organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-N′-[(2-meth­­oxy­naphthalen-1-yl)methyl­­idene]benzohydrazide

aDepartment of Chemistry and Life Sciences, Xiangnan University, Chenzhou 423000, People's Republic of China
*Correspondence e-mail: lihebing07@163.com

(Received 21 May 2011; accepted 22 May 2011; online 28 May 2011)

The mol­ecule of the title compound, C19H15BrN2O2, displays a pseudo-trans conformation about the N—N bond [C—N—N=C torsion angle = 164.7 (2)°]. The dihedral angle between the planes of the benzene ring and the naphthyl system is 70.1 (2)°. In the crystal, mol­ecules are linked into C(4) chains along the c axis by N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Li (2007a[Li, H.-B. (2007a). Acta Cryst. E63, o972-o973.],b[Li, H.-B. (2007b). Acta Cryst. E63, o4246.], 2008[Li, H.-B. (2008). Acta Cryst. E64, o465.]); Qiu et al. (2006[Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685-o2686.]); Yang & Guo (2006[Yang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414-o4415.]); Yang (2006[Yang, D.-S. (2006). Acta Cryst. E62, o3792-o3793.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15BrN2O2

  • Mr = 383.24

  • Monoclinic, P 21 /c

  • a = 12.3562 (11) Å

  • b = 17.0404 (15) Å

  • c = 8.6175 (10) Å

  • β = 110.155 (2)°

  • V = 1703.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.43 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.27 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.530, Tmax = 0.560

  • 9533 measured reflections

  • 3513 independent reflections

  • 1721 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.132

  • S = 1.00

  • 3513 reflections

  • 221 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (1) 2.10 (1) 2.989 (5) 174 (5)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, the author has reported the sturctures of various hydrazone compounds (Li, 2008; Li, 2007a,b). As an extension of work on the structures of such compounds, the title new hydrazone compound is reported.

The bond lengths and bond angles in the title compound (Fig. 1) are within normal ranges (Allen et al., 1987) and comprable with those observed in similar compounds (Qiu et al., 2006; Yang & Guo, 2006; Yang, 2006). The dihedral angle between the C1—C10 naphthyl ring and C14—C19 benzene ring is 70.1 (2)°. The molecule of the compound adopts a trans configuration about the C12N1 and C13—N2 bonds. In the crystal structure, the molecules are linked into chains along the c axis by N—H···O hydrogen bonds (Table 1 and Fig.2).

Related literature top

For related structures, see: Li (2007a,b); Li (2008); Qiu et al. (2006); Yang & Guo (2006); Yang (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

2-Methoxy-1-naphthaldehyde (0.1 mmol, 18.6 mg) and 3-bromobenzohydrazide (0.1 mmol, 21.5 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 10 min to give a clear colorless solution. Colourless blocks of (I) were formed by gradual evaporation of the solvent over a week at room temperature (yield 63%).

