organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-7,8,9,10-tetra­hydro­cyclo­hepta­[b]indol-6(5H)-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 26 April 2011; accepted 28 April 2011; online 7 May 2011)

In the title mol­ecule, C14H15NO, the dihedral angle between the benzene and pyrrole rings is 1.99 (12)°. The cyclo­heptene ring adopts a slightly distorted boat conformation.

Related literature

For the inter­est and importance of indole derivatives, see: Csomós et al. (2007[Csomós, P., Fodor, L., Mándity, I. & Bernáth, G. (2007). Tetrahedron, 63, 4983-4989.]). For pyrido-fused cyclo­hept[b]indole alkaloids, see: Bennasar et al. (1997[Bennasar, M.-L., Vidal, B. & Bosch, J. (1997). J. Org. Chem. 62, 3597-3609.]). For crystallographic studies of cyclo­hept[b]indoles, see: Archana et al. (2010[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o2882.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO

  • Mr = 213.27

  • Orthorhombic, P c a 21

  • a = 8.6999 (2) Å

  • b = 14.1805 (3) Å

  • c = 9.1392 (3) Å

  • V = 1127.49 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 295 K

  • 0.47 × 0.35 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.803, Tmax = 1.000

  • 1184 measured reflections

  • 1184 independent reflections

  • 1148 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.07

  • 1184 reflections

  • 147 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole derivatives condensed with different heterocycles are physiologically active compounds found in abundance in materials such as pharmaceuticals, alkaloids and potential therapeutic agents (Csomós et al., 2007). Ervitsine and Ervatamine (Bennasar et al., 1997) were important class of pyrido fused cyclohept[b]indole alkaloids. Recently we have reported crystallographic studies for some cyclohept[b]indoles in our laboratory (Archana et al., 2010).

The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. In the title molecule, C14H15NO, the dihedral angle between the benzene and pyrrole rings is 1.99 (12)°. The cycloheptene ring adopts a slightly distorted boat conformation.

Related literature top

For the interest and importance of indole derivatives, see: Csomós et al. (2007). For pyrido-fused cyclohept[b]indole alkaloids, see: Bennasar et al. (1997). For crystallographic studies of cyclohept[b]indoles, see: Archana et al. (2010).

Experimental top

To a solution of 7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one (0.199 g, 0.001 mol) in 5 ml acetone added powdered KOH (0.280 g, 0.005 mol) in ice cold condition. After few minutes methyl iodide (0.13 ml, 0.002 mol) was added drop by drop with vigorous stirring and the reaction mixture was stirrired for 15 min at room temperature. Benzene was added to the reaction mixture and insoluble materials are removed by filtration. The benzene solution was washed with saturated NaCl solution, dried by using Na2SO4 and evaporation yielded the title compound (0.191 g, 90%). This was recrystallized from benzene and ethyl acetate mixture.

