organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1470-o1471

Ethyl 4-oxo-2,3,4,9-tetra­hydro-1H-carbazole-3-carboxyl­ate

aDepartment of Chemistry, Faculty of Arts and Sciences, Dokuz Eylül University, Tınaztepe, 35160 Buca, Izmir, Turkey, bDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 13 May 2011; accepted 17 May 2011; online 20 May 2011)

In the title compound, C15H15NO3, the carbazole skeleton includes an eth­oxy­carbonyl group at the 3-position. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 0.89 (4)°. The cyclo­hexenone ring has an envelope conformation. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three dimensional network. A weak C—H⋯π inter­action is also observed.

Related literature

For background to tetra­hydro­carbazole systems present in indole-type alkaloids, see: Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.]). For related structures, see: Hökelek et al. (1994[Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.], 1998[Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297-1299.], 1999[Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114-116.], 2009[Hökelek, T., Dal, H., Tercan, B., Göçmentürk, M. & Ergün, Y. (2009). Acta Cryst. E65, o1702-o1703.]); Patır et al. (1997[Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem., 34, 1239-1242.]); Hökelek & Patır (1999[Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675-677.]); Çaylak et al. (2007[Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913-o3914.]); Uludağ et al. (2009[Uludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595-o596.]). For the use of 4-oxo-tetra­hydro­carbazole in the syntheses of biologically active species, see: Kumar et al. (2008[Kumar, A., Singh, D., Jadhav, A., Pandya, N. D., Panmand, S. D. & Thakur, R. G. (2008). US Patent Appl. US 2008/0009635 A1.]); Ergün et al. (2002[Ergün, Y., Patır, S. & Okay, G. (2002). J. Heterocycl. Chem., 39, 315-317.]); Li & Vince (2006[Li, X. & Vince, R. (2006). Bioorg. Med. Chem. 14, 2942-2955.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO3

  • Mr = 257.28

  • Orthorhombic, P b c a

  • a = 9.1057 (3) Å

  • b = 12.7031 (4) Å

  • c = 21.3874 (5) Å

  • V = 2473.89 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.43 × 0.26 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.981

  • 12029 measured reflections

  • 2993 independent reflections

  • 2258 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.102

  • S = 1.04

  • 2993 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C5A/C5–C8,C8A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O2i 0.885 (16) 2.044 (16) 2.9103 (15) 166.0 (15)
C3—H3⋯O1ii 1.00 2.41 3.4053 (17) 173
C11—H11ACg3iii 0.99 2.86 3.7358 (15) 148
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously (Hökelek et al., 1994; Patır et al., 1997; Hökelek et al., 1998; Hökelek et al., 1999; Hökelek & Patır, 1999). Although 4-oxo-tetrahydrocarbazoles rarely occur in nature, they have been increasingly important intermediates in the syntheses of indole or carbazole alkaloids and various biologically active heterocyclic compounds because of their unique structures. For instance, 4-oxo-tetrahydrocarbazole was used in the syntheses of antiemetic drugs, central nervous system active drugs and NPY-1 antagonists (Kumar et al., 2008). They have also been used in the syntheses of indole alkaloids (Ergün et al., 2002). Tetrahydrocarbazolone based antitumor active compounds and inhibitors of HIV integrase were synthesized from 4-oxo-tetrahydrocarbazoles (Li & Vince, 2006). The present study was undertaken to ascertain the crystal structure of the title compound, (I).

The molecule of the title compound contains a carbazole skeleton with an ethoxycarbonyl group at the 3 position, (Fig. 1), where the bond lengths are close to standard values (Allen et al., 1987) and generally agree with those in the previously reported compounds. In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are nearly coplanar [with a maximum deviation of -0.012 (1) Å for atom C5a] with dihedral angle of B/C = 0.89 (4)°. Ring A (C1—C4/C4a/C9a) adopts envelope conformation with atom C2 displaced by -0.632 (2) Å from the plane of the other rings atoms, as in 3a,4,10,10b-tetrahydro-2H-furo[2,3-a]carbazol-5(3H)-one (Çaylak et al., 2007), 3,3-ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole (Uludağ et al., 2009) and ethyl 1-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate (Hökelek et al., 2009).

In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds link the molecules into a three dimensional network (Table 1 and Fig. 2). There also exists a weak C—H···π interaction (Table 1).

Related literature top

For background to tetrahydrocarbazole systems present in indole-type alkaloids, see: Saxton (1983). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2009); Patır et al. (1997); Hökelek & Patır (1999); Çaylak et al. (2007); Uludağ et al. (2009). For the use of 4-oxo-tetrahydrocarbazole in the syntheses of biologically active species, see: Kumar et al. (2008); Ergün et al. (2002); Li & Vince (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of 2,3-dichloro -5,6-dicyano-p-benzoquinone (9.36 g, 41.20 mmol) in tetrahydrofuran (20 ml, 90%) was added dropwise to a solution of ethyl 2,3,4,9-tetrahydro-1H -carbazole-3-carboxylate (5.00 g, 20.60 mmol) in tetrahydrofuran (50 ml, 90%) at 268 K. The reaction mixture was stirred for 10 min at 268 K, and then the solution was poured into sodium hydroxide (500 ml, 10%) and extracted with ethyl acetate. The organic layer was dried with anhydrous magnesium sulfate, and the solvent was removed. The residue was purified by chromatography using silica gel and ethyl acetate. After the solvent was evaporated, the product was crystallized from ether to yield colourless blocks of (I) (yield; 0.58 g, 11%, m.p. 396 K).

Refinement top

H9 atom is located in a difference Fourier synthesis and refined isotropically. The remaining C-bound H-atoms were positioned geometrically with C—H = 0.95, 1.00, 0.99 and 0.98 Å, for aromatic, methine, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. The N—H···O and C—H···O hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].
Ethyl 4-oxo-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate top
Crystal data top
C15H15NO3F(000) = 1088
Mr = 257.28Dx = 1.382 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3293 reflections
a = 9.1057 (3) Åθ = 2.9–28.3°
b = 12.7031 (4) ŵ = 0.10 mm1
c = 21.3874 (5) ÅT = 100 K
V = 2473.89 (13) Å3Block, colorless
Z = 80.43 × 0.26 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2993 independent reflections
Radiation source: fine-focus sealed tube2258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 119
Tmin = 0.960, Tmax = 0.981k = 168
12029 measured reflectionsl = 2028
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.044P)2 + 0.6029P]
where P = (Fo2 + 2Fc2)/3
2993 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H15NO3V = 2473.89 (13) Å3
Mr = 257.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.1057 (3) ŵ = 0.10 mm1
b = 12.7031 (4) ÅT = 100 K
c = 21.3874 (5) Å0.43 × 0.26 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2993 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2258 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.981Rint = 0.033
12029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
2993 reflectionsΔρmin = 0.25 e Å3
177 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27325 (11)0.49989 (7)0.23207 (4)0.0234 (2)
O20.13644 (11)0.53475 (7)0.37765 (4)0.0226 (2)
O30.31033 (11)0.40993 (7)0.36958 (4)0.0220 (2)
C10.01764 (17)0.22360 (9)0.25890 (6)0.0217 (3)
H1A0.02600.14660.26510.026*
H1B0.08790.24220.25780.026*
C20.09311 (17)0.28148 (9)0.31263 (7)0.0218 (3)
H2A0.19060.24950.32020.026*
H2B0.03400.27300.35110.026*
C30.11251 (16)0.39973 (9)0.29874 (6)0.0196 (3)
H30.01220.43060.29360.024*
C40.19696 (16)0.42026 (9)0.23804 (6)0.0191 (3)
C4A0.17494 (15)0.34286 (9)0.18970 (6)0.0178 (3)
C50.30954 (16)0.40632 (10)0.08810 (6)0.0200 (3)
H50.35110.46890.10480.024*