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The remaining H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C11).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
3-Bromo-N'-[(2-methoxynaphthalen-1-yl)methylidene]benzohydrazide top
Crystal data top
C19H15BrN2O2F(000) = 776
Mr = 383.24Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1085 reflections
a = 12.3562 (11) Åθ = 2.3–24.5°
b = 17.0404 (15) ŵ = 2.43 mm1
c = 8.6175 (10) ÅT = 298 K
β = 110.155 (2)°Block, colorless
V = 1703.3 (3) Å30.30 × 0.27 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3513 independent reflections
Radiation source: fine-focus sealed tube1721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1015
Tmin = 0.530, Tmax = 0.560k = 2118
9533 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
3513 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C19H15BrN2O2V = 1703.3 (3) Å3
Mr = 383.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3562 (11) ŵ = 2.43 mm1
b = 17.0404 (15) ÅT = 298 K
c = 8.6175 (10) Å0.30 × 0.27 × 0.27 mm
β = 110.155 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3513 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1721 reflections with I > 2σ(I)
Tmin = 0.530, Tmax = 0.560Rint = 0.080
9533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
3513 reflectionsΔρmin = 0.36 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.92086 (5)0.10384 (4)0.45503 (6)0.0640 (3)
N10.6290 (3)0.2794 (2)0.8906 (4)0.0378 (10)
N20.7166 (3)0.2434 (2)0.8493 (4)0.0389 (10)
O10.5703 (3)0.4903 (2)0.7240 (4)0.0668 (11)
O20.7770 (3)0.17262 (19)1.0857 (4)0.0534 (9)
C10.4904 (4)0.3853 (3)0.8237 (5)0.0394 (12)
C20.4835 (5)0.4634 (3)0.7754 (6)0.0500 (14)
C30.3937 (6)0.5126 (3)0.7840 (7)0.0658 (17)
H30.39010.56490.75190.079*
C40.3128 (5)0.4821 (4)0.8402 (7)0.0679 (17)
H40.25380.51450.84600.082*
C50.3145 (4)0.4033 (3)0.8900 (6)0.0481 (13)
C60.2266 (5)0.3738 (4)0.9432 (7)0.0690 (17)
H60.16770.40690.94720.083*
C70.2270 (5)0.2978 (4)0.9885 (7)0.0715 (18)
H70.16830.27861.02230.086*
C80.3164 (5)0.2483 (3)0.9841 (7)0.0618 (15)
H80.31720.19631.01700.074*
C90.4018 (4)0.2751 (3)0.9328 (6)0.0490 (14)
H90.45960.24070.93020.059*
C100.4055 (4)0.3543 (3)0.8829 (6)0.0417 (12)
C110.5644 (6)0.5702 (3)0.6675 (7)0.083 (2)
H11A0.49040.57960.58450.124*
H11B0.62390.57920.62150.124*
H11C0.57490.60520.75890.124*
C120.5855 (4)0.3402 (3)0.8040 (6)0.0425 (12)
H120.61590.35640.72450.051*
C130.7872 (4)0.1907 (3)0.9535 (5)0.0364 (11)
C140.8782 (4)0.1572 (3)0.8967 (6)0.0338 (11)
C150.8636 (4)0.1497 (3)0.7312 (6)0.0372 (12)
H150.79640.16780.65120.045*
C160.9484 (4)0.1153 (3)0.6847 (6)0.0437 (12)
C171.0496 (5)0.0893 (3)0.8001 (7)0.0605 (16)
H171.10660.06660.76710.073*
C181.0652 (5)0.0975 (4)0.9653 (7)0.0758 (19)
H181.13350.08061.04460.091*
C190.9793 (5)0.1309 (3)1.0143 (6)0.0548 (15)
H190.98980.13561.12610.066*
H20.731 (4)0.266 (3)0.764 (4)0.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0692 (4)0.0859 (5)0.0489 (3)0.0221 (3)0.0355 (3)0.0008 (3)
N10.042 (2)0.045 (3)0.033 (2)0.006 (2)0.0207 (19)0.0008 (19)
N20.043 (3)0.046 (3)0.037 (2)0.007 (2)0.025 (2)0.006 (2)
O10.089 (3)0.047 (2)0.068 (3)0.006 (2)0.032 (2)0.0087 (19)
O20.073 (2)0.057 (2)0.041 (2)0.0126 (19)0.0327 (19)0.0088 (18)
C10.045 (3)0.037 (3)0.033 (3)0.009 (3)0.010 (2)0.003 (2)
C20.063 (4)0.049 (4)0.037 (3)0.008 (3)0.015 (3)0.003 (3)
C30.083 (5)0.041 (4)0.064 (4)0.013 (4)0.012 (4)0.001 (3)
C40.058 (4)0.069 (5)0.071 (4)0.026 (3)0.015 (3)0.002 (3)
C50.048 (3)0.051 (4)0.040 (3)0.009 (3)0.010 (3)0.000 (3)
C60.051 (4)0.079 (5)0.077 (4)0.015 (3)0.022 (3)0.007 (4)
C70.050 (4)0.102 (6)0.072 (4)0.001 (4)0.032 (3)0.001 (4)
C80.059 (4)0.063 (4)0.068 (4)0.006 (3)0.027 (3)0.002 (3)
C90.049 (4)0.052 (4)0.051 (3)0.012 (3)0.024 (3)0.004 (3)
C100.041 (3)0.046 (3)0.037 (3)0.011 (3)0.011 (2)0.007 (2)
C110.127 (6)0.051 (4)0.071 (4)0.024 (4)0.035 (4)0.005 (3)
C120.052 (3)0.046 (3)0.032 (3)0.003 (3)0.018 (2)0.001 (2)
C130.047 (3)0.038 (3)0.029 (3)0.000 (2)0.018 (2)0.000 (2)
C140.035 (3)0.034 (3)0.036 (3)0.001 (2)0.017 (2)0.000 (2)
C150.034 (3)0.036 (3)0.043 (3)0.001 (2)0.016 (2)0.001 (2)
C160.048 (3)0.048 (3)0.042 (3)0.007 (3)0.025 (3)0.001 (2)
C170.046 (3)0.079 (4)0.061 (4)0.018 (3)0.025 (3)0.001 (3)
C180.053 (4)0.114 (6)0.054 (4)0.040 (4)0.011 (3)0.005 (4)
C190.062 (4)0.069 (4)0.034 (3)0.011 (3)0.017 (3)0.001 (3)
Geometric parameters (Å, º) top
Br1—C161.899 (5)C7—H70.9300
N1—C121.282 (5)C8—C91.356 (6)
N1—N21.392 (5)C8—H80.9300
N2—C131.354 (6)C9—C101.423 (6)
N2—H20.898 (10)C9—H90.9300
O1—C21.372 (6)C11—H11A0.9600
O1—C111.439 (6)C11—H11B0.9600
O2—C131.228 (5)C11—H11C0.9600
C1—C21.389 (7)C12—H120.9300
C1—C101.417 (6)C13—C141.487 (6)
C1—C121.462 (6)C14—C151.380 (6)
C2—C31.413 (7)C14—C191.384 (6)
C3—C41.355 (7)C15—C161.375 (6)
C3—H30.9300C15—H150.9300
C4—C51.408 (7)C16—C171.377 (7)
C4—H40.9300C17—C181.376 (7)
C5—C61.410 (7)C17—H170.9300
C5—C101.418 (6)C18—C191.393 (7)
C6—C71.351 (8)C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C81.401 (7)
C12—N1—N2114.5 (4)C1—C10—C9124.6 (4)
C13—N2—N1120.2 (4)C5—C10—C9115.9 (5)
C13—N2—H2124 (3)O1—C11—H11A109.5
N1—N2—H2114 (3)O1—C11—H11B109.5
C2—O1—C11118.1 (5)H11A—C11—H11B109.5
C2—C1—C10119.3 (5)O1—C11—H11C109.5
C2—C1—C12116.0 (5)H11A—C11—H11C109.5
C10—C1—C12124.7 (4)H11B—C11—H11C109.5
O1—C2—C1116.3 (5)N1—C12—C1123.4 (4)
O1—C2—C3122.3 (5)N1—C12—H12118.3
C1—C2—C3121.4 (5)C1—C12—H12118.3
C4—C3—C2118.7 (6)O2—C13—N2122.2 (4)
C4—C3—H3120.6O2—C13—C14122.6 (4)
C2—C3—H3120.6N2—C13—C14115.1 (4)
C3—C4—C5122.7 (5)C15—C14—C19119.4 (4)
C3—C4—H4118.7C15—C14—C13122.1 (4)
C5—C4—H4118.7C19—C14—C13118.5 (4)
C4—C5—C6120.4 (6)C16—C15—C14119.9 (4)
C4—C5—C10118.5 (5)C16—C15—H15120.0
C6—C5—C10121.1 (5)C14—C15—H15120.0
C7—C6—C5120.5 (6)C15—C16—C17121.4 (4)
C7—C6—H6119.7C15—C16—Br1117.8 (4)
C5—C6—H6119.7C17—C16—Br1120.8 (4)
C6—C7—C8119.6 (6)C18—C17—C16118.9 (5)
C6—C7—H7120.2C18—C17—H17120.5
C8—C7—H7120.2C16—C17—H17120.5
C9—C8—C7121.0 (6)C17—C18—C19120.4 (5)
C9—C8—H8119.5C17—C18—H18119.8
C7—C8—H8119.5C19—C18—H18119.8
C8—C9—C10121.8 (5)C14—C19—C18120.0 (5)
C8—C9—H9119.1C14—C19—H19120.0
C10—C9—H9119.1C18—C19—H19120.0
C1—C10—C5119.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)2.10 (1)2.989 (5)174 (5)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H15BrN2O2
Mr383.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.3562 (11), 17.0404 (15), 8.6175 (10)
β (°) 110.155 (2)
V3)1703.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.43
Crystal size (mm)0.30 × 0.27 × 0.27
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.530, 0.560
No. of measured, independent and
observed [I > 2σ(I)] reflections
9533, 3513, 1721
Rint0.080
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.132, 1.00
No. of reflections3513
No. of parameters221
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.36

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.898 (10)2.095 (13)2.989 (5)174 (5)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The author acknowledges a research grant from Xiangnan University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H.-B. (2007a). Acta Cryst. E63, o972–o973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-B. (2007b). Acta Cryst. E63, o4246.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-B. (2008). Acta Cryst. E64, o465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685–o2686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2006). Acta Cryst. E62, o3792–o3793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414–o4415.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds