organic compounds
Ethyl 4-oxo-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate
aDepartment of Chemistry, Faculty of Arts and Sciences, Dokuz Eylül University, Tınaztepe, 35160 Buca, Izmir, Turkey, bDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title compound, C15H15NO3, the carbazole skeleton includes an ethoxycarbonyl group at the 3-position. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 0.89 (4)°. The cyclohexenone ring has an In the crystal, intermolecular N—H⋯O and C—H⋯O hydrogen bonds link the molecules into a three dimensional network. A weak C—H⋯π interaction is also observed.
Related literature
For background to tetrahydrocarbazole systems present in indole-type ). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2009); Patır et al. (1997); Hökelek & Patır (1999); Çaylak et al. (2007); Uludağ et al. (2009). For the use of 4-oxo-tetrahydrocarbazole in the syntheses of biologically active species, see: Kumar et al. (2008); Ergün et al. (2002); Li & Vince (2006). For bond-length data, see: Allen et al. (1987).
see: Saxton (1983Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811018678/hb5881sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811018678/hb5881Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811018678/hb5881Isup3.cml
A solution of 2,3-dichloro -5,6-dicyano-p-benzoquinone (9.36 g, 41.20 mmol) in tetrahydrofuran (20 ml, 90%) was added dropwise to a solution of ethyl 2,3,4,9-tetrahydro-1H -carbazole-3-carboxylate (5.00 g, 20.60 mmol) in tetrahydrofuran (50 ml, 90%) at 268 K. The reaction mixture was stirred for 10 min at 268 K, and then the solution was poured into sodium hydroxide (500 ml, 10%) and extracted with ethyl acetate. The organic layer was dried with anhydrous magnesium sulfate, and the solvent was removed. The residue was purified by
using silica gel and ethyl acetate. After the solvent was evaporated, the product was crystallized from ether to yield colourless blocks of (I) (yield; 0.58 g, 11%, m.p. 396 K).H9 atom is located in a difference Fourier synthesis and refined isotropically. The remaining C-bound H-atoms were positioned geometrically with C—H = 0.95, 1.00, 0.99 and 0.98 Å, for aromatic, methine, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C15H15NO3 | F(000) = 1088 |
Mr = 257.28 | Dx = 1.382 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 3293 reflections |
a = 9.1057 (3) Å | θ = 2.9–28.3° |
b = 12.7031 (4) Å | µ = 0.10 mm−1 |
c = 21.3874 (5) Å | T = 100 K |
V = 2473.89 (13) Å3 | Block, colorless |
Z = 8 | 0.43 × 0.26 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 2993 independent reflections |
Radiation source: fine-focus sealed tube | 2258 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −11→9 |
Tmin = 0.960, Tmax = 0.981 | k = −16→8 |
12029 measured reflections | l = −20→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.044P)2 + 0.6029P] where P = (Fo2 + 2Fc2)/3 |
2993 reflections | (Δ/σ)max < 0.001 |
177 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C15H15NO3 | V = 2473.89 (13) Å3 |
Mr = 257.28 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 9.1057 (3) Å | µ = 0.10 mm−1 |
b = 12.7031 (4) Å | T = 100 K |
c = 21.3874 (5) Å | 0.43 × 0.26 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 2993 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2258 reflections with I > 2σ(I) |
Tmin = 0.960, Tmax = 0.981 | Rint = 0.033 |
12029 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.28 e Å−3 |
2993 reflections | Δρmin = −0.25 e Å−3 |
177 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27325 (11) | 0.49989 (7) | 0.23207 (4) | 0.0234 (2) | |
O2 | 0.13644 (11) | 0.53475 (7) | 0.37765 (4) | 0.0226 (2) | |
O3 | 0.31033 (11) | 0.40993 (7) | 0.36958 (4) | 0.0220 (2) | |
C1 | 0.01764 (17) | 0.22360 (9) | 0.25890 (6) | 0.0217 (3) | |
H1A | 0.0260 | 0.1466 | 0.2651 | 0.026* | |
H1B | −0.0879 | 0.2422 | 0.2578 | 0.026* | |
C2 | 0.09311 (17) | 0.28148 (9) | 0.31263 (7) | 0.0218 (3) | |
H2A | 0.1906 | 0.2495 | 0.3202 | 0.026* | |
H2B | 0.0340 | 0.2730 | 0.3511 | 0.026* | |
C3 | 0.11251 (16) | 0.39973 (9) | 0.29874 (6) | 0.0196 (3) | |
H3 | 0.0122 | 0.4306 | 0.2936 | 0.024* | |
C4 | 0.19696 (16) | 0.42026 (9) | 0.23804 (6) | 0.0191 (3) | |
C4A | 0.17494 (15) | 0.34286 (9) | 0.18970 (6) | 0.0178 (3) | |
C5 | 0.30954 (16) | 0.40632 (10) | 0.08810 (6) | 0.0200 (3) | |
H5 | 0.3511 | 0.4689 | 0.1048 | 0.024* | |
C5A | 0.22407 (15) | 0.34016 (9) | 0.12551 (6) | 0.0176 (3) | |
C6 | 0.33239 (17) | 0.37872 (11) | 0.02632 (7) | 0.0231 (3) | |
H6 | 0.3903 | 0.4232 | 0.0005 | 0.028* | |
C7 | 0.27209 (17) | 0.28667 (10) | 0.00100 (7) | 0.0244 (3) | |
H7 | 0.2901 | 0.2697 | −0.0416 | 0.029* | |
C8 | 0.18676 (17) | 0.22010 (10) | 0.03698 (7) | 0.0229 (3) | |
H8 | 0.1457 | 0.1576 | 0.0200 | 0.027* | |
C8A | 0.16323 (15) | 0.24812 (10) | 0.09904 (7) | 0.0192 (3) | |
N9 | 0.08119 (13) | 0.19804 (9) | 0.14526 (5) | 0.0202 (3) | |
H9 | 0.0272 (18) | 0.1408 (13) | 0.1399 (7) | 0.029 (4)* | |
C9A | 0.08866 (15) | 0.25402 (9) | 0.19910 (6) | 0.0181 (3) | |
C10 | 0.18566 (16) | 0.45682 (10) | 0.35239 (6) | 0.0187 (3) | |
C11 | 0.39176 (16) | 0.45682 (10) | 0.42153 (7) | 0.0212 (3) | |
H11A | 0.4609 | 0.4042 | 0.4388 | 0.025* | |
H11B | 0.3222 | 0.4767 | 0.4551 | 0.025* | |
C12 | 0.47603 (17) | 0.55264 (10) | 0.40117 (7) | 0.0246 (3) | |
H12A | 0.5356 | 0.5785 | 0.4361 | 0.037* | |
H12B | 0.4071 | 0.6076 | 0.3881 | 0.037* | |
H12C | 0.5403 | 0.5342 | 0.3661 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0268 (6) | 0.0194 (4) | 0.0241 (6) | −0.0053 (4) | 0.0006 (5) | −0.0008 (4) |
O2 | 0.0235 (6) | 0.0223 (4) | 0.0220 (6) | 0.0049 (4) | −0.0009 (4) | −0.0027 (4) |
O3 | 0.0217 (6) | 0.0210 (4) | 0.0233 (5) | 0.0045 (4) | −0.0023 (4) | −0.0024 (4) |
C1 | 0.0210 (8) | 0.0174 (6) | 0.0265 (8) | −0.0011 (5) | 0.0036 (6) | −0.0004 (5) |
C2 | 0.0251 (8) | 0.0185 (6) | 0.0216 (8) | −0.0003 (5) | 0.0050 (6) | 0.0007 (5) |
C3 | 0.0213 (8) | 0.0171 (6) | 0.0204 (7) | 0.0022 (5) | −0.0005 (6) | −0.0008 (5) |
C4 | 0.0188 (8) | 0.0172 (6) | 0.0212 (8) | 0.0027 (5) | −0.0041 (6) | 0.0012 (5) |
C4A | 0.0171 (8) | 0.0177 (6) | 0.0186 (7) | 0.0003 (5) | −0.0022 (6) | 0.0015 (5) |
C5 | 0.0199 (8) | 0.0201 (6) | 0.0199 (8) | −0.0003 (5) | −0.0031 (6) | 0.0019 (5) |
C5A | 0.0171 (8) | 0.0172 (6) | 0.0184 (7) | 0.0030 (5) | −0.0034 (6) | 0.0005 (5) |
C6 | 0.0227 (8) | 0.0261 (7) | 0.0206 (8) | 0.0027 (6) | −0.0006 (6) | 0.0047 (5) |
C7 | 0.0268 (9) | 0.0283 (7) | 0.0179 (7) | 0.0057 (6) | −0.0011 (6) | −0.0012 (6) |
C8 | 0.0245 (8) | 0.0210 (6) | 0.0231 (8) | 0.0026 (5) | −0.0036 (6) | −0.0036 (5) |
C8A | 0.0183 (8) | 0.0184 (6) | 0.0207 (8) | 0.0031 (5) | −0.0017 (6) | 0.0009 (5) |
N9 | 0.0205 (7) | 0.0164 (5) | 0.0236 (7) | −0.0011 (5) | 0.0009 (5) | −0.0028 (4) |
C9A | 0.0157 (7) | 0.0165 (5) | 0.0222 (7) | 0.0029 (5) | −0.0014 (6) | −0.0007 (5) |
C10 | 0.0187 (8) | 0.0185 (6) | 0.0190 (7) | 0.0005 (5) | 0.0026 (6) | 0.0040 (5) |
C11 | 0.0218 (8) | 0.0241 (6) | 0.0178 (7) | 0.0035 (5) | −0.0026 (6) | 0.0012 (5) |
C12 | 0.0246 (9) | 0.0249 (6) | 0.0243 (8) | 0.0008 (6) | −0.0021 (7) | 0.0003 (5) |
O1—C4 | 1.2338 (15) | C5A—C5 | 1.3972 (19) |
O2—C10 | 1.2136 (15) | C5A—C8A | 1.4123 (17) |
O3—C10 | 1.3336 (17) | C6—C7 | 1.4008 (19) |
O3—C11 | 1.4626 (16) | C6—H6 | 0.9500 |
C1—C9A | 1.4844 (19) | C7—C8 | 1.382 (2) |
C1—H1A | 0.9900 | C7—H7 | 0.9500 |
C1—H1B | 0.9900 | C8—H8 | 0.9500 |
C2—C1 | 1.5276 (19) | C8A—C8 | 1.391 (2) |
C2—H2A | 0.9900 | N9—C8A | 1.3928 (18) |
C2—H2B | 0.9900 | N9—C9A | 1.3550 (17) |
C3—C2 | 1.5413 (17) | N9—H9 | 0.886 (17) |
C3—C4 | 1.531 (2) | C10—C3 | 1.5121 (19) |
C3—H3 | 1.0000 | C11—H11A | 0.9900 |
C4—C4A | 1.4409 (18) | C11—H11B | 0.9900 |
C4A—C5A | 1.4442 (19) | C12—C11 | 1.5033 (19) |
C4A—C9A | 1.3897 (17) | C12—H12A | 0.9800 |
C5—C6 | 1.383 (2) | C12—H12B | 0.9800 |
C5—H5 | 0.9500 | C12—H12C | 0.9800 |
C10—O3—C11 | 117.33 (10) | C5—C6—H6 | 119.3 |
C2—C1—H1A | 109.9 | C7—C6—H6 | 119.3 |
C2—C1—H1B | 109.9 | C6—C7—H7 | 119.5 |
C9A—C1—C2 | 109.08 (11) | C8—C7—C6 | 121.04 (14) |
C9A—C1—H1A | 109.9 | C8—C7—H7 | 119.5 |
C9A—C1—H1B | 109.9 | C7—C8—C8A | 117.48 (13) |
H1A—C1—H1B | 108.3 | C7—C8—H8 | 121.3 |
C1—C2—C3 | 112.07 (11) | C8A—C8—H8 | 121.3 |
C1—C2—H2A | 109.2 | N9—C8A—C5A | 107.69 (12) |
C1—C2—H2B | 109.2 | C8—C8A—N9 | 130.03 (12) |
C3—C2—H2A | 109.2 | C8—C8A—C5A | 122.28 (13) |
C3—C2—H2B | 109.2 | C8A—N9—H9 | 125.5 (10) |
H2A—C2—H2B | 107.9 | C9A—N9—C8A | 109.67 (11) |
C2—C3—H3 | 107.4 | C9A—N9—H9 | 124.7 (10) |
C4—C3—C2 | 112.77 (11) | N9—C9A—C1 | 125.01 (12) |
C4—C3—H3 | 107.4 | N9—C9A—C4A | 109.36 (12) |
C10—C3—C2 | 111.82 (11) | C4A—C9A—C1 | 125.62 (12) |
C10—C3—C4 | 109.90 (11) | O2—C10—O3 | 123.78 (13) |
C10—C3—H3 | 107.4 | O2—C10—C3 | 124.50 (13) |
O1—C4—C3 | 120.68 (12) | O3—C10—C3 | 111.71 (11) |
O1—C4—C4A | 124.31 (13) | O3—C11—C12 | 111.62 (11) |
C4A—C4—C3 | 114.98 (11) | O3—C11—H11A | 109.3 |
C4—C4A—C5A | 130.93 (12) | O3—C11—H11B | 109.3 |
C9A—C4A—C4 | 121.94 (12) | C12—C11—H11A | 109.3 |
C9A—C4A—C5A | 107.06 (11) | C12—C11—H11B | 109.3 |
C5A—C5—H5 | 120.7 | H11A—C11—H11B | 108.0 |
C6—C5—C5A | 118.59 (13) | C11—C12—H12A | 109.5 |
C6—C5—H5 | 120.7 | C11—C12—H12B | 109.5 |
C5—C5A—C4A | 134.64 (12) | C11—C12—H12C | 109.5 |
C5—C5A—C8A | 119.13 (12) | H12A—C12—H12B | 109.5 |
C8A—C5A—C4A | 106.21 (11) | H12A—C12—H12C | 109.5 |
C5—C6—C7 | 121.47 (14) | H12B—C12—H12C | 109.5 |
C10—O3—C11—C12 | −77.69 (15) | C5A—C4A—C9A—C1 | 178.62 (12) |
C11—O3—C10—O2 | −0.64 (19) | C5A—C4A—C9A—N9 | −0.36 (15) |
C11—O3—C10—C3 | −179.50 (10) | C5A—C5—C6—C7 | −0.1 (2) |
C2—C1—C9A—N9 | 159.90 (13) | C4A—C5A—C5—C6 | −178.78 (14) |
C2—C1—C9A—C4A | −18.93 (18) | C8A—C5A—C5—C6 | −0.4 (2) |
C3—C2—C1—C9A | 47.43 (15) | C4A—C5A—C8A—N9 | 0.09 (14) |
C4—C3—C2—C1 | −56.21 (16) | C4A—C5A—C8A—C8 | 179.53 (13) |
C10—C3—C2—C1 | 179.34 (12) | C5—C5A—C8A—N9 | −178.68 (12) |
C2—C3—C4—O1 | −149.89 (13) | C5—C5A—C8A—C8 | 0.8 (2) |
C2—C3—C4—C4A | 32.36 (16) | C5—C6—C7—C8 | 0.3 (2) |
C10—C3—C4—O1 | −24.40 (17) | C6—C7—C8—C8A | 0.0 (2) |
C10—C3—C4—C4A | 157.85 (11) | N9—C8A—C8—C7 | 178.76 (13) |
O1—C4—C4A—C5A | −3.9 (2) | C5A—C8A—C8—C7 | −0.5 (2) |
O1—C4—C4A—C9A | 179.48 (13) | C8A—N9—C9A—C1 | −178.57 (12) |
C3—C4—C4A—C5A | 173.73 (13) | C8A—N9—C9A—C4A | 0.42 (15) |
C3—C4—C4A—C9A | −2.87 (18) | C9A—N9—C8A—C5A | −0.31 (15) |
C4—C4A—C5A—C8A | −176.82 (14) | C9A—N9—C8A—C8 | −179.70 (14) |
C4—C4A—C5A—C5 | 1.7 (3) | O2—C10—C3—C2 | −126.61 (14) |
C9A—C4A—C5A—C5 | 178.65 (15) | O2—C10—C3—C4 | 107.35 (15) |
C9A—C4A—C5A—C8A | 0.16 (14) | O3—C10—C3—C2 | 52.23 (15) |
C4—C4A—C9A—N9 | 176.95 (12) | O3—C10—C3—C4 | −73.80 (13) |
C4—C4A—C9A—C1 | −4.1 (2) |
Cg3 is the centroid of the C5A/C5–C8,C8A ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9···O2i | 0.885 (16) | 2.044 (16) | 2.9103 (15) | 166.0 (15) |
C3—H3···O1ii | 1.00 | 2.41 | 3.4053 (17) | 173 |
C11—H11A···Cg3iii | 0.99 | 2.86 | 3.7358 (15) | 148 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, y, −z+1/2; (iii) −x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C15H15NO3 |
Mr | 257.28 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 9.1057 (3), 12.7031 (4), 21.3874 (5) |
V (Å3) | 2473.89 (13) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.43 × 0.26 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.960, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12029, 2993, 2258 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.102, 1.04 |
No. of reflections | 2993 |
No. of parameters | 177 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.25 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Cg3 is the centroid of the C5A/C5–C8,C8A ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9···O2i | 0.885 (16) | 2.044 (16) | 2.9103 (15) | 166.0 (15) |
C3—H3···O1ii | 1.00 | 2.41 | 3.4053 (17) | 173 |
C11—H11A···Cg3iii | 0.99 | 2.86 | 3.7358 (15) | 148 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, y, −z+1/2; (iii) −x−1/2, y−1/2, z. |
Acknowledgements
The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ergün, Y., Patır, S. & Okay, G. (2002). J. Heterocycl. Chem., 39, 315–317. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Göçmentürk, M. & Ergün, Y. (2009). Acta Cryst. E65, o1702–o1703. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297–1299. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675–677. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453. CSD CrossRef Web of Science IUCr Journals Google Scholar
Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114–116. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumar, A., Singh, D., Jadhav, A., Pandya, N. D., Panmand, S. D. & Thakur, R. G. (2008). US Patent Appl. US 2008/0009635 A1. Google Scholar
Li, X. & Vince, R. (2006). Bioorg. Med. Chem. 14, 2942–2955. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem., 34, 1239–1242. Google Scholar
Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595–o596. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously (Hökelek et al., 1994; Patır et al., 1997; Hökelek et al., 1998; Hökelek et al., 1999; Hökelek & Patır, 1999). Although 4-oxo-tetrahydrocarbazoles rarely occur in nature, they have been increasingly important intermediates in the syntheses of indole or carbazole alkaloids and various biologically active heterocyclic compounds because of their unique structures. For instance, 4-oxo-tetrahydrocarbazole was used in the syntheses of antiemetic drugs, central nervous system active drugs and NPY-1 antagonists (Kumar et al., 2008). They have also been used in the syntheses of indole alkaloids (Ergün et al., 2002). Tetrahydrocarbazolone based antitumor active compounds and inhibitors of HIV integrase were synthesized from 4-oxo-tetrahydrocarbazoles (Li & Vince, 2006). The present study was undertaken to ascertain the crystal structure of the title compound, (I).
The molecule of the title compound contains a carbazole skeleton with an ethoxycarbonyl group at the 3 position, (Fig. 1), where the bond lengths are close to standard values (Allen et al., 1987) and generally agree with those in the previously reported compounds. In all structures atom N9 is substituted.
An examination of the deviations from the least-squares planes through individual rings shows that rings B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are nearly coplanar [with a maximum deviation of -0.012 (1) Å for atom C5a] with dihedral angle of B/C = 0.89 (4)°. Ring A (C1—C4/C4a/C9a) adopts envelope conformation with atom C2 displaced by -0.632 (2) Å from the plane of the other rings atoms, as in 3a,4,10,10b-tetrahydro-2H-furo[2,3-a]carbazol-5(3H)-one (Çaylak et al., 2007), 3,3-ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole (Uludağ et al., 2009) and ethyl 1-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate (Hökelek et al., 2009).
In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds link the molecules into a three dimensional network (Table 1 and Fig. 2). There also exists a weak C—H···π interaction (Table 1).