Refinement top

Owing to the absence of any anamalous scatterers in the molecule, the Friedel pairs were merged. The absolute structure in the present model have been chosen arbitrarily. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.2 - 1.5 times Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
5-Methyl-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one top
Crystal data top
C14H15NODx = 1.256 Mg m3
Mr = 213.27Melting point: 338 K
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2acCell parameters from 2006 reflections
a = 8.6999 (2) Åθ = 4.8–73.4°
b = 14.1805 (3) ŵ = 0.62 mm1
c = 9.1392 (3) ÅT = 295 K
V = 1127.49 (5) Å3Chunk, pale-yellow
Z = 40.47 × 0.35 × 0.20 mm
F(000) = 456
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1184 independent reflections
Radiation source: Enhance (Cu) X-ray Source1148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.5081 pixels mm-1θmax = 73.6°, θmin = 6.0°
ω scansh = 010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 017
Tmin = 0.803, Tmax = 1.000l = 011
1184 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.0651P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.14 e Å3
1184 reflectionsΔρmin = 0.13 e Å3
147 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.018 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: see Refinement section in Supplementary materials
Secondary atom site location: difference Fourier map
Crystal data top
C14H15NOV = 1127.49 (5) Å3
Mr = 213.27Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 8.6999 (2) ŵ = 0.62 mm1
b = 14.1805 (3) ÅT = 295 K
c = 9.1392 (3) Å0.47 × 0.35 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1184 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1148 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 1.000Rint = 0.020
1184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.14 e Å3
1184 reflectionsΔρmin = 0.13 e Å3
147 parametersAbsolute structure: see Refinement section in Supplementary materials
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.5677 (3)0.05292 (17)0.4636 (4)0.1141 (10)
N50.4250 (2)0.18603 (13)0.6610 (2)0.0514 (5)
C10.4932 (3)0.42768 (16)0.7515 (3)0.0607 (8)
C20.3719 (3)0.4495 (2)0.8403 (4)0.0792 (10)
C30.2600 (4)0.3822 (2)0.8755 (4)0.0826 (10)
C40.2661 (3)0.2923 (2)0.8220 (3)0.0686 (9)
C4A0.3895 (2)0.26879 (16)0.7301 (2)0.0512 (7)
C50.3392 (3)0.09825 (18)0.6805 (4)0.0791 (10)
C5A0.5637 (3)0.19791 (14)0.5882 (2)0.0471 (6)
C60.6360 (4)0.12408 (16)0.4995 (3)0.0637 (9)
C70.7989 (3)0.13870 (18)0.4529 (3)0.0669 (9)
C80.9072 (3)0.1731 (2)0.5724 (3)0.0713 (9)
C90.9058 (3)0.2786 (2)0.6046 (3)0.0647 (8)
C100.7621 (3)0.33087 (14)0.5528 (3)0.0533 (6)
C10A0.6154 (2)0.28910 (14)0.6081 (2)0.0431 (5)
C10B0.5048 (2)0.33542 (14)0.6960 (2)0.0458 (6)
H10.566610.472930.728210.0728*
H20.363410.510210.878080.0950*
H30.179450.399070.937040.0989*
H40.190980.248190.845670.0823*
H5A0.258450.107900.750520.1184*
H5B0.295410.079360.588580.1184*
H5C0.407220.049860.715070.1184*
H7A0.838140.079580.414760.0803*
H7B0.800200.184090.373510.0803*
H8A0.882230.139880.662080.0856*
H8B1.011130.155350.545430.0856*
H9A0.915960.287530.709400.0776*
H9B0.994870.307080.558570.0776*
H10A0.760180.330720.446690.0640*
H10B0.768280.395990.584760.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.131 (2)0.0782 (13)0.133 (2)0.0248 (14)0.030 (2)0.0505 (16)
N50.0472 (9)0.0535 (9)0.0534 (10)0.0053 (7)0.0045 (8)0.0057 (8)
C10.0620 (13)0.0556 (12)0.0644 (14)0.0153 (10)0.0049 (12)0.0035 (11)
C20.0837 (19)0.0764 (16)0.0774 (18)0.0354 (15)0.0030 (16)0.0123 (16)
C30.0671 (15)0.111 (2)0.0696 (17)0.0405 (18)0.0133 (15)0.0049 (17)
C40.0442 (12)0.0964 (17)0.0652 (15)0.0115 (12)0.0043 (11)0.0162 (15)
C4A0.0408 (10)0.0643 (12)0.0486 (12)0.0048 (9)0.0069 (9)0.0089 (10)
C50.0732 (17)0.0691 (14)0.095 (2)0.0234 (13)0.0062 (17)0.0152 (16)
C5A0.0508 (11)0.0484 (10)0.0421 (10)0.0017 (8)0.0035 (9)0.0048 (9)
C60.0855 (18)0.0514 (12)0.0541 (14)0.0054 (11)0.0011 (13)0.0046 (10)
C70.0838 (18)0.0654 (13)0.0514 (13)0.0252 (12)0.0133 (13)0.0021 (11)
C80.0639 (14)0.0833 (17)0.0668 (16)0.0278 (13)0.0048 (13)0.0131 (15)
C90.0421 (11)0.0857 (16)0.0663 (15)0.0022 (11)0.0033 (11)0.0069 (14)
C100.0538 (11)0.0519 (9)0.0542 (13)0.0005 (9)0.0045 (10)0.0087 (9)
C10A0.0436 (10)0.0438 (8)0.0418 (10)0.0050 (7)0.0036 (8)0.0043 (8)
C10B0.0421 (10)0.0506 (10)0.0448 (11)0.0083 (7)0.0055 (8)0.0029 (8)
Geometric parameters (Å, º) top
O6—C61.216 (4)C10A—C10B1.415 (3)
N5—C4A1.368 (3)C1—H10.9300
N5—C51.462 (3)C2—H20.9300
N5—C5A1.388 (3)C3—H30.9300
C1—C21.367 (4)C4—H40.9300
C1—C10B1.407 (3)C5—H5A0.9600
C2—C31.401 (4)C5—H5B0.9600
C3—C41.366 (4)C5—H5C0.9600
C4—C4A1.403 (3)C7—H7A0.9700
C4A—C10B1.413 (3)C7—H7B0.9700
C5A—C61.466 (3)C8—H8A0.9700
C5A—C10A1.381 (3)C8—H8B0.9700
C6—C71.494 (4)C9—H9A0.9700
C7—C81.523 (4)C9—H9B0.9700
C8—C91.525 (4)C10—H10A0.9700
C9—C101.529 (4)C10—H10B0.9700
C10—C10A1.495 (3)
C4A—N5—C5123.97 (19)C2—C3—H3119.00
C4A—N5—C5A108.26 (17)C4—C3—H3119.00
C5—N5—C5A127.26 (19)C3—C4—H4121.00
C2—C1—C10B118.7 (2)C4A—C4—H4121.00
C1—C2—C3121.3 (3)N5—C5—H5A109.00
C2—C3—C4121.8 (3)N5—C5—H5B109.00
C3—C4—C4A117.8 (3)N5—C5—H5C110.00
N5—C4A—C4130.8 (2)H5A—C5—H5B109.00
N5—C4A—C10B108.16 (16)H5A—C5—H5C109.00
C4—C4A—C10B121.1 (2)H5B—C5—H5C109.00
N5—C5A—C6123.5 (2)C6—C7—H7A108.00
N5—C5A—C10A109.49 (18)C6—C7—H7B108.00
C6—C5A—C10A127.0 (2)C8—C7—H7A108.00
O6—C6—C5A122.2 (3)C8—C7—H7B108.00
O6—C6—C7120.1 (3)H7A—C7—H7B107.00
C5A—C6—C7117.7 (2)C7—C8—H8A108.00
C6—C7—C8115.3 (2)C7—C8—H8B108.00
C7—C8—C9116.6 (2)C9—C8—H8A108.00
C8—C9—C10115.0 (2)C9—C8—H8B108.00
C9—C10—C10A113.67 (19)H8A—C8—H8B107.00
C5A—C10A—C10127.19 (19)C8—C9—H9A109.00
C5A—C10A—C10B106.73 (17)C8—C9—H9B109.00
C10—C10A—C10B126.05 (18)C10—C9—H9A108.00
C1—C10B—C4A119.44 (18)C10—C9—H9B108.00
C1—C10B—C10A133.24 (19)H9A—C9—H9B108.00
C4A—C10B—C10A107.31 (17)C9—C10—H10A109.00
C2—C1—H1121.00C9—C10—H10B109.00
C10B—C1—H1121.00C10A—C10—H10A109.00
C1—C2—H2119.00C10A—C10—H10B109.00
C3—C2—H2119.00H10A—C10—H10B108.00
C5—N5—C4A—C44.8 (4)N5—C5A—C6—O612.5 (4)
C5—N5—C4A—C10B174.5 (2)N5—C5A—C6—C7167.6 (2)
C5A—N5—C4A—C4177.2 (2)C10A—C5A—C6—O6164.4 (3)
C5A—N5—C4A—C10B2.2 (2)C10A—C5A—C6—C715.4 (4)
C4A—N5—C5A—C6178.7 (2)N5—C5A—C10A—C10177.9 (2)
C4A—N5—C5A—C10A1.3 (2)N5—C5A—C10A—C10B0.1 (2)
C5—N5—C5A—C69.3 (4)C6—C5A—C10A—C104.8 (4)
C5—N5—C5A—C10A173.3 (2)C6—C5A—C10A—C10B177.2 (2)
C10B—C1—C2—C30.4 (5)O6—C6—C7—C8134.4 (3)
C2—C1—C10B—C4A1.6 (3)C5A—C6—C7—C845.7 (3)
C2—C1—C10B—C10A177.2 (2)C6—C7—C8—C981.6 (3)
C1—C2—C3—C40.6 (5)C7—C8—C9—C1019.9 (3)
C2—C3—C4—C4A0.3 (5)C8—C9—C10—C10A54.1 (3)
C3—C4—C4A—N5179.7 (3)C9—C10—C10A—C5A57.7 (3)
C3—C4—C4A—C10B1.0 (4)C9—C10—C10A—C10B119.9 (2)
N5—C4A—C10B—C1178.60 (19)C5A—C10A—C10B—C1179.6 (2)
N5—C4A—C10B—C10A2.3 (2)C5A—C10A—C10B—C4A1.5 (2)
C4—C4A—C10B—C12.0 (3)C10—C10A—C10B—C12.4 (4)
C4—C4A—C10B—C10A177.16 (19)C10—C10A—C10B—C4A176.58 (19)

Experimental details

Crystal data
Chemical formulaC14H15NO
Mr213.27
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)295
a, b, c (Å)8.6999 (2), 14.1805 (3), 9.1392 (3)
V3)1127.49 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.47 × 0.35 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.803, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
1184, 1184, 1148
Rint0.020
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.07
No. of reflections1184
No. of parameters147
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13
Absolute structureSee Refinement section in Supplementary materials

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationArchana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o2882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBennasar, M.-L., Vidal, B. & Bosch, J. (1997). J. Org. Chem. 62, 3597–3609.  CrossRef CAS Google Scholar
First citationCsomós, P., Fodor, L., Mándity, I. & Bernáth, G. (2007). Tetrahedron, 63, 4983–4989.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds