 (8)0.0090 (9)0.047 (3)
H40.83030.86370.05390.056*
C50.6961 (11)0.7660 (8)0.0245 (8)0.040 (3)
C60.7595 (11)0.6664 (8)0.0078 (8)0.037 (2)
C70.8789 (11)0.6510 (8)0.0711 (8)0.038 (3)
H70.93000.70780.09930.045*
C80.9263 (10)0.5522 (7)0.0949 (8)0.033 (2)
C90.8437 (10)0.4710 (8)0.0530 (7)0.032 (2)
H90.87080.40290.06900.038*
C100.7247 (10)0.4895 (8)0.0106 (8)0.035 (2)
C110.6283 (9)0.4156 (8)0.0622 (8)0.033 (2)
C120.4354 (10)0.3957 (10)0.1824 (8)0.043 (3)
H120.36220.42500.22750.052*
C130.4449 (11)0.2911 (11)0.1785 (9)0.051 (3)
H130.38060.25010.22110.061*
C140.5489 (11)0.2470 (9)0.1120 (8)0.043 (3)
H140.55650.17510.10650.052*
C150.6434 (10)0.3105 (9)0.0527 (8)0.038 (3)
H150.71660.28220.00670.046*
C161.0522 (11)0.5334 (8)0.1615 (8)0.036 (2)
C171.0953 (11)0.4342 (8)0.1970 (8)0.037 (2)
H171.04090.37750.17500.045*
C181.2149 (10)0.4190 (8)0.2630 (8)0.036 (2)
H181.24030.35210.28600.044*
C191.2991 (10)0.5001 (9)0.2966 (8)0.038 (3)
C201.2611 (10)0.5949 (8)0.2590 (8)0.033 (2)
H201.31830.65040.27840.040*
C211.1426 (10)0.6120 (8)0.1938 (8)0.035 (2)
H211.12080.67910.16970.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.0386 (6)0.0509 (6)0.0318 (5)0.0157 (4)0.0086 (4)0.0086 (4)
Cl10.0460 (18)0.086 (2)0.0437 (17)0.0276 (17)0.0025 (14)0.0096 (16)
Cl20.0496 (17)0.0452 (16)0.0528 (18)0.0137 (13)0.0019 (14)0.0005 (13)
N10.056 (6)0.044 (5)0.031 (5)0.020 (5)0.023 (5)0.012 (4)
N20.034 (5)0.045 (5)0.033 (5)0.012 (4)0.011 (4)0.014 (4)
N30.032 (5)0.053 (6)0.030 (5)0.005 (4)0.009 (4)0.000 (4)
N40.036 (5)0.057 (6)0.035 (5)0.011 (5)0.000 (4)0.008 (5)
C10.053 (7)0.062 (8)0.041 (7)0.012 (6)0.021 (6)0.011 (6)
C20.079 (10)0.037 (7)0.051 (7)0.012 (6)0.033 (7)0.006 (6)
C30.083 (10)0.040 (7)0.057 (8)0.018 (6)0.035 (8)0.015 (6)
C40.073 (9)0.035 (6)0.036 (6)0.014 (6)0.021 (6)0.000 (5)
C50.047 (7)0.045 (6)0.029 (6)0.019 (5)0.013 (5)0.006 (5)
C60.051 (7)0.033 (6)0.033 (6)0.005 (5)0.023 (5)0.006 (5)
C70.049 (7)0.036 (6)0.033 (6)0.011 (5)0.021 (5)0.008 (5)
C80.038 (6)0.024 (5)0.038 (6)0.003 (4)0.011 (5)0.002 (4)
C90.038 (6)0.031 (5)0.027 (5)0.007 (4)0.010 (5)0.006 (4)
C100.039 (6)0.031 (5)0.032 (5)0.006 (4)0.006 (5)0.007 (4)
C110.018 (5)0.045 (6)0.034 (6)0.007 (4)0.005 (4)0.006 (5)
C120.029 (6)0.065 (8)0.035 (6)0.001 (5)0.009 (5)0.001 (6)
C130.029 (6)0.074 (9)0.043 (7)0.009 (6)0.000 (5)0.011 (6)
C140.041 (7)0.052 (7)0.038 (6)0.014 (5)0.013 (6)0.010 (5)
C150.026 (5)0.058 (7)0.034 (6)0.002 (5)0.012 (5)0.001 (5)
C160.051 (7)0.031 (5)0.031 (5)0.003 (5)0.021 (5)0.006 (4)
C170.046 (7)0.034 (5)0.031 (5)0.006 (5)0.008 (5)0.007 (5)
C180.032 (6)0.036 (6)0.036 (6)0.000 (5)0.001 (5)0.002 (5)
C190.042 (6)0.049 (7)0.026 (5)0.002 (5)0.010 (5)0.017 (5)
C200.036 (6)0.031 (5)0.030 (5)0.016 (4)0.005 (5)0.006 (4)
C210.040 (6)0.034 (6)0.034 (6)0.008 (4)0.014 (5)0.000 (4)
Geometric parameters (Å, º) top
Pd—N12.034 (10)C7—H70.9500
Pd—N21.922 (9)C8—C91.414 (14)
Pd—N32.022 (10)C8—C161.451 (16)
Pd—Cl12.290 (3)C9—C101.376 (15)
N1—C11.357 (15)C9—H90.9500
N1—C51.359 (15)C10—C111.466 (15)
N2—C61.333 (14)C11—C151.395 (15)
N2—C101.357 (13)C12—C131.379 (17)
N3—C121.312 (14)C12—H120.9500
N3—C111.375 (13)C13—C141.378 (17)
N4—C191.377 (14)C13—H130.9500
N4—H1N0.8800 (11)C14—C151.403 (15)
N4—H2N0.8800 (10)C14—H140.9500
C1—C21.382 (19)C15—H150.9500
C1—H10.9500C16—C211.414 (14)
C2—C31.37 (2)C16—C171.426 (15)
C2—H20.9500C17—C181.387 (15)
C3—C41.394 (17)C17—H170.9500
C3—H30.9500C18—C191.401 (15)
C4—C51.374 (17)C18—H180.9500
C4—H40.9500C19—C201.370 (15)
C5—C61.492 (15)C20—C211.377 (15)
C6—C71.371 (16)C20—H200.9500
C7—C81.404 (15)C21—H210.9500
N2—Pd—N381.3 (4)C9—C8—C16121.2 (9)
N2—Pd—N180.3 (4)C10—C9—C8120.8 (9)
N3—Pd—N1161.6 (4)C10—C9—H9119.6
N2—Pd—Cl1179.2 (3)C8—C9—H9119.6
N3—Pd—Cl198.8 (3)N2—C10—C9119.0 (10)
N1—Pd—Cl199.6 (3)N2—C10—C11112.7 (9)
C1—N1—C5119.3 (11)C9—C10—C11128.3 (9)
C1—N1—Pd126.7 (9)N3—C11—C15120.8 (10)
C5—N1—Pd114.0 (7)N3—C11—C10115.0 (9)
C6—N2—C10122.6 (9)C15—C11—C10124.1 (9)
C6—N2—Pd119.3 (7)N3—C12—C13123.8 (11)
C10—N2—Pd118.1 (8)N3—C12—H12118.1
C12—N3—C11118.6 (10)C13—C12—H12118.1
C12—N3—Pd128.7 (8)C14—C13—C12119.0 (11)
C11—N3—Pd112.7 (7)C14—C13—H13120.5
C19—N4—H1N121 (7)C12—C13—H13120.5
C19—N4—H2N121 (7)C13—C14—C15118.6 (12)
H1N—N4—H2N109 (8)C13—C14—H14120.7
N1—C1—C2120.3 (13)C15—C14—H14120.7
N1—C1—H1119.8C11—C15—C14119.1 (10)
C2—C1—H1119.8C11—C15—H15120.5
C3—C2—C1121.1 (12)C14—C15—H15120.5
C3—C2—H2119.5C21—C16—C17115.1 (10)
C1—C2—H2119.5C21—C16—C8122.2 (9)
C2—C3—C4118.0 (13)C17—C16—C8122.6 (9)
C2—C3—H3121.0C18—C17—C16121.3 (10)
C4—C3—H3121.0C18—C17—H17119.3
C5—C4—C3119.7 (13)C16—C17—H17119.3
C5—C4—H4120.2C17—C18—C19121.5 (10)
C3—C4—H4120.2C17—C18—H18119.3
N1—C5—C4121.6 (10)C19—C18—H18119.3
N1—C5—C6113.5 (10)C20—C19—N4121.9 (10)
C4—C5—C6124.8 (11)C20—C19—C18117.6 (10)
N2—C6—C7120.1 (10)N4—C19—C18120.4 (10)
N2—C6—C5112.8 (10)C19—C20—C21122.0 (9)
C7—C6—C5127.1 (11)C19—C20—H20119.0
C6—C7—C8120.7 (11)C21—C20—H20119.0
C6—C7—H7119.6C20—C21—C16122.4 (10)
C8—C7—H7119.6C20—C21—H21118.8
C7—C8—C9116.8 (10)C16—C21—H21118.8
C7—C8—C16122.0 (9)
N2—Pd—N1—C1176.1 (9)C6—C7—C8—C16179.9 (9)
N3—Pd—N1—C1173.8 (9)C7—C8—C9—C102.2 (14)
Cl1—Pd—N1—C13.2 (9)C16—C8—C9—C10179.6 (9)
N2—Pd—N1—C51.9 (7)C6—N2—C10—C90.7 (15)
N3—Pd—N1—C54.2 (15)Pd—N2—C10—C9177.8 (7)
Cl1—Pd—N1—C5178.8 (6)C6—N2—C10—C11179.7 (9)
N3—Pd—N2—C6178.0 (8)Pd—N2—C10—C111.8 (11)
N1—Pd—N2—C62.7 (7)C8—C9—C10—N20.9 (15)
N3—Pd—N2—C100.5 (7)C8—C9—C10—C11178.6 (10)
N1—Pd—N2—C10178.7 (8)C12—N3—C11—C151.7 (14)
N2—Pd—N3—C12176.4 (9)Pd—N3—C11—C15179.0 (7)
N1—Pd—N3—C12178.7 (9)C12—N3—C11—C10174.7 (9)
Cl1—Pd—N3—C124.4 (9)Pd—N3—C11—C104.6 (11)
N2—Pd—N3—C112.9 (7)N2—C10—C11—N34.2 (13)
N1—Pd—N3—C110.6 (14)C9—C10—C11—N3175.3 (9)
Cl1—Pd—N3—C11176.3 (6)N2—C10—C11—C15179.5 (9)
C5—N1—C1—C20.5 (15)C9—C10—C11—C150.9 (17)
Pd—N1—C1—C2177.4 (8)C11—N3—C12—C130.4 (16)
N1—C1—C2—C31.9 (17)Pd—N3—C12—C13179.7 (8)
C1—C2—C3—C42.3 (17)N3—C12—C13—C141.4 (18)
C2—C3—C4—C51.3 (17)C12—C13—C14—C151.9 (17)
C1—N1—C5—C40.5 (15)N3—C11—C15—C141.1 (15)
Pd—N1—C5—C4178.7 (8)C10—C11—C15—C14174.9 (9)
C1—N1—C5—C6177.1 (9)C13—C14—C15—C110.7 (15)
Pd—N1—C5—C61.0 (11)C7—C8—C16—C2110.2 (15)
C3—C4—C5—N10.1 (16)C9—C8—C16—C21171.7 (9)
C3—C4—C5—C6177.3 (10)C7—C8—C16—C17171.5 (9)
C10—N2—C6—C70.9 (15)C9—C8—C16—C176.6 (15)
Pd—N2—C6—C7177.6 (7)C21—C16—C17—C183.5 (14)
C10—N2—C6—C5178.7 (9)C8—C16—C17—C18178.1 (9)
Pd—N2—C6—C52.9 (11)C16—C17—C18—C190.8 (16)
N1—C5—C6—N21.0 (12)C17—C18—C19—C202.4 (15)
C4—C5—C6—N2176.5 (10)C17—C18—C19—N4179.9 (9)
N1—C5—C6—C7179.4 (9)N4—C19—C20—C21179.8 (9)
C4—C5—C6—C73.0 (17)C18—C19—C20—C212.8 (15)
N2—C6—C7—C80.5 (15)C19—C20—C21—C160.1 (16)
C5—C6—C7—C8180.0 (9)C17—C16—C21—C203.2 (14)
C6—C7—C8—C91.9 (14)C8—C16—C21—C20178.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1n···Cl20.88 (9)2.42 (7)3.287 (11)167 (8)
N4—H2n···Cl2i0.88 (7)2.48 (8)3.352 (10)173 (10)
C13—H13···Cl1ii0.952.613.493 (14)156
C15—H15···Cl2iii0.952.563.449 (12)155
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+1/2, y1/2, z1/2; (iii) x+5/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PdCl(C21H16N4)]Cl
Mr501.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)98
a, b, c (Å)10.853 (3), 13.151 (3), 13.654 (3)
β (°) 105.215 (6)
V3)1880.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.10 × 0.04 × 0.04
Data collection
DiffractometerRigaku AFC12/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.412, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
15599, 3296, 2809
Rint0.079
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.098, 0.239, 1.16
No. of reflections3296
No. of parameters259
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.094P)2 + 20.7984P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.59, 2.15

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), PATTY in DIRDIF (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pd—N12.034 (10)Pd—N32.022 (10)
Pd—N21.922 (9)Pd—Cl12.290 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1n···Cl20.88 (9)2.42 (7)3.287 (11)167 (8)
N4—H2n···Cl2i0.88 (7)2.48 (8)3.352 (10)173 (10)
C13—H13···Cl1ii0.952.613.493 (14)156
C15—H15···Cl2iii0.952.563.449 (12)155
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+1/2, y1/2, z1/2; (iii) x+5/2, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: judith.walmsley@utsa.edu.

Acknowledgements

The authors thank the Welch Foundation for partial support of this research.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEryazici, I., Moorefield, C. N. & Newkome, G. R. (2008). Chem. Rev. 108, 1834–1895.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373–399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaine, P., Bedioui, F., Ochsenbein, P., Marvaud, V., Bonin, M. & Amouyal, E. (2002). J. Am. Chem. Soc. 124, 1364–1377.  Web of Science PubMed CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorrier, G. D., Colbran, S. B. & Craig, D. C. (1997). J. Chem Soc. Dalton Trans. pp. 3011–3028.  CrossRef Google Scholar
First citationTu, S., Jia, R., Jiang, B., Zhang, J., Zhang, Y., Yao, C. & Ji, S. (2007). Tetrahedron, 63, 381–388.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m773-m774
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds