organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1304-o1305

(3aR,6S,7aR)-7a-Bromo-2-methyl­sulfonyl-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­­oxy­iso­indole

aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, Samsun, TR 55139, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Nigde University, Nigde, TR 51240, Turkey, cDepartment of Chemistry, Emory University, Atlanta, GA 30322, USA, and dDepartment of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 26 April 2011; accepted 27 April 2011; online 7 May 2011)

In the title compound, C9H12BrNO3S, the two tetra­hydro­furan rings adopt envelope conformations, the pyrrolidine ring adopts a half-chair conformation and the six-membered ring is in a boat conformation. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into R22(8) and R22(14) rings along the b-axis direction.

Related literature

For a related structure, see: Koşar et al. (2006[Koşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3868-o3869.]). For uses of sulfonamides in medicine, in particular the treatment of bacterial infection, see: Kleemann et al. (1999[Kleemann, A., Engel, J., Kutscher, B. & Reichert, D. (1999). Editors. Pharmaceutical Substances, Syntheses, Patents, Applications. Stuttgart: Thieme.]); Cremlyn (1996[Cremlyn, R. (1996). Organosulfur Chemistry: An Introduction, pp. 224-225. New York: John Wiley and Sons.]). For the synthesis of sulfonamides, see: Anderson (1979[Anderson, K. K. (1979). Sulfonic Acids and Their Derivatives, in Comprehensive Organic Chemistry, edited by D. H. R. Barton, W. D. Ollis & D. N. Jones, Vol. 3, pp. 331-340, 345-350. Oxford: Pergamon Press.]). For thermal intra­molecular Diels–Alder reaction of furans (IMDAF), see: Demircan & Parsons (2002[Demircan, A. & Parsons, P. (2002). Heterocycl. Commun. 8, 531-536.]); Arslan et al. (2008[Arslan, H., Demircan, A. & Göktürk, E. (2008). Spectrochim. Acta A, 69, 105-112.]). A mesyl group in the structure is normally chosen as a protective group for nitro­gen, but at the same time accelerates the cyclo­addition process for IMDAF, see: Greene (1981[Greene, T. W. (1981). Protective Groups in Organic Synthesis, ch. 7. New York: Wiley Interscience.]); Choony et al. (1997[Choony, N., Dadabhoy, A. P. & Sammes, G. (1997). Chem. Commun. 6, 513-514.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12BrNO3S

  • Mr = 294.17

  • Triclinic, [P \overline 1]

  • a = 5.9478 (7) Å

  • b = 9.5869 (10) Å

  • c = 10.7775 (11) Å

  • α = 114.307 (8)°

  • β = 90.481 (9)°

  • γ = 97.812 (9)°

  • V = 553.46 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.89 mm−1

  • T = 296 K

  • 0.38 × 0.23 × 0.08 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.223, Tmax = 0.682

  • 8163 measured reflections

  • 2293 independent reflections

  • 1920 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.107

  • S = 1.10

  • 2293 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O2i 0.96 2.59 3.385 (7) 140
C9—H9C⋯O1ii 0.96 2.59 3.540 (6) 172
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+2, -y+1, -z+2.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

Sulfonamides are one of the most important groups of compounds for the medical purposes (Kleemann et al., 1999). They have mostly been applied for the treatment of bacterial infection (Cremlyn, 1996). Sulfonamide is not only an early class of antibiotics, also, has showed different functionality such as a protease inhibitor amprenavir, the analgesic celecoxib, sildenafil for erectile dysfunction, and the antimigraine agent sumatriptan. The most sulfonamides have been synthesized from a reaction between a sulfonyl chloride and ammonia or primary or secondary amines or via related transformations (Anderson, 1979).

Several thermal intramolecular Diels Alder reaction of furans (IMDAF) cycloadditon were performed including a nitrogen linked side chain of furan and already reported by Demircan and his co-workers (Demircan and Parsons, 2002; Arslan et al., 2008). We would like to report here a newly synthesized sulfonamide, I.

In continuation of our interest, mesyl group in the structure is normally chosen as a protective group for nitrogen, but at the same time, accelerates the cycloaddition process for IMDAF (Greene, 1981; Choony et al., 1997). This facile, versatile and environmentally friendly reaction was accomplished in aqueous condition and stirred for two days at 372 K.

The molecular structure of the title compound, I, is shown in Fig. 1. A l l bond lengths show normal values (Allen et al., 1987). In addition, the C—Br bond distance, 1.953 (4) Å, is not significantly different from the value reported for C—Br single bond (1.961 (3) Å; Koşar et al., 2006). The six membered ring, C1—C6, is in a boat conformation with puckering parameter Q = 0.933 (5) Å, θ = 89.1 (3) °, ϕ = 119.1 (3) °. The tetrahydrofuran, O1/C3–C6, and bromo-attached tetrahydrofuran, O1/C3/C2/C1/C6, rings adopt envelope conformations, and the puckering parameter Q values are 0.517 (5) and 0.607 (4) ° Å, respectively (Cremer & Pople, 1975). The pyrrolidine ring, N1/C7/C6/C1/C8, adopts half chair conformation, and the puckering parameter Q = 0.368 (4) Å and ϕ = 304.8 (7) °, (Cremer & Pople, 1975).

Fig. 2 shows the packing of the molecules in the unit cell. The crystal packing of (I) is stabilized by intermolecular C9—H9A···O2 and C9—H9C···O1 interactions (Table 1). The methyl group in the reference molecule at (x, y, z) acts as double hydrogen bond donor, via H9A and H9C, to atoms O2 in the molecule at (-x + 2, -y + 2, -z + 2) and O1 in the molecule at (-x + 2, -y + 1, -z + 2), so forming successive R22(8) and R22(14) rings running parallel to the [010] direction (Bernstein et al., 1995).

Related literature top

For a related structure, see: Koşar et al. (2006). For uses of sulfonamides in medicine, in particular the treatment of bacterial infection, see: Kleemann et al. (1999); Cremlyn (1996). For the synthesis of sulfonamides, see: Anderson (1979). For thermal intramolecular Diels–Alder reaction of furans (IMDAF), see: Demircan & Parsons (2002); Arslan et al. (2008). A mesyl group in the structure is normally chosen as a protective group for nitrogen, but at the same time accelerates the cycloaddition process for IMDAF, see: Greene (1981); Choony et al. (1997). For standard bond lengths, see: Allen et al. (1987). For pu ckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

N-(2-bromoprop-2-en-1-yl)-N-(2-furylmethyl)methanesulfonamide, II, (1 g, 3.4 mmol) was stirred in water (25 ml) at 372 K for two days (Fig. 3). The reaction was stirred and monitored by thin layer chromatography until no further cycloadditon observed. The mixture was poured into ethylacetate (25 ml) and aqueous phase was washed with excess of ethyl acetate (2 x 25 ml). Combined organic phases was dried on magnesium sulfate and filtered off. The solvent was then removed under reduced pressure. The residue was subjected to flash column chromatography to afford the title compound, (3aR,6S,7aR)-7a-bromo-2-(methylsulfonyl)-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole, I, with 0.74 g, 74% yield as light brown crystals.

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and CH(aromatic), respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (aromatic, methylene or methine C) or 1.5Ueq (methyl C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the formation of R22(8) and R22(14) rings along [010]. Hydrogen bonds are indicated by dashed lines. (Symmetry codes as in Table 1)
[Figure 3] Fig. 3. Synthesis of the title compound.
(3aR,6S,7aR)-7a-Bromo-2-methylsulfonyl-1,2,3,6,7,7a- hexahydro-3a,6-epoxyisoindole top
Crystal data top
C9H12BrNO3SZ = 2
Mr = 294.17F(000) = 296
Triclinic, P1Dx = 1.765 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9478 (7) ÅCell parameters from 8163 reflections
b = 9.5869 (10) Åθ = 2.1–27.5°
c = 10.7775 (11) ŵ = 3.89 mm1
α = 114.307 (8)°T = 296 K
β = 90.481 (9)°Block, light-brown
γ = 97.812 (9)°0.38 × 0.23 × 0.08 mm
V = 553.46 (10) Å3
Data collection top
Stoe IPDS 2
diffractometer
2293 independent reflections
Radiation source: fine-focus sealed tube1920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.1°
rotation method scansh = 77
Absorption correction: integration
(X-RED; Stoe & Cie, 2001)
k = 1212
Tmin = 0.223, Tmax = 0.682l = 1313
8163 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.3277P]
where P = (Fo2 + 2Fc2)/3
2293 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C9H12BrNO3Sγ = 97.812 (9)°
Mr = 294.17V = 553.46 (10) Å3
Triclinic, P1Z = 2
a = 5.9478 (7) ÅMo Kα radiation
b = 9.5869 (10) ŵ = 3.89 mm1
c = 10.7775 (11) ÅT = 296 K
α = 114.307 (8)°0.38 × 0.23 × 0.08 mm
β = 90.481 (9)°
Data collection top
Stoe IPDS 2
diffractometer
2293 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2001)
1920 reflections with I > 2σ(I)
Tmin = 0.223, Tmax = 0.682Rint = 0.082
8163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.10Δρmax = 0.86 e Å3
2293 reflectionsΔρmin = 0.44 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7380 (6)0.3068 (4)0.6385 (4)0.0348 (8)
C20.8248 (7)0.1507 (5)0.5964 (4)0.0438 (9)
H2A0.97700.15430.56510.053*
H2B0.72340.06680.52640.053*
C30.8218 (9)0.1363 (5)0.7338 (5)0.0553 (11)
H30.91890.06540.74210.066*
C40.5780 (9)0.1066 (6)0.7645 (5)0.0577 (12)
H40.49950.01320.75880.069*
C50.4970 (8)0.2380 (6)0.8007 (4)0.0502 (10)
H50.35160.25690.82680.060*
C60.6907 (6)0.3509 (4)0.7910 (4)0.0369 (8)
C70.7123 (7)0.5249 (5)0.8604 (4)0.0441 (9)
H7A0.56450.55780.88010.053*
H7B0.80830.56630.94460.053*
C80.9051 (7)0.4468 (4)0.6497 (4)0.0429 (9)
H8A1.05850.43880.67440.051*
H8B0.90390.45900.56470.051*
O20.7873 (6)0.8440 (4)0.8963 (4)0.0738 (11)
Br10.46555 (8)0.29243 (5)0.52887 (5)0.05052 (17)
N10.8186 (6)0.5743 (4)0.7581 (3)0.0443 (8)
O10.8850 (5)0.2972 (3)0.8292 (3)0.0484 (7)
C91.2003 (8)0.7824 (6)0.8803 (5)0.0592 (12)
H9A1.26430.88990.91360.089*
H9B1.29670.72080.81580.089*
H9C1.18810.75290.95520.089*
O30.9632 (6)0.7717 (4)0.6764 (4)0.0633 (9)
S10.92989 (17)0.75291 (11)0.80041 (11)0.0423 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0378 (18)0.034 (2)0.0349 (19)0.0078 (15)0.0081 (15)0.0151 (15)
C20.044 (2)0.030 (2)0.053 (2)0.0081 (16)0.0068 (18)0.0124 (17)
C30.075 (3)0.036 (2)0.059 (3)0.012 (2)0.007 (2)0.022 (2)
C40.083 (3)0.044 (3)0.047 (2)0.008 (2)0.002 (2)0.024 (2)
C50.055 (2)0.055 (3)0.039 (2)0.003 (2)0.0134 (19)0.021 (2)
C60.0406 (19)0.038 (2)0.0328 (19)0.0069 (15)0.0043 (15)0.0146 (16)
C70.052 (2)0.036 (2)0.041 (2)0.0093 (17)0.0121 (17)0.0124 (17)
C80.052 (2)0.031 (2)0.043 (2)0.0058 (17)0.0165 (18)0.0135 (17)
O20.066 (2)0.0383 (19)0.098 (3)0.0125 (16)0.012 (2)0.0082 (18)
Br10.0549 (3)0.0520 (3)0.0448 (2)0.01178 (18)0.00663 (17)0.01939 (19)
N10.057 (2)0.0296 (18)0.0427 (19)0.0044 (14)0.0115 (15)0.0122 (14)
O10.0595 (18)0.0385 (16)0.0455 (16)0.0081 (13)0.0092 (13)0.0159 (13)
C90.051 (2)0.067 (3)0.058 (3)0.002 (2)0.011 (2)0.027 (3)
O30.082 (2)0.053 (2)0.067 (2)0.0026 (16)0.0173 (18)0.0413 (18)
S10.0465 (6)0.0280 (5)0.0509 (6)0.0065 (4)0.0034 (4)0.0148 (4)
Geometric parameters (Å, º) top
C1—C81.519 (5)C6—C71.507 (6)
C1—C21.538 (5)C7—N11.482 (5)
C1—C61.558 (5)C7—H7A0.9700
C1—Br11.953 (4)C7—H7B0.9700
C2—C31.542 (6)C8—N11.460 (5)
C2—H2A0.9700C8—H8A0.9700
C2—H2B0.9700C8—H8B0.9700
C3—O11.452 (5)O2—S11.422 (4)
C3—C41.505 (7)N1—S11.619 (3)
C3—H30.9800C9—S11.749 (5)
C4—C51.317 (7)C9—H9A0.9600
C4—H40.9300C9—H9B0.9600
C5—C61.506 (6)C9—H9C0.9600
C5—H50.9300O3—S11.432 (3)
C6—O11.448 (5)
C8—C1—C2118.5 (3)C7—C6—C1107.2 (3)
C8—C1—C6101.3 (3)N1—C7—C6103.0 (3)
C2—C1—C6102.7 (3)N1—C7—H7A111.2
C8—C1—Br1108.7 (3)C6—C7—H7A111.2
C2—C1—Br1112.9 (3)N1—C7—H7B111.2
C6—C1—Br1112.0 (2)C6—C7—H7B111.2
C1—C2—C3100.0 (3)H7A—C7—H7B109.1
C1—C2—H2A111.8N1—C8—C1102.6 (3)
C3—C2—H2A111.8N1—C8—H8A111.2
C1—C2—H2B111.8C1—C8—H8A111.2
C3—C2—H2B111.8N1—C8—H8B111.2
H2A—C2—H2B109.5C1—C8—H8B111.2
O1—C3—C4100.7 (4)H8A—C8—H8B109.2
O1—C3—C2101.0 (3)C8—N1—C7111.4 (3)
C4—C3—C2108.5 (4)C8—N1—S1121.6 (3)
O1—C3—H3115.0C7—N1—S1120.8 (3)
C4—C3—H3115.0C6—O1—C395.6 (3)
C2—C3—H3115.0S1—C9—H9A109.5
C5—C4—C3107.0 (4)S1—C9—H9B109.5
C5—C4—H4126.5H9A—C9—H9B109.5
C3—C4—H4126.5S1—C9—H9C109.5
C4—C5—C6105.1 (4)H9A—C9—H9C109.5
C4—C5—H5127.4H9B—C9—H9C109.5
C6—C5—H5127.4O2—S1—O3119.5 (2)
O1—C6—C5101.4 (3)O2—S1—N1105.8 (2)
O1—C6—C7111.1 (3)O3—S1—N1107.14 (19)
C5—C6—C7125.8 (4)O2—S1—C9109.3 (3)
O1—C6—C197.9 (3)O3—S1—C9106.7 (2)
C5—C6—C1109.8 (3)N1—S1—C9107.9 (2)
C8—C1—C2—C3108.2 (4)C5—C6—C7—N1143.5 (4)
C6—C1—C2—C32.3 (4)C1—C6—C7—N112.1 (4)
Br1—C1—C2—C3123.1 (3)C2—C1—C8—N1148.4 (4)
C1—C2—C3—O135.0 (4)C6—C1—C8—N137.1 (4)
C1—C2—C3—C470.3 (4)Br1—C1—C8—N180.9 (3)
O1—C3—C4—C531.9 (5)C1—C8—N1—C732.5 (4)
C2—C3—C4—C573.6 (5)C1—C8—N1—S1175.0 (3)
C3—C4—C5—C60.7 (5)C6—C7—N1—C812.6 (5)
C4—C5—C6—O133.4 (4)C6—C7—N1—S1165.3 (3)
C4—C5—C6—C7160.2 (4)C5—C6—O1—C351.1 (4)
C4—C5—C6—C169.4 (4)C7—C6—O1—C3173.0 (3)
C8—C1—C6—O184.1 (3)C1—C6—O1—C361.0 (3)
C2—C1—C6—O138.8 (3)C4—C3—O1—C650.1 (4)
Br1—C1—C6—O1160.2 (2)C2—C3—O1—C661.4 (4)
C8—C1—C6—C5170.7 (3)C8—N1—S1—O2173.3 (4)
C2—C1—C6—C566.4 (4)C7—N1—S1—O236.8 (4)
Br1—C1—C6—C555.0 (4)C8—N1—S1—O344.7 (4)
C8—C1—C6—C731.0 (4)C7—N1—S1—O3165.3 (3)
C2—C1—C6—C7153.9 (3)C8—N1—S1—C969.8 (4)
Br1—C1—C6—C784.7 (3)C7—N1—S1—C980.1 (4)
O1—C6—C7—N193.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.962.593.385 (7)140
C9—H9C···O1ii0.962.593.540 (6)172
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC9H12BrNO3S
Mr294.17
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.9478 (7), 9.5869 (10), 10.7775 (11)
α, β, γ (°)114.307 (8), 90.481 (9), 97.812 (9)
V3)553.46 (10)
Z2
Radiation typeMo Kα
µ (mm1)3.89
Crystal size (mm)0.38 × 0.23 × 0.08
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2001)
Tmin, Tmax0.223, 0.682
No. of measured, independent and
observed [I > 2σ(I)] reflections
8163, 2293, 1920
Rint0.082
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.107, 1.10
No. of reflections2293
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.44

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.962.593.385 (7)140
C9—H9C···O1ii0.962.593.540 (6)172
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+1, z+2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F.279 of University Research Fund) and also The Scientific & Technological Research Council of Turkey (TÜBİTAK) for the financial support of this work (PN: 107 T831).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, K. K. (1979). Sulfonic Acids and Their Derivatives, in Comprehensive Organic Chemistry, edited by D. H. R. Barton, W. D. Ollis & D. N. Jones, Vol. 3, pp. 331–340, 345–350. Oxford: Pergamon Press.  Google Scholar
First citationArslan, H., Demircan, A. & Göktürk, E. (2008). Spectrochim. Acta A, 69, 105–112.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChoony, N., Dadabhoy, A. P. & Sammes, G. (1997). Chem. Commun. 6, 513–514.  CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCremlyn, R. (1996). Organosulfur Chemistry: An Introduction, pp. 224–225. New York: John Wiley and Sons.  Google Scholar
First citationDemircan, A. & Parsons, P. (2002). Heterocycl. Commun. 8, 531–536.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreene, T. W. (1981). Protective Groups in Organic Synthesis, ch. 7. New York: Wiley Interscience.  Google Scholar
First citationKleemann, A., Engel, J., Kutscher, B. & Reichert, D. (1999). Editors. Pharmaceutical Substances, Syntheses, Patents, Applications. Stuttgart: Thieme.  Google Scholar
First citationKoşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3868–o3869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1304-o1305
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds