organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Meth­­oxy-2-methyl­anilino)-1,2-di­phenyl­ethanone

aDepartment of Chemistry, Emory University, Atlanta, GA 30322, USA, bDepartment of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey, and dDepartment of Chemistry, Faculty of Arts and Sciences, Nigde University, Nigde, TR 51240, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 26 April 2011; accepted 27 April 2011; online 7 May 2011)

The title compound, C22H21NO2, was synthesized from 4-meth­oxy-2-methyl­aniline and 2-hy­droxy-1,2-diphenyl­ethanone. In the title compound, the C—C—C—N—C backbone adopts an all-trans conformation. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen-bond inter­actions.

Related literature

For the synthesis and similar structures, see: Au & Tafeenko (1986[Au, O. & Tafeenko, V. (1986). Rev. Cubana Quim. 2, 65-74.], 1987[Au, O. & Tafeenko, V. (1987). Rev. Cubana Quim. 3, 79-86.]); Batsanov et al., (2006[Batsanov, A. S., Goeta, A. E., Howard, J. A. K., Soto, B. & Au-Alvarez, O. (2006). Acta Cryst. C62, o304-o306.]). For general background to these structures, see: Batsanov et al. (2006[Batsanov, A. S., Goeta, A. E., Howard, J. A. K., Soto, B. & Au-Alvarez, O. (2006). Acta Cryst. C62, o304-o306.]); Abdulla et al. (1985[Abdulla, R. F., Boyd, D. B., Jones, N. D. & Swartzendruber, J. K. (1985). J. Org. Chem. 50, 3502-3505.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For geometrical analysis, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21NO2

  • Mr = 331.40

  • Monoclinic, P 21 /c

  • a = 12.570 (12) Å

  • b = 8.009 (8) Å

  • c = 18.091 (17) Å

  • β = 100.544 (15)°

  • V = 1791 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.21 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.988

  • 28799 measured reflections

  • 4122 independent reflections

  • 2935 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.05

  • 4122 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.95 2.48 3.352 (4) 153
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

A few 1-arylanilinoethanone derivatives have been structurally charactized because of their importance in synthesis or because of their interesting charge-transfer properties (Abdulla et al., 1985). We found only four structurally similar compounds (Au & Tafeenko, 1987; Au & Tafeenko, 1986; Batsanov et al., 2006) in the Cambridge Structural Database (CSD CONQUEST 1.11, B4; Bruno et al., 2002).

Compound I was synthesized by the HCl acid-catalyzed reaction of a benzoin derivative to 4-methoxy-2-methylaniline (Scheme 1) resulting in the title compound, 2-((4-methoxy-2-methylphenyl)amino)-1,2-diphenylethanone, I, Figure 1, its structure was determined by X-ray crystallography.

The molecular structure of the title compound contains two phenyl rings and one substituted aniline ring connected by a –C(O)—C– linker. The dihedral angle between the two phenyl rings is 87.78 (7) ° and the dihedral angle between the substitute aniline and phenyl rings are 55.30 (7) and 84.57 (7) °, respectively. In adition, in the title compound, the C2—C1—C8—N1—C15 backbone adopts an all-trans conformation (Au & Tafeenko, 1987; Au & Tafeenko, 1986; Batsanov et al., 2006).

The C—N bond lengths C8—N1 and C15—N1 are shorter than the normal C—N single-bond length of about 1.48 Å. The shortening of these C—N bonds reveals the effects of some conjugation in this part of the molecule. All other bond lengths fall within the expected ranges (Allen et al., 1987).

Intramolecular hydrogen bonding N1–H1A···O1 with N–H 0.88 Å, H···O 2.22 Å, N–H···O 107 ° results in the formation of a five membered ring in the O1—C1—C8—N1–H1A plane. The crystal packing is dominated by weak intermolecular C11—H11A···O1 (x, 1 + y, z) hydrogen bonds, with H···O = 2.48 Å and a C—H···O angle of 153 ° (Figure 2).

Related literature top

For the synthesis and similar structures, see: Au & Tafeenko (1986, 1987); Batsanov et al., (2006). For general background to these structures, see: Batsanov et al. (2006); Abdulla et al. (1985). For bond-length data, see: Allen et al. (1987). For geometrical analysis, see: Bruno et al. (2002).

Experimental top

A mixture of 4-methoxy-2-methylaniline (15 mmol), 2-hydroxy-1,2-diphenylethanone (5 mmol) and 1 ml conc. HCl in 20 ml of ethanol were refluxed for 5 h (Figure 3). After reaction was complete, the mixture was allowed to cool to room temperature, poured into cold water (20 ml) and finally extracted with CH2Cl2 (3x15 ml). The organic layer was dried over magnesium sulfate and the solvent removed under reduced pressure to yield a crude product that was purified by recrystallization in ethyl acetate. 2-((4-methoxy-2-methylphenyl)amino)-1,2-diphenylethanone: Yield: 1.20 g, 46%. M.p.: 110–112 °C. 1H NMR (DMSO-d6) δ: 8.18–8.16 (d, 2H, Ar—H (C3, C7)), 7.62 (t, 1H, Ar—H (C5)), 7.56–7.49 (m, 4H, Ar—H (C4, C6, C11, C13)), 7.30–7.26 (m, 2H, Ar—H (C10, C14)), 7.16 (t, 1H, Ar—H (C12)), 6.70–6.68 (d, J=4.8 Hz, 1H, Ar—H (C19)), 6.67 (s, 1H, Ar—H (C17)), 6.57–6.55 (d, J=8 Hz, 1H, Ar—H (C20)), 6.46–6.44 (d, J=8 Hz, 1H, Ar—H (C8)), 5.19–5.17 (d, J=8 Hz, 1H, NH), 3.60 (s, 3H, OCH3), 2.22 (s, 3H, CH3). 13C NMR (400 MHz, p.p.m.) δ: 17.5 (CH3), 55.1 (OCH3), 61.5 (C8), 111.2 (C19), 112.5 (C20), 116.4 (C17), 123.9 (C16), 127.6, 128.1, 128.6, 128.7, 128.8 (C), 133.7 (C5), 134.7 (C2), 138.1 (C9), 138.3 (C15), 151.1 (C18), 197.6 (C9). Anal. Calc. for C22H21NO2: C, 79.73; H, 6.39; N, 4.23%. Found: C, 79.70; H, 6.21; N, 4.19%.

Refinement top

H atom positions were clearly derived from difference Fourier maps and refined using a riding model, fixing the bond lengths at 0.98 and 0.95 Å for CH3 and CH(aromatic), respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (C) or 1.5Ueq (methyl C).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of (I). The hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Synthesis of the title compound.
2-(4-Methoxy-2-methylanilino)-1,2-diphenylethanone top
Crystal data top
C22H21NO2F(000) = 704
Mr = 331.40Dx = 1.229 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4852 reflections
a = 12.570 (12) Åθ = 2.3–24.5°
b = 8.009 (8) ŵ = 0.08 mm1
c = 18.091 (17) ÅT = 173 K
β = 100.544 (15)°Block, yellow
V = 1791 (3) Å30.21 × 0.19 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4122 independent reflections
Radiation source: fine-focus sealed tube2935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.984, Tmax = 0.988k = 1010
28799 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.4229P]
where P = (Fo2 + 2Fc2)/3
4122 reflections(Δ/σ)max = 0.004
226 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C22H21NO2V = 1791 (3) Å3
Mr = 331.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.570 (12) ŵ = 0.08 mm1
b = 8.009 (8) ÅT = 173 K
c = 18.091 (17) Å0.21 × 0.19 × 0.15 mm
β = 100.544 (15)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4122 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2935 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.988Rint = 0.055
28799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
4122 reflectionsΔρmin = 0.25 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70413 (11)0.71666 (18)0.13255 (8)0.0336 (3)
C20.65511 (11)0.79413 (17)0.05905 (7)0.0314 (3)
C30.70228 (12)0.92642 (19)0.02686 (8)0.0380 (3)
H3A0.76670.97640.05330.046*
C40.65510 (14)0.9856 (2)0.04399 (8)0.0453 (4)
H4A0.68791.07480.06620.054*
C50.56034 (14)0.9144 (2)0.08206 (8)0.0436 (4)
H5A0.52860.95460.13050.052*
C60.51179 (13)0.7853 (2)0.05009 (8)0.0420 (4)
H6A0.44600.73850.07610.050*
C70.55897 (12)0.72392 (18)0.01989 (8)0.0361 (3)
H7A0.52600.63390.04140.043*
C80.78651 (11)0.81396 (18)0.19059 (8)0.0339 (3)
H8A0.83850.87440.16440.041*
C90.72052 (11)0.94044 (17)0.22728 (7)0.0297 (3)
C100.72302 (12)1.11045 (18)0.21167 (8)0.0370 (3)
H10A0.76851.15080.17900.044*
C110.65930 (13)1.22179 (18)0.24361 (9)0.0421 (4)
H11A0.66151.33760.23270.051*
C120.59250 (12)1.16418 (19)0.29135 (8)0.0396 (4)
H12A0.54891.24030.31290.048*
C130.58976 (12)0.99566 (19)0.30736 (8)0.0378 (3)
H13A0.54410.95570.33990.045*
C140.65372 (11)0.88458 (18)0.27584 (8)0.0334 (3)
H14A0.65190.76910.28750.040*
C150.91952 (11)0.72896 (19)0.30593 (8)0.0330 (3)
C160.95263 (11)0.59902 (19)0.35825 (8)0.0346 (3)
C171.02943 (11)0.6351 (2)0.42183 (8)0.0393 (4)
H17A1.05240.54850.45700.047*
C181.07393 (12)0.7936 (2)0.43580 (8)0.0412 (4)
C191.04216 (12)0.9204 (2)0.38448 (8)0.0409 (4)
H19A1.07251.02890.39290.049*
C200.96492 (11)0.88712 (19)0.32004 (8)0.0375 (3)
H20A0.94290.97450.28510.045*
C210.90500 (13)0.4262 (2)0.34587 (9)0.0442 (4)
H21A0.93740.35350.38750.066*
H21B0.92010.38100.29850.066*
H21C0.82660.43180.34350.066*
C221.19345 (16)0.9696 (3)0.52047 (11)0.0690 (6)
H22A1.24400.96400.56860.103*
H22B1.13581.04960.52440.103*
H22C1.23221.00580.48100.103*
N10.84386 (10)0.69119 (16)0.24129 (7)0.0412 (3)
H1A0.83020.58520.23080.049*
O10.67637 (9)0.57676 (13)0.14827 (6)0.0477 (3)
O21.14758 (10)0.80923 (17)0.50230 (6)0.0612 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0331 (7)0.0372 (8)0.0294 (7)0.0008 (6)0.0026 (6)0.0002 (6)
C20.0323 (7)0.0345 (8)0.0264 (7)0.0029 (6)0.0024 (6)0.0041 (6)
C30.0388 (8)0.0420 (8)0.0318 (8)0.0004 (7)0.0030 (6)0.0009 (6)
C40.0585 (10)0.0449 (9)0.0338 (8)0.0049 (8)0.0114 (7)0.0045 (7)
C50.0558 (10)0.0458 (9)0.0256 (7)0.0141 (8)0.0022 (7)0.0025 (6)
C60.0435 (9)0.0450 (9)0.0326 (8)0.0067 (7)0.0062 (7)0.0089 (7)
C70.0386 (8)0.0360 (8)0.0318 (7)0.0014 (6)0.0013 (6)0.0056 (6)
C80.0314 (7)0.0377 (8)0.0299 (7)0.0001 (6)0.0013 (6)0.0027 (6)
C90.0279 (7)0.0321 (7)0.0252 (7)0.0033 (6)0.0055 (5)0.0023 (5)
C100.0399 (8)0.0347 (8)0.0331 (7)0.0082 (6)0.0024 (6)0.0067 (6)
C110.0503 (9)0.0265 (7)0.0418 (8)0.0024 (7)0.0121 (7)0.0012 (6)
C120.0401 (8)0.0371 (8)0.0362 (8)0.0056 (7)0.0076 (7)0.0060 (6)
C130.0381 (8)0.0399 (8)0.0337 (7)0.0025 (7)0.0023 (6)0.0008 (6)
C140.0373 (8)0.0288 (7)0.0314 (7)0.0032 (6)0.0006 (6)0.0029 (6)
C150.0260 (7)0.0444 (8)0.0281 (7)0.0042 (6)0.0033 (5)0.0017 (6)
C160.0279 (7)0.0453 (9)0.0315 (7)0.0023 (6)0.0084 (6)0.0050 (6)
C170.0302 (7)0.0542 (10)0.0333 (8)0.0001 (7)0.0047 (6)0.0151 (7)
C180.0297 (8)0.0616 (10)0.0295 (7)0.0071 (7)0.0016 (6)0.0101 (7)
C190.0351 (8)0.0499 (9)0.0356 (8)0.0089 (7)0.0011 (6)0.0052 (7)
C200.0337 (8)0.0445 (9)0.0323 (7)0.0018 (7)0.0007 (6)0.0082 (6)
C210.0437 (9)0.0476 (9)0.0407 (8)0.0011 (7)0.0062 (7)0.0079 (7)
C220.0614 (12)0.0892 (15)0.0463 (10)0.0308 (11)0.0170 (9)0.0086 (10)
N10.0441 (7)0.0359 (7)0.0371 (7)0.0081 (6)0.0094 (6)0.0035 (5)
O10.0572 (7)0.0424 (6)0.0380 (6)0.0124 (5)0.0057 (5)0.0068 (5)
O20.0565 (7)0.0759 (9)0.0411 (6)0.0243 (7)0.0179 (6)0.0195 (6)
Geometric parameters (Å, º) top
C1—O11.2226 (19)C12—H12A0.9500
C1—C21.494 (2)C13—C141.390 (2)
C1—C81.544 (2)C13—H13A0.9500
C2—C31.393 (2)C14—H14A0.9500
C2—C71.402 (2)C15—C201.394 (2)
C3—C41.393 (2)C15—N11.399 (2)
C3—H3A0.9500C15—C161.417 (2)
C4—C51.385 (2)C16—C171.390 (2)
C4—H4A0.9500C16—C211.509 (2)
C5—C61.380 (2)C17—C181.391 (2)
C5—H5A0.9500C17—H17A0.9500
C6—C71.386 (2)C18—O21.383 (2)
C6—H6A0.9500C18—C191.385 (2)
C7—H7A0.9500C19—C201.399 (2)
C8—N11.4443 (19)C19—H19A0.9500
C8—C91.535 (2)C20—H20A0.9500
C8—H8A1.0000C21—H21A0.9800
C9—C101.392 (2)C21—H21B0.9800
C9—C141.395 (2)C21—H21C0.9800
C10—C111.393 (2)C22—O21.422 (2)
C10—H10A0.9500C22—H22A0.9800
C11—C121.389 (2)C22—H22B0.9800
C11—H11A0.9500C22—H22C0.9800
C12—C131.382 (2)N1—H1A0.8800
O1—C1—C2119.92 (13)C12—C13—H13A120.0
O1—C1—C8119.27 (13)C14—C13—H13A120.0
C2—C1—C8120.77 (13)C13—C14—C9120.87 (14)
C3—C2—C7119.18 (14)C13—C14—H14A119.6
C3—C2—C1123.38 (13)C9—C14—H14A119.6
C7—C2—C1117.39 (13)C20—C15—N1122.87 (13)
C2—C3—C4120.09 (15)C20—C15—C16119.00 (14)
C2—C3—H3A120.0N1—C15—C16118.12 (14)
C4—C3—H3A120.0C17—C16—C15118.33 (15)
C5—C4—C3119.99 (16)C17—C16—C21120.70 (13)
C5—C4—H4A120.0C15—C16—C21120.97 (14)
C3—C4—H4A120.0C16—C17—C18122.38 (14)
C6—C5—C4120.41 (15)C16—C17—H17A118.8
C6—C5—H5A119.8C18—C17—H17A118.8
C4—C5—H5A119.8O2—C18—C19125.58 (15)
C5—C6—C7120.02 (15)O2—C18—C17115.06 (13)
C5—C6—H6A120.0C19—C18—C17119.35 (14)
C7—C6—H6A120.0C18—C19—C20119.34 (15)
C6—C7—C2120.30 (15)C18—C19—H19A120.3
C6—C7—H7A119.9C20—C19—H19A120.3
C2—C7—H7A119.9C15—C20—C19121.61 (14)
N1—C8—C9114.91 (13)C15—C20—H20A119.2
N1—C8—C1106.44 (13)C19—C20—H20A119.2
C9—C8—C1106.20 (12)C16—C21—H21A109.5
N1—C8—H8A109.7C16—C21—H21B109.5
C9—C8—H8A109.7H21A—C21—H21B109.5
C1—C8—H8A109.7C16—C21—H21C109.5
C10—C9—C14118.68 (13)H21A—C21—H21C109.5
C10—C9—C8121.58 (13)H21B—C21—H21C109.5
C14—C9—C8119.71 (13)O2—C22—H22A109.5
C9—C10—C11120.40 (15)O2—C22—H22B109.5
C9—C10—H10A119.8H22A—C22—H22B109.5
C11—C10—H10A119.8O2—C22—H22C109.5
C12—C11—C10120.28 (15)H22A—C22—H22C109.5
C12—C11—H11A119.9H22B—C22—H22C109.5
C10—C11—H11A119.9C15—N1—C8124.59 (13)
C13—C12—C11119.71 (14)C15—N1—H1A117.7
C13—C12—H12A120.1C8—N1—H1A117.7
C11—C12—H12A120.1C18—O2—C22117.49 (13)
C12—C13—C14120.05 (15)
O1—C1—C2—C3160.36 (14)C11—C12—C13—C140.1 (2)
C8—C1—C2—C322.1 (2)C12—C13—C14—C90.6 (2)
O1—C1—C2—C717.0 (2)C10—C9—C14—C130.8 (2)
C8—C1—C2—C7160.60 (12)C8—C9—C14—C13177.33 (12)
C7—C2—C3—C41.2 (2)C20—C15—C16—C170.0 (2)
C1—C2—C3—C4176.15 (14)N1—C15—C16—C17178.73 (13)
C2—C3—C4—C50.9 (2)C20—C15—C16—C21179.37 (13)
C3—C4—C5—C60.3 (2)N1—C15—C16—C211.9 (2)
C4—C5—C6—C71.3 (2)C15—C16—C17—C180.4 (2)
C5—C6—C7—C21.0 (2)C21—C16—C17—C18178.96 (14)
C3—C2—C7—C60.2 (2)C16—C17—C18—O2178.75 (13)
C1—C2—C7—C6177.25 (13)C16—C17—C18—C190.8 (2)
O1—C1—C8—N121.30 (18)O2—C18—C19—C20178.70 (14)
C2—C1—C8—N1161.10 (12)C17—C18—C19—C200.8 (2)
O1—C1—C8—C9101.58 (16)N1—C15—C20—C19178.65 (14)
C2—C1—C8—C976.02 (16)C16—C15—C20—C190.0 (2)
N1—C8—C9—C10135.07 (14)C18—C19—C20—C150.4 (2)
C1—C8—C9—C10107.56 (15)C20—C15—N1—C814.1 (2)
N1—C8—C9—C1446.83 (17)C16—C15—N1—C8167.24 (13)
C1—C8—C9—C1470.54 (15)C9—C8—N1—C1557.18 (19)
C14—C9—C10—C110.5 (2)C1—C8—N1—C15174.41 (13)
C8—C9—C10—C11177.64 (12)C19—C18—O2—C221.2 (2)
C9—C10—C11—C120.1 (2)C17—C18—O2—C22178.33 (16)
C10—C11—C12—C130.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.882.222.609 (3)107
C11—H11A···O1i0.952.483.352 (4)153
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H21NO2
Mr331.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.570 (12), 8.009 (8), 18.091 (17)
β (°) 100.544 (15)
V3)1791 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.984, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
28799, 4122, 2935
Rint0.055
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.05
No. of reflections4122
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.882.222.609 (3)107
C11—H11A···O1i0.952.483.352 (4)153
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Mersin University Research Fund [Project No. BAP-SBE FK (SZ) 2008–8 YL].

References

First citationAbdulla, R. F., Boyd, D. B., Jones, N. D. & Swartzendruber, J. K. (1985). J. Org. Chem. 50, 3502–3505.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAu, O. & Tafeenko, V. (1986). Rev. Cubana Quim. 2, 65–74.  CAS Google Scholar
First citationAu, O. & Tafeenko, V. (1987). Rev. Cubana Quim. 3, 79–86.  CAS Google Scholar
First citationBatsanov, A. S., Goeta, A. E., Howard, J. A. K., Soto, B. & Au-Alvarez, O. (2006). Acta Cryst. C62, o304–o306.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds