organic compounds
5-Methyl-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one
aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com
In the title molecule, C14H15NO, the dihedral angle between the benzene and pyrrole rings is 1.99 (12)°. The cycloheptene ring adopts a slightly distorted boat conformation.
Related literature
For the interest and importance of indole derivatives, see: Csomós et al. (2007). For pyrido-fused cyclohept[b]indole see: Bennasar et al. (1997). For crystallographic studies of cyclohept[b]indoles, see: Archana et al. (2010).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811016229/hg5032sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811016229/hg5032Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811016229/hg5032Isup3.cml
To a solution of 7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one (0.199 g, 0.001 mol) in 5 ml acetone added powdered KOH (0.280 g, 0.005 mol) in ice cold condition. After few minutes methyl iodide (0.13 ml, 0.002 mol) was added drop by drop with vigorous stirring and the reaction mixture was stirrired for 15 min at room temperature. Benzene was added to the reaction mixture and insoluble materials are removed by filtration. The benzene solution was washed with saturated NaCl solution, dried by using Na2SO4 and evaporation yielded the title compound (0.191 g, 90%). This was recrystallized from benzene and ethyl acetate mixture.
Owing to the absence of any anamalous scatterers in the molecule, the Friedel pairs were merged. The
in the present model have been chosen arbitrarily. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.2 - 1.5 times Ueq(C).Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).C14H15NO | Dx = 1.256 Mg m−3 |
Mr = 213.27 | Melting point: 338 K |
Orthorhombic, Pca21 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2c -2ac | Cell parameters from 2006 reflections |
a = 8.6999 (2) Å | θ = 4.8–73.4° |
b = 14.1805 (3) Å | µ = 0.62 mm−1 |
c = 9.1392 (3) Å | T = 295 K |
V = 1127.49 (5) Å3 | Chunk, pale-yellow |
Z = 4 | 0.47 × 0.35 × 0.20 mm |
F(000) = 456 |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 1184 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1148 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 73.6°, θmin = 6.0° |
ω scans | h = 0→10 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = 0→17 |
Tmin = 0.803, Tmax = 1.000 | l = 0→11 |
1184 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0678P)2 + 0.0651P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.106 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.14 e Å−3 |
1184 reflections | Δρmin = −0.13 e Å−3 |
147 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.018 (2) |
Primary atom site location: structure-invariant direct methods | Absolute structure: see Refinement section in Supplementary materials |
Secondary atom site location: difference Fourier map |
C14H15NO | V = 1127.49 (5) Å3 |
Mr = 213.27 | Z = 4 |
Orthorhombic, Pca21 | Cu Kα radiation |
a = 8.6999 (2) Å | µ = 0.62 mm−1 |
b = 14.1805 (3) Å | T = 295 K |
c = 9.1392 (3) Å | 0.47 × 0.35 × 0.20 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 1184 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 1148 reflections with I > 2σ(I) |
Tmin = 0.803, Tmax = 1.000 | Rint = 0.020 |
1184 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 1 restraint |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.14 e Å−3 |
1184 reflections | Δρmin = −0.13 e Å−3 |
147 parameters | Absolute structure: see Refinement section in Supplementary materials |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O6 | 0.5677 (3) | 0.05292 (17) | 0.4636 (4) | 0.1141 (10) | |
N5 | 0.4250 (2) | 0.18603 (13) | 0.6610 (2) | 0.0514 (5) | |
C1 | 0.4932 (3) | 0.42768 (16) | 0.7515 (3) | 0.0607 (8) | |
C2 | 0.3719 (3) | 0.4495 (2) | 0.8403 (4) | 0.0792 (10) | |
C3 | 0.2600 (4) | 0.3822 (2) | 0.8755 (4) | 0.0826 (10) | |
C4 | 0.2661 (3) | 0.2923 (2) | 0.8220 (3) | 0.0686 (9) | |
C4A | 0.3895 (2) | 0.26879 (16) | 0.7301 (2) | 0.0512 (7) | |
C5 | 0.3392 (3) | 0.09825 (18) | 0.6805 (4) | 0.0791 (10) | |
C5A | 0.5637 (3) | 0.19791 (14) | 0.5882 (2) | 0.0471 (6) | |
C6 | 0.6360 (4) | 0.12408 (16) | 0.4995 (3) | 0.0637 (9) | |
C7 | 0.7989 (3) | 0.13870 (18) | 0.4529 (3) | 0.0669 (9) | |
C8 | 0.9072 (3) | 0.1731 (2) | 0.5724 (3) | 0.0713 (9) | |
C9 | 0.9058 (3) | 0.2786 (2) | 0.6046 (3) | 0.0647 (8) | |
C10 | 0.7621 (3) | 0.33087 (14) | 0.5528 (3) | 0.0533 (6) | |
C10A | 0.6154 (2) | 0.28910 (14) | 0.6081 (2) | 0.0431 (5) | |
C10B | 0.5048 (2) | 0.33542 (14) | 0.6960 (2) | 0.0458 (6) | |
H1 | 0.56661 | 0.47293 | 0.72821 | 0.0728* | |
H2 | 0.36341 | 0.51021 | 0.87808 | 0.0950* | |
H3 | 0.17945 | 0.39907 | 0.93704 | 0.0989* | |
H4 | 0.19098 | 0.24819 | 0.84567 | 0.0823* | |
H5A | 0.25845 | 0.10790 | 0.75052 | 0.1184* | |
H5B | 0.29541 | 0.07936 | 0.58858 | 0.1184* | |
H5C | 0.40722 | 0.04986 | 0.71507 | 0.1184* | |
H7A | 0.83814 | 0.07958 | 0.41476 | 0.0803* | |
H7B | 0.80020 | 0.18409 | 0.37351 | 0.0803* | |
H8A | 0.88223 | 0.13988 | 0.66208 | 0.0856* | |
H8B | 1.01113 | 0.15535 | 0.54543 | 0.0856* | |
H9A | 0.91596 | 0.28753 | 0.70940 | 0.0776* | |
H9B | 0.99487 | 0.30708 | 0.55857 | 0.0776* | |
H10A | 0.76018 | 0.33072 | 0.44669 | 0.0640* | |
H10B | 0.76828 | 0.39599 | 0.58476 | 0.0640* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O6 | 0.131 (2) | 0.0782 (13) | 0.133 (2) | −0.0248 (14) | 0.030 (2) | −0.0505 (16) |
N5 | 0.0472 (9) | 0.0535 (9) | 0.0534 (10) | −0.0053 (7) | −0.0045 (8) | 0.0057 (8) |
C1 | 0.0620 (13) | 0.0556 (12) | 0.0644 (14) | 0.0153 (10) | −0.0049 (12) | −0.0035 (11) |
C2 | 0.0837 (19) | 0.0764 (16) | 0.0774 (18) | 0.0354 (15) | 0.0030 (16) | −0.0123 (16) |
C3 | 0.0671 (15) | 0.111 (2) | 0.0696 (17) | 0.0405 (18) | 0.0133 (15) | 0.0049 (17) |
C4 | 0.0442 (12) | 0.0964 (17) | 0.0652 (15) | 0.0115 (12) | 0.0043 (11) | 0.0162 (15) |
C4A | 0.0408 (10) | 0.0643 (12) | 0.0486 (12) | 0.0048 (9) | −0.0069 (9) | 0.0089 (10) |
C5 | 0.0732 (17) | 0.0691 (14) | 0.095 (2) | −0.0234 (13) | −0.0062 (17) | 0.0152 (16) |
C5A | 0.0508 (11) | 0.0484 (10) | 0.0421 (10) | 0.0017 (8) | −0.0035 (9) | 0.0048 (9) |
C6 | 0.0855 (18) | 0.0514 (12) | 0.0541 (14) | 0.0054 (11) | −0.0011 (13) | −0.0046 (10) |
C7 | 0.0838 (18) | 0.0654 (13) | 0.0514 (13) | 0.0252 (12) | 0.0133 (13) | 0.0021 (11) |
C8 | 0.0639 (14) | 0.0833 (17) | 0.0668 (16) | 0.0278 (13) | 0.0048 (13) | 0.0131 (15) |
C9 | 0.0421 (11) | 0.0857 (16) | 0.0663 (15) | 0.0022 (11) | 0.0033 (11) | 0.0069 (14) |
C10 | 0.0538 (11) | 0.0519 (9) | 0.0542 (13) | −0.0005 (9) | 0.0045 (10) | 0.0087 (9) |
C10A | 0.0436 (10) | 0.0438 (8) | 0.0418 (10) | 0.0050 (7) | −0.0036 (8) | 0.0043 (8) |
C10B | 0.0421 (10) | 0.0506 (10) | 0.0448 (11) | 0.0083 (7) | −0.0055 (8) | 0.0029 (8) |
O6—C6 | 1.216 (4) | C10A—C10B | 1.415 (3) |
N5—C4A | 1.368 (3) | C1—H1 | 0.9300 |
N5—C5 | 1.462 (3) | C2—H2 | 0.9300 |
N5—C5A | 1.388 (3) | C3—H3 | 0.9300 |
C1—C2 | 1.367 (4) | C4—H4 | 0.9300 |
C1—C10B | 1.407 (3) | C5—H5A | 0.9600 |
C2—C3 | 1.401 (4) | C5—H5B | 0.9600 |
C3—C4 | 1.366 (4) | C5—H5C | 0.9600 |
C4—C4A | 1.403 (3) | C7—H7A | 0.9700 |
C4A—C10B | 1.413 (3) | C7—H7B | 0.9700 |
C5A—C6 | 1.466 (3) | C8—H8A | 0.9700 |
C5A—C10A | 1.381 (3) | C8—H8B | 0.9700 |
C6—C7 | 1.494 (4) | C9—H9A | 0.9700 |
C7—C8 | 1.523 (4) | C9—H9B | 0.9700 |
C8—C9 | 1.525 (4) | C10—H10A | 0.9700 |
C9—C10 | 1.529 (4) | C10—H10B | 0.9700 |
C10—C10A | 1.495 (3) | ||
C4A—N5—C5 | 123.97 (19) | C2—C3—H3 | 119.00 |
C4A—N5—C5A | 108.26 (17) | C4—C3—H3 | 119.00 |
C5—N5—C5A | 127.26 (19) | C3—C4—H4 | 121.00 |
C2—C1—C10B | 118.7 (2) | C4A—C4—H4 | 121.00 |
C1—C2—C3 | 121.3 (3) | N5—C5—H5A | 109.00 |
C2—C3—C4 | 121.8 (3) | N5—C5—H5B | 109.00 |
C3—C4—C4A | 117.8 (3) | N5—C5—H5C | 110.00 |
N5—C4A—C4 | 130.8 (2) | H5A—C5—H5B | 109.00 |
N5—C4A—C10B | 108.16 (16) | H5A—C5—H5C | 109.00 |
C4—C4A—C10B | 121.1 (2) | H5B—C5—H5C | 109.00 |
N5—C5A—C6 | 123.5 (2) | C6—C7—H7A | 108.00 |
N5—C5A—C10A | 109.49 (18) | C6—C7—H7B | 108.00 |
C6—C5A—C10A | 127.0 (2) | C8—C7—H7A | 108.00 |
O6—C6—C5A | 122.2 (3) | C8—C7—H7B | 108.00 |
O6—C6—C7 | 120.1 (3) | H7A—C7—H7B | 107.00 |
C5A—C6—C7 | 117.7 (2) | C7—C8—H8A | 108.00 |
C6—C7—C8 | 115.3 (2) | C7—C8—H8B | 108.00 |
C7—C8—C9 | 116.6 (2) | C9—C8—H8A | 108.00 |
C8—C9—C10 | 115.0 (2) | C9—C8—H8B | 108.00 |
C9—C10—C10A | 113.67 (19) | H8A—C8—H8B | 107.00 |
C5A—C10A—C10 | 127.19 (19) | C8—C9—H9A | 109.00 |
C5A—C10A—C10B | 106.73 (17) | C8—C9—H9B | 109.00 |
C10—C10A—C10B | 126.05 (18) | C10—C9—H9A | 108.00 |
C1—C10B—C4A | 119.44 (18) | C10—C9—H9B | 108.00 |
C1—C10B—C10A | 133.24 (19) | H9A—C9—H9B | 108.00 |
C4A—C10B—C10A | 107.31 (17) | C9—C10—H10A | 109.00 |
C2—C1—H1 | 121.00 | C9—C10—H10B | 109.00 |
C10B—C1—H1 | 121.00 | C10A—C10—H10A | 109.00 |
C1—C2—H2 | 119.00 | C10A—C10—H10B | 109.00 |
C3—C2—H2 | 119.00 | H10A—C10—H10B | 108.00 |
C5—N5—C4A—C4 | −4.8 (4) | N5—C5A—C6—O6 | 12.5 (4) |
C5—N5—C4A—C10B | 174.5 (2) | N5—C5A—C6—C7 | −167.6 (2) |
C5A—N5—C4A—C4 | −177.2 (2) | C10A—C5A—C6—O6 | −164.4 (3) |
C5A—N5—C4A—C10B | 2.2 (2) | C10A—C5A—C6—C7 | 15.4 (4) |
C4A—N5—C5A—C6 | −178.7 (2) | N5—C5A—C10A—C10 | 177.9 (2) |
C4A—N5—C5A—C10A | −1.3 (2) | N5—C5A—C10A—C10B | −0.1 (2) |
C5—N5—C5A—C6 | 9.3 (4) | C6—C5A—C10A—C10 | −4.8 (4) |
C5—N5—C5A—C10A | −173.3 (2) | C6—C5A—C10A—C10B | 177.2 (2) |
C10B—C1—C2—C3 | −0.4 (5) | O6—C6—C7—C8 | −134.4 (3) |
C2—C1—C10B—C4A | 1.6 (3) | C5A—C6—C7—C8 | 45.7 (3) |
C2—C1—C10B—C10A | −177.2 (2) | C6—C7—C8—C9 | −81.6 (3) |
C1—C2—C3—C4 | −0.6 (5) | C7—C8—C9—C10 | 19.9 (3) |
C2—C3—C4—C4A | 0.3 (5) | C8—C9—C10—C10A | 54.1 (3) |
C3—C4—C4A—N5 | −179.7 (3) | C9—C10—C10A—C5A | −57.7 (3) |
C3—C4—C4A—C10B | 1.0 (4) | C9—C10—C10A—C10B | 119.9 (2) |
N5—C4A—C10B—C1 | 178.60 (19) | C5A—C10A—C10B—C1 | −179.6 (2) |
N5—C4A—C10B—C10A | −2.3 (2) | C5A—C10A—C10B—C4A | 1.5 (2) |
C4—C4A—C10B—C1 | −2.0 (3) | C10—C10A—C10B—C1 | 2.4 (4) |
C4—C4A—C10B—C10A | 177.16 (19) | C10—C10A—C10B—C4A | −176.58 (19) |
Experimental details
Crystal data | |
Chemical formula | C14H15NO |
Mr | 213.27 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 295 |
a, b, c (Å) | 8.6999 (2), 14.1805 (3), 9.1392 (3) |
V (Å3) | 1127.49 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.62 |
Crystal size (mm) | 0.47 × 0.35 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.803, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1184, 1184, 1148 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.622 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.106, 1.07 |
No. of reflections | 1184 |
No. of parameters | 147 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.13 |
Absolute structure | See Refinement section in Supplementary materials |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).
Acknowledgements
RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o2882. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bennasar, M.-L., Vidal, B. & Bosch, J. (1997). J. Org. Chem. 62, 3597–3609. CrossRef CAS Google Scholar
Csomós, P., Fodor, L., Mándity, I. & Bernáth, G. (2007). Tetrahedron, 63, 4983–4989. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indole derivatives condensed with different heterocycles are physiologically active compounds found in abundance in materials such as pharmaceuticals, alkaloids and potential therapeutic agents (Csomós et al., 2007). Ervitsine and Ervatamine (Bennasar et al., 1997) were important class of pyrido fused cyclohept[b]indole alkaloids. Recently we have reported crystallographic studies for some cyclohept[b]indoles in our laboratory (Archana et al., 2010).
The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. In the title molecule, C14H15NO, the dihedral angle between the benzene and pyrrole rings is 1.99 (12)°. The cycloheptene ring adopts a slightly distorted boat conformation.