C5A0.22407 (15)0.34016 (9)0.12551 (6)0.0176 (3)
C60.33239 (17)0.37872 (11)0.02632 (7)0.0231 (3)
H60.39030.42320.00050.028*
C70.27209 (17)0.28667 (10)0.00100 (7)0.0244 (3)
H70.29010.26970.04160.029*
C80.18676 (17)0.22010 (10)0.03698 (7)0.0229 (3)
H80.14570.15760.02000.027*
C8A0.16323 (15)0.24812 (10)0.09904 (7)0.0192 (3)
N90.08119 (13)0.19804 (9)0.14526 (5)0.0202 (3)
H90.0272 (18)0.1408 (13)0.1399 (7)0.029 (4)*
C9A0.08866 (15)0.25402 (9)0.19910 (6)0.0181 (3)
C100.18566 (16)0.45682 (10)0.35239 (6)0.0187 (3)
C110.39176 (16)0.45682 (10)0.42153 (7)0.0212 (3)
H11A0.46090.40420.43880.025*
H11B0.32220.47670.45510.025*
C120.47603 (17)0.55264 (10)0.40117 (7)0.0246 (3)
H12A0.53560.57850.43610.037*
H12B0.40710.60760.38810.037*
H12C0.54030.53420.36610.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (6)0.0194 (4)0.0241 (6)0.0053 (4)0.0006 (5)0.0008 (4)
O20.0235 (6)0.0223 (4)0.0220 (6)0.0049 (4)0.0009 (4)0.0027 (4)
O30.0217 (6)0.0210 (4)0.0233 (5)0.0045 (4)0.0023 (4)0.0024 (4)
C10.0210 (8)0.0174 (6)0.0265 (8)0.0011 (5)0.0036 (6)0.0004 (5)
C20.0251 (8)0.0185 (6)0.0216 (8)0.0003 (5)0.0050 (6)0.0007 (5)
C30.0213 (8)0.0171 (6)0.0204 (7)0.0022 (5)0.0005 (6)0.0008 (5)
C40.0188 (8)0.0172 (6)0.0212 (8)0.0027 (5)0.0041 (6)0.0012 (5)
C4A0.0171 (8)0.0177 (6)0.0186 (7)0.0003 (5)0.0022 (6)0.0015 (5)
C50.0199 (8)0.0201 (6)0.0199 (8)0.0003 (5)0.0031 (6)0.0019 (5)
C5A0.0171 (8)0.0172 (6)0.0184 (7)0.0030 (5)0.0034 (6)0.0005 (5)
C60.0227 (8)0.0261 (7)0.0206 (8)0.0027 (6)0.0006 (6)0.0047 (5)
C70.0268 (9)0.0283 (7)0.0179 (7)0.0057 (6)0.0011 (6)0.0012 (6)
C80.0245 (8)0.0210 (6)0.0231 (8)0.0026 (5)0.0036 (6)0.0036 (5)
C8A0.0183 (8)0.0184 (6)0.0207 (8)0.0031 (5)0.0017 (6)0.0009 (5)
N90.0205 (7)0.0164 (5)0.0236 (7)0.0011 (5)0.0009 (5)0.0028 (4)
C9A0.0157 (7)0.0165 (5)0.0222 (7)0.0029 (5)0.0014 (6)0.0007 (5)
C100.0187 (8)0.0185 (6)0.0190 (7)0.0005 (5)0.0026 (6)0.0040 (5)
C110.0218 (8)0.0241 (6)0.0178 (7)0.0035 (5)0.0026 (6)0.0012 (5)
C120.0246 (9)0.0249 (6)0.0243 (8)0.0008 (6)0.0021 (7)0.0003 (5)
Geometric parameters (Å, º) top
O1—C41.2338 (15)C5A—C51.3972 (19)
O2—C101.2136 (15)C5A—C8A1.4123 (17)
O3—C101.3336 (17)C6—C71.4008 (19)
O3—C111.4626 (16)C6—H60.9500
C1—C9A1.4844 (19)C7—C81.382 (2)
C1—H1A0.9900C7—H70.9500
C1—H1B0.9900C8—H80.9500
C2—C11.5276 (19)C8A—C81.391 (2)
C2—H2A0.9900N9—C8A1.3928 (18)
C2—H2B0.9900N9—C9A1.3550 (17)
C3—C21.5413 (17)N9—H90.886 (17)
C3—C41.531 (2)C10—C31.5121 (19)
C3—H31.0000C11—H11A0.9900
C4—C4A1.4409 (18)C11—H11B0.9900
C4A—C5A1.4442 (19)C12—C111.5033 (19)
C4A—C9A1.3897 (17)C12—H12A0.9800
C5—C61.383 (2)C12—H12B0.9800
C5—H50.9500C12—H12C0.9800
C10—O3—C11117.33 (10)C5—C6—H6119.3
C2—C1—H1A109.9C7—C6—H6119.3
C2—C1—H1B109.9C6—C7—H7119.5
C9A—C1—C2109.08 (11)C8—C7—C6121.04 (14)
C9A—C1—H1A109.9C8—C7—H7119.5
C9A—C1—H1B109.9C7—C8—C8A117.48 (13)
H1A—C1—H1B108.3C7—C8—H8121.3
C1—C2—C3112.07 (11)C8A—C8—H8121.3
C1—C2—H2A109.2N9—C8A—C5A107.69 (12)
C1—C2—H2B109.2C8—C8A—N9130.03 (12)
C3—C2—H2A109.2C8—C8A—C5A122.28 (13)
C3—C2—H2B109.2C8A—N9—H9125.5 (10)
H2A—C2—H2B107.9C9A—N9—C8A109.67 (11)
C2—C3—H3107.4C9A—N9—H9124.7 (10)
C4—C3—C2112.77 (11)N9—C9A—C1125.01 (12)
C4—C3—H3107.4N9—C9A—C4A109.36 (12)
C10—C3—C2111.82 (11)C4A—C9A—C1125.62 (12)
C10—C3—C4109.90 (11)O2—C10—O3123.78 (13)
C10—C3—H3107.4O2—C10—C3124.50 (13)
O1—C4—C3120.68 (12)O3—C10—C3111.71 (11)
O1—C4—C4A124.31 (13)O3—C11—C12111.62 (11)
C4A—C4—C3114.98 (11)O3—C11—H11A109.3
C4—C4A—C5A130.93 (12)O3—C11—H11B109.3
C9A—C4A—C4121.94 (12)C12—C11—H11A109.3
C9A—C4A—C5A107.06 (11)C12—C11—H11B109.3
C5A—C5—H5120.7H11A—C11—H11B108.0
C6—C5—C5A118.59 (13)C11—C12—H12A109.5
C6—C5—H5120.7C11—C12—H12B109.5
C5—C5A—C4A134.64 (12)C11—C12—H12C109.5
C5—C5A—C8A119.13 (12)H12A—C12—H12B109.5
C8A—C5A—C4A106.21 (11)H12A—C12—H12C109.5
C5—C6—C7121.47 (14)H12B—C12—H12C109.5
C10—O3—C11—C1277.69 (15)C5A—C4A—C9A—C1178.62 (12)
C11—O3—C10—O20.64 (19)C5A—C4A—C9A—N90.36 (15)
C11—O3—C10—C3179.50 (10)C5A—C5—C6—C70.1 (2)
C2—C1—C9A—N9159.90 (13)C4A—C5A—C5—C6178.78 (14)
C2—C1—C9A—C4A18.93 (18)C8A—C5A—C5—C60.4 (2)
C3—C2—C1—C9A47.43 (15)C4A—C5A—C8A—N90.09 (14)
C4—C3—C2—C156.21 (16)C4A—C5A—C8A—C8179.53 (13)
C10—C3—C2—C1179.34 (12)C5—C5A—C8A—N9178.68 (12)
C2—C3—C4—O1149.89 (13)C5—C5A—C8A—C80.8 (2)
C2—C3—C4—C4A32.36 (16)C5—C6—C7—C80.3 (2)
C10—C3—C4—O124.40 (17)C6—C7—C8—C8A0.0 (2)
C10—C3—C4—C4A157.85 (11)N9—C8A—C8—C7178.76 (13)
O1—C4—C4A—C5A3.9 (2)C5A—C8A—C8—C70.5 (2)
O1—C4—C4A—C9A179.48 (13)C8A—N9—C9A—C1178.57 (12)
C3—C4—C4A—C5A173.73 (13)C8A—N9—C9A—C4A0.42 (15)
C3—C4—C4A—C9A2.87 (18)C9A—N9—C8A—C5A0.31 (15)
C4—C4A—C5A—C8A176.82 (14)C9A—N9—C8A—C8179.70 (14)
C4—C4A—C5A—C51.7 (3)O2—C10—C3—C2126.61 (14)
C9A—C4A—C5A—C5178.65 (15)O2—C10—C3—C4107.35 (15)
C9A—C4A—C5A—C8A0.16 (14)O3—C10—C3—C252.23 (15)
C4—C4A—C9A—N9176.95 (12)O3—C10—C3—C473.80 (13)
C4—C4A—C9A—C14.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C5A/C5–C8,C8A ring.
D—H···AD—HH···AD···AD—H···A
N9—H9···O2i0.885 (16)2.044 (16)2.9103 (15)166.0 (15)
C3—H3···O1ii1.002.413.4053 (17)173
C11—H11A···Cg3iii0.992.863.7358 (15)148
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y, z+1/2; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC15H15NO3
Mr257.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)9.1057 (3), 12.7031 (4), 21.3874 (5)
V3)2473.89 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.43 × 0.26 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.960, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
12029, 2993, 2258
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.102, 1.04
No. of reflections2993
No. of parameters177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C5A/C5–C8,C8A ring.
D—H···AD—HH···AD···AD—H···A
N9—H9···O2i0.885 (16)2.044 (16)2.9103 (15)166.0 (15)
C3—H3···O1ii1.002.413.4053 (17)173
C11—H11A···Cg3iii0.992.863.7358 (15)148
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y, z+1/2; (iii) x1/2, y1/2, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationErgün, Y., Patır, S. & Okay, G. (2002). J. Heterocycl. Chem., 39, 315–317.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Göçmentürk, M. & Ergün, Y. (2009). Acta Cryst. E65, o1702–o1703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297–1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675–677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114–116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, A., Singh, D., Jadhav, A., Pandya, N. D., Panmand, S. D. & Thakur, R. G. (2008). US Patent Appl. US 2008/0009635 A1.  Google Scholar
First citationLi, X. & Vince, R. (2006). Bioorg. Med. Chem. 14, 2942–2955.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem., 34, 1239–1242.  Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595–o596.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1470-o1471
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds