metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­(pyridine)­lead(II)]bis­(μ-penta­fluoro­benzene­thiol­ato)]

aDepartment of Chemistry and Biochemistry, Mount Allison University, 63C York Street, Sackville, NB, Canada E4L 1G8, and bDepartment of Chemistry, University of New Brunswick, Fredericton, NB, Canada E3B 5A3
*Correspondence e-mail: gbriand@mta.ca

(Received 19 April 2011; accepted 2 May 2011; online 7 May 2011)

The title compound, [Pb(C6F5S)2(C5H5N)2]n, shows the PbII atom in a ψ-trigonal bipyramidal S2N2 bonding environment. Pyridine N atoms occupy axial sites, while thiol­ate S atoms and a stereochemically active lone pair occupy equatorial sites. Very long inter­molecular Pb⋯S inter­actions [3.618 (4) and 3.614 (4) Å] yield a weakly associated one-dimensional polymeric structure extending parallel to [010].

Related literature

Lead(II) thiol­ates tend to form polymeric structures in the solid state via inter­molecular Pb⋯S inter­actions, see: Davidovich et al. (2010[Davidovich, R. L., Stavila, V. & Whitmire, K. H. (2010). Chem. Rev. 254, 2193-2226.]) and references therein; Eichhöfer (2005[Eichhöfer, A. (2005). Eur. J. Inorg. Chem. pp. 1683-1688.]). However, the bonding environment at lead and the degree of inter­molecular bonding may be altered via the introduction of Lewis base ligands that occupy metal coordination sites, see: Appleton et al. (2004[Appleton, S. E., Briand, G. G., Decken, A. & Smith, A. S. (2004). Dalton Trans. pp. 3515-3520.]); Briand et al. (2007[Briand, G. G., Smith, A. D., Schatte, G., Rossini, A. J. & Schurko, R. W. (2007). Inorg. Chem. 46, 8625-8637.]). It has been shown that [(F5C6S)2Pb]n exhibits a three-dimensional framework structure containing hexa­coordinated PbII atoms (Fleischer et al., 2006[Fleischer, H., Heller, C. & Schollmeyer, D. (2006). Acta Cryst. E62, m1365-m1367.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]); Brown (1978[Brown, I. D. (1978). Chem. Soc. Rev. 7, 359-376.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C6F5S)2C5H5N)2]

  • Mr = 763.63

  • Monoclinic, C 2/c

  • a = 19.9288 (19) Å

  • b = 5.0416 (5) Å

  • c = 24.9155 (19) Å

  • β = 111.339 (3)°

  • V = 2331.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.51 mm−1

  • T = 198 K

  • 0.57 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART1000/P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.099, Tmax = 0.521

  • 6756 measured reflections

  • 2575 independent reflections

  • 2421 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.06

  • 2575 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 3.83 e Å−3

  • Δρmin = −2.71 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lead(II) thiolates tend to form polymeric structures in the solid state via intermolecular Pb ··· S interactions (Davidovich et al., 2010, and references therein; Eichhöfer, 2005). However, the bonding environment at lead and the degree of intermolecular bonding may be altered via the introduction of Lewis base ligands that occupy metal coordination sites (Appleton et al., 2004; Briand et al., 2007). It has been shown that [(F5C6S)2Pb]n exhibits a three-dimensional layered structure containing hexacoordinated PbII atoms (Fleischer et al., 2006). The corresponding bis-pyridine adduct (I) (Fig. 1) shows Pb1 in a ψ -trigonal bipyramidal bonding environment, with two pyridine nitrogen atoms in trans axial sites [N1—Pb—N2 = 177.29 (17)°] and two sulfur atoms in cis equatorial sites [S1—Pb—S2 = 87.13 (6)°]. The remaining "open" equatorial site is presumably occupied by the stereochemically active lone pair of PbII. This is a similar bonding motif to that observed for (2,6-Me2C6H3S)2Pb × 2py (Appleton et al., 2004), but shows some subtle structural differences. The Pb—N bond distances in (I) [Pb—N1 = 2.643 (7), Pb—N2 = 2.637 (7) Å] are significantly shorter than those in (2,6-Me2C6H3S)2Pb × 2py [2.689 (3) and 2.695 (3) Å], while the Pb—S distances [Pb—S1 = 2.650 (2), Pb—S2 = 2.653 (2) Å] are significantly longer [2.6078 (9) and 2.6079 (9) Å for (2,6-Me2C6H3S)2Pb × 2py]. This may be rationalized by considering the increased electron withdrawing ability of the C6F5 group in (I) versus the 2,6-Me2C6H5 group in (2,6-Me2C6H3S)2Pb × 2py. The result is an effective increase in the Lewis acidity at the Pb centre, and shorter Pb—N Lewis acid-base bonding interactions. Very weak intermolecular Pb ··· S interactions [Pb—S1i = 3.618 (4), Pb—S2i = 3.614 (4) Å; (i) -1 + x, y, z; sum of van der Waals' radii = 3.8 Å] (Bondi, 1964; Brown, 1978) between adjacent molecules in (I) yield a one-dimensional polymeric structure (Fig. 2). These contacts are nearly trans to the short Pb—S bonds [S1—Pb—S2i = 166.75 (5)°, S2—Pb—S1i = 166.83 (5)°], yielding a distorted octahedral bonding arrangement at Pb. This weakly associated polymeric structure differs from that of (2,6-Me2C6H3S)2Pb × 2py, which is monomeric in the solid-state. Further, the structure possesses no intramolecular Pb ··· F contacts such as those observed in [(F5C6S)2Pb]n (Fleischer et al., 2006).

Related literature top

Lead(II) thiolates tend to form polymeric structures in the solid state via intermolecular Pb ··· S interactions, see: Davidovich et al., (2010) and references therein; Eichhöfer (2005). However, the bonding environment at lead and the degree of intermolecular bonding may be altered via the introduction of Lewis base ligands that occupy metal coordination sites, see: Appleton et al. (2004); Briand et al. (2007). It has been shown that [(F5C6S)2Pb]n exhibits a three-dimensional layered structure containing hexacoordinated PbII atoms (Fleischer et al., 2006). For van der Waals radii, see: Bondi (1964); Brown (1978).

Experimental top

Synthesis of (C6F5S)2Pb × 2py: A solution of pyridine (0.520 g, 6.57 mmol) in thf (3 ml) was added dropwise to a stirred solution of (C6F5S)2Pb (0.100 g, 0.165 mmol) in thf (5 ml) to give a cloudy pale green solution. The solution was stirred for 15 minutes and filtered. After 1 d at 25°C, colorless rod-like crystals of (I) were collected by suction filtration (0.100 g, 0.131 mmol, 79%). Anal. Calc. for C21H10F10N2PbS2: C, 34.60; H, 1.32; N, 3.67. Found: C, 34.47; H, 1.05; N, 3.64. Mp 262°C. See expt further details section for spectroscopic data.

Refinement top

Hydrogen atoms were placed in calculated positions with C–H distances fixed at 0.93 Å and Uiso values = 1.2 Ueq of the carrier C atom.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. X-ray crystal structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): Pb—S(1) 2.650 (2), Pb—S(2) 2.653 (2), Pb—N(1) 2.643 (7), Pb—N(2) 2.637 (7), S(1)—Pb—S(2) 87.13 (6), S(1)—Pb—N(1) 91.44 (16), S(1)—Pb—N(2) 86.47 (15), S(2)—Pb—N(1) 86.69 (16), S(2)—Pb—N(2) 91.48 (16), N(1)—Pb—N(2) 177.29 (17).
[Figure 2] Fig. 2. X-ray crystal structure of (I) showing the polymeric structure, with displacement ellipsoids drawn at the 50% probability level. All hydrogen atoms and C6F5 group carbon atoms (except α-carbon) have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -1 + x, y, z; (ii) +1 + x, y, z.
catena-Poly[[bis(pyridine)lead(II)]bis(µ-pentafluorobenzenethiolato)] top
Crystal data top
[Pb(C6F5S)2C5H5N)2]F(000) = 1440
Mr = 763.63Dx = 2.175 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5261 reflections
a = 19.9288 (19) Åθ = 2.2–27.9°
b = 5.0416 (5) ŵ = 7.51 mm1
c = 24.9155 (19) ÅT = 198 K
β = 111.339 (3)°Parallelepiped, colourless
V = 2331.7 (4) Å30.57 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART1000/P4
diffractometer
2575 independent reflections
Radiation source: fine-focus sealed tube, K7602421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 27.5°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2525
Tmin = 0.099, Tmax = 0.521k = 66
6756 measured reflectionsl = 3032
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0608P)2]
where P = (Fo2 + 2Fc2)/3
2575 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 3.83 e Å3
0 restraintsΔρmin = 2.71 e Å3
Crystal data top
[Pb(C6F5S)2C5H5N)2]V = 2331.7 (4) Å3
Mr = 763.63Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.9288 (19) ŵ = 7.51 mm1
b = 5.0416 (5) ÅT = 198 K
c = 24.9155 (19) Å0.57 × 0.15 × 0.10 mm
β = 111.339 (3)°
Data collection top
Bruker SMART1000/P4
diffractometer
2575 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2421 reflections with I > 2σ(I)
Tmin = 0.099, Tmax = 0.521Rint = 0.055
6756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 3.83 e Å3
2575 reflectionsΔρmin = 2.71 e Å3
168 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections.

FT—IR (cm-1): 669 w, 702 m, 750 m, 825 vw, 856 s, 972 s, 1001 m, 1153 w, 1215 w, 1263 vw, 1444 s, 1477 versus, 1510 s, 1595 m, 1608 vw, 2341 m, 2360 s. FT-Raman (cm-1): 74 s, 101 versus, 175 vw, 201 vw, 268 versus, 317 vw, 372 vw, 387 w, 444 vw, 513 m, 584 w, 859 m, 1003 s, 1032 m, 1277 vw, 1393 m, 1636 versus, 3069 m. NMR data (thf-d8, p.p.m.): 1H NMR, δ = 7.36 (m, 4H, NC5H5), 7.77 (tt, 2H, 3J (1H-1H) = 8 Hz, 4J (1H-1H) = 2 Hz, NC5H5), 8.67 (m, 4H, NC5H5); 13C{1H} NMR, δ = 115.8 (tm, 2J (13C-19F) = 22 Hz, SC6F5), 124.2 (s, NC5H5), 136.7 (s, NC5H5), 137.1 (dm, 1J (13C-19F) = 245 Hz, SC6F5), 137.7 (dm, 1J (13C-19F) = 247 Hz, SC6F5), 148.4 (dm, 1J (13C-19F) = 226 Hz, SC6F5), 149.4 (s, NC5H5); 19F NMR, δ = -166.2 (m, SC6F5), -164.5 (m, SC6F5), -133.9 (m, SC6F5).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.00000.57741 (4)0.25000.02457 (12)
S10.00240 (9)0.9584 (2)0.17593 (6)0.0308 (3)
F20.1488 (2)0.9328 (7)0.0811 (2)0.0491 (11)
F30.1937 (2)0.5959 (8)0.0085 (2)0.0643 (15)
F40.1038 (2)0.2260 (7)0.02233 (17)0.0513 (10)
F50.03376 (19)0.1979 (7)0.05311 (15)0.0416 (8)
F60.0806 (2)0.5350 (7)0.14221 (17)0.0404 (8)
N10.1419 (3)0.5895 (8)0.2954 (3)0.0333 (11)
C10.0321 (3)0.7450 (9)0.1159 (2)0.0261 (10)
C20.1022 (3)0.7539 (11)0.0757 (2)0.0324 (11)
C30.1263 (4)0.5816 (11)0.0295 (3)0.0369 (14)
C40.0802 (4)0.3944 (11)0.0226 (3)0.0341 (13)
C50.0113 (3)0.3793 (11)0.0607 (3)0.0304 (12)
C60.0123 (3)0.5558 (9)0.1063 (3)0.0278 (11)
C70.1855 (3)0.7571 (12)0.2823 (3)0.0408 (13)
H70.16520.88170.25340.049*
C80.2590 (4)0.7531 (14)0.3097 (3)0.0512 (17)
H80.28800.87190.29940.061*
C90.2891 (4)0.5700 (12)0.3528 (4)0.052 (2)
H90.33870.56460.37260.062*
C100.2453 (4)0.3984 (13)0.3659 (4)0.053 (2)
H100.26450.27190.39460.063*
C110.1719 (4)0.4119 (11)0.3363 (3)0.0426 (16)
H110.14230.29180.34550.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.02186 (16)0.02276 (15)0.02304 (18)0.0000.00096 (12)0.000
S10.0382 (8)0.0238 (6)0.0243 (7)0.0012 (5)0.0040 (6)0.0011 (5)
F20.036 (2)0.054 (2)0.045 (3)0.0214 (16)0.0000 (19)0.0131 (16)
F30.031 (2)0.089 (3)0.052 (3)0.0185 (19)0.011 (2)0.030 (2)
F40.046 (2)0.055 (2)0.042 (2)0.0075 (18)0.0033 (18)0.0236 (18)
F50.0405 (19)0.0421 (18)0.042 (2)0.0155 (16)0.0150 (17)0.0039 (15)
F60.0235 (17)0.050 (2)0.038 (2)0.0079 (15)0.0006 (16)0.0015 (16)
N10.022 (2)0.034 (2)0.037 (3)0.0008 (17)0.003 (2)0.0018 (18)
C10.029 (2)0.023 (2)0.023 (3)0.001 (2)0.006 (2)0.0051 (19)
C20.028 (2)0.037 (3)0.029 (3)0.010 (2)0.006 (2)0.004 (2)
C30.027 (3)0.045 (3)0.029 (3)0.007 (2)0.002 (3)0.008 (2)
C40.034 (3)0.038 (3)0.027 (3)0.003 (2)0.008 (3)0.008 (2)
C50.031 (3)0.032 (2)0.029 (3)0.010 (2)0.012 (3)0.001 (2)
C60.023 (3)0.030 (3)0.026 (3)0.0005 (19)0.004 (2)0.0038 (19)
C70.033 (3)0.040 (3)0.041 (4)0.003 (3)0.005 (3)0.006 (3)
C80.033 (3)0.054 (4)0.061 (5)0.013 (3)0.010 (3)0.003 (3)
C90.027 (3)0.056 (4)0.061 (5)0.001 (3)0.003 (3)0.001 (3)
C100.039 (4)0.049 (4)0.051 (5)0.005 (3)0.005 (4)0.009 (3)
C110.032 (3)0.040 (3)0.047 (4)0.002 (2)0.005 (3)0.010 (2)
Geometric parameters (Å, º) top
Pb—N12.636 (5)C2—C31.382 (8)
Pb—N1i2.636 (5)C3—C41.371 (8)
Pb—S1i2.6519 (14)C4—C51.359 (9)
Pb—S12.6519 (14)C5—C61.384 (8)
S1—C11.761 (5)C7—C81.373 (8)
F2—C21.336 (6)C7—H70.9300
F3—C31.334 (8)C8—C91.378 (11)
F4—C41.345 (7)C8—H80.9300
F5—C51.342 (6)C9—C101.350 (12)
F6—C61.334 (7)C9—H90.9300
N1—C111.326 (8)C10—C111.380 (10)
N1—C71.335 (8)C10—H100.9300
C1—C61.379 (8)C11—H110.9300
C1—C21.392 (7)
N1—Pb—N1i177.34 (18)F5—C5—C4119.8 (5)
N1—Pb—S1i86.55 (12)F5—C5—C6120.7 (5)
N1i—Pb—S1i91.52 (12)C4—C5—C6119.5 (5)
N1—Pb—S191.52 (12)F6—C6—C1120.1 (5)
N1i—Pb—S186.55 (12)F6—C6—C5117.3 (5)
S1i—Pb—S187.18 (6)C1—C6—C5122.7 (5)
C1—S1—Pb93.67 (16)N1—C7—C8122.8 (6)
C11—N1—C7117.6 (6)N1—C7—H7118.6
C11—N1—Pb115.3 (4)C8—C7—H7118.6
C7—N1—Pb127.0 (4)C7—C8—C9118.7 (7)
C6—C1—C2115.9 (5)C7—C8—H8120.6
C6—C1—S1122.1 (4)C9—C8—H8120.6
C2—C1—S1122.0 (4)C10—C9—C8118.7 (7)
F2—C2—C3117.8 (5)C10—C9—H9120.6
F2—C2—C1120.1 (5)C8—C9—H9120.6
C3—C2—C1122.1 (5)C9—C10—C11119.6 (7)
F3—C3—C4119.8 (5)C9—C10—H10120.2
F3—C3—C2120.7 (5)C11—C10—H10120.2
C4—C3—C2119.5 (6)N1—C11—C10122.5 (7)
F4—C4—C5120.3 (5)N1—C11—H11118.7
F4—C4—C3119.4 (6)C10—C11—H11118.7
C5—C4—C3120.3 (5)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Pb(C6F5S)2C5H5N)2]
Mr763.63
Crystal system, space groupMonoclinic, C2/c
Temperature (K)198
a, b, c (Å)19.9288 (19), 5.0416 (5), 24.9155 (19)
β (°) 111.339 (3)
V3)2331.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.51
Crystal size (mm)0.57 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART1000/P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.099, 0.521
No. of measured, independent and
observed [I > 2σ(I)] reflections
6756, 2575, 2421
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.06
No. of reflections2575
No. of parameters168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.83, 2.71

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada and Mount Allison University.

References

First citationAppleton, S. E., Briand, G. G., Decken, A. & Smith, A. S. (2004). Dalton Trans. pp. 3515–3520.  CrossRef Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBriand, G. G., Smith, A. D., Schatte, G., Rossini, A. J. & Schurko, R. W. (2007). Inorg. Chem. 46, 8625–8637.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrown, I. D. (1978). Chem. Soc. Rev. 7, 359–376.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavidovich, R. L., Stavila, V. & Whitmire, K. H. (2010). Chem. Rev. 254, 2193–2226.  CAS Google Scholar
First citationEichhöfer, A. (2005). Eur. J. Inorg. Chem. pp. 1683–1688.  Google Scholar
First citationFleischer, H., Heller, C. & Schollmeyer, D. (2006). Acta Cryst. E62, m1365–m1367.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds