organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1370-o1371

(E)-[({[(3-Methyl­phen­yl)meth­yl]sulfan­yl}methane­thio­yl)amino](1-phenyl­pentyl­­idene)amine

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 May 2011; accepted 5 May 2011; online 11 May 2011)

In the structure of the title compound, C20H24N2S2, the central CN2S2 atoms are planar (r.m.s. deviation = 0.0205 Å) but both benzene rings are twisted out of this plane forming dihedral angles of 23.03 (6) and 84.75 (4)° (tol­yl); the n-butyl group occupies a position normal to the plane [N—C—C—C torsion angle = −84.33 (16)°]. The conformation of the imine bond [1.2888 (18) Å] is E. The syn arrangement of the thione S and amino H atoms enables the formation of N—H⋯S hydrogen bonds between centrosymmetrically related mol­ecules. These lead to eight-membered {⋯HNC=S}2 synthons which are further stabilized by proximate C—H⋯S interactions. The resulting dimeric aggregates are connected into a supra­molecular chain along the c axis by C—H⋯π(tol­yl) inter­actions.

Related literature

For background on the coordination chemistry of hydrazine­carbodithio­ates, see: Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). For related structures, see: Khoo et al. (2005[Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441-o2443.]); How et al. (2007[How, F. N.-F., Watkin, D. J., Crouse, K. A. & Tahir, M. I. M. (2007). Acta Cryst. E63, o3023-o3024.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2S2

  • Mr = 356.53

  • Monoclinic, P 21 /c

  • a = 11.3345 (1) Å

  • b = 19.1439 (3) Å

  • c = 8.6779 (1) Å

  • β = 95.802 (1)°

  • V = 1873.34 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.58 mm−1

  • T = 150 K

  • 0.18 × 0.14 × 0.06 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.820, Tmax = 0.924

  • 33884 measured reflections

  • 3631 independent reflections

  • 3380 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.03

  • 3631 reflections

  • 222 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.87 (1) 2.64 (1) 3.4926 (12) 165 (1)
C9—H9B⋯S1i 0.99 2.77 3.7576 (14) 178
C12—H12CCg1ii 0.98 2.81 3.7162 (14) 155
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuing interest in the coordination chemistry of hydrazinecarbodithioate derivatives (Ravoof et al., 2010), structural studies on the precursor molecules have been undertaken (Khoo et al. 2005; How et al. 2007). In this connection, the title compound, (I), the product of the condensation reaction between 3-methylbenzyldithiocarbazate and valerophenone, was investigated.

The central CN2S2 atoms in the molecular structure of (I), Fig. 1, are planar with a r.m.s. = 0.0205 Å. The adjacent residues are twisted out of this plane as seen in the values of the C1—N1—N2—C2 and C1—S2—C13—C14 torsion angles of 167.00 (12) and -163.64 (10) °, respectively. Further, the dihedral angles formed between the C3···C6 and C14···C19 benzene rings with the central plane are 23.03 (6) and 84.75 (4) °, respectively, indicating approximate co-planar and a perpendicular dispositions, respectively. Thus, the benzene rings are almost normal to each other, forming a dihedral angle between their respective least-squares planes of 80.13 (5) °. Finally, the n-butyl group, having an extended conformation, occupies a position approximately normal to the central plane with N2—C2—C9—C10 torsion angle being -84.33 (16) °. The conformation about the N2C2 bond [1.2888 (18) Å] is E. The thione-S1 and amino-H atoms are syn, a disposition that allows for the formation of N—H···S hydrogen bonds between centrosymmetrically related molecules, Table 1. These lead to eight-membered {···HNCS}2 synthons which are further stabilized by proximate C—H···S interactions, Table 1. The dimeric aggregates are connected into linear supramolecular chains along the c axis via C—H···π(C14···C19) contacts, Table 1 and Fig. 2. The chains pack into layers in the ac plane and their organic residues inter-digitate along the b axis, Fig. 3.

Related literature top

For background on the coordination chemistry of hydrazinecarbodithioates, see: Ravoof et al. (2010). For related structures, see: Khoo et al. (2005); How et al. (2007).

Experimental top

The precursor molecule 3-methylbenzyldithiocarbazate was prepared as previously described (Ravoof et al., 2010). This (2.12 g, 0.01 mol) was dissolved in acetonitrile (35 ml) and valerophenone (1.62 g, 0.01 mol) was added. The temperature of the reaction mixture was maintained between 333–338 K with stirring over 30 min. as a yellow product formed. The product was filtered off, recrystallized and dried in vacuo over silica gel (yield 70%; M.pt. 366 K). Anal. Found (Calc.): C, 66.25 (67.37), H, 6.50 (6.78), N, 7.81 (7.86), S, 18.17 (17.99) %. Light-yellow crystals were grown from its acetonitrile solution through slow evaporation.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The amino H-atom was refined with a distance restraint of N—H = 0.88±0.01 Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) mediated by N—H···S hydrogen bonding and C—H···π interactions, shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents for (I) showing inter-digitation of organic residues along the b axis. The N—H···S hydrogen bonding and C—H···π interactions are shown as orange and purple dashed lines, respectively.
(E)-[({[(3-Methylphenyl)methyl]sulfanyl}methanethioyl)amino](1- phenylpentylidene)amine top
Crystal data top
C20H24N2S2F(000) = 760
Mr = 356.53Dx = 1.264 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 23382 reflections
a = 11.3345 (1) Åθ = 3.9–71.2°
b = 19.1439 (3) ŵ = 2.58 mm1
c = 8.6779 (1) ÅT = 150 K
β = 95.802 (1)°Block, pale-yellow
V = 1873.34 (4) Å30.18 × 0.14 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
3631 independent reflections
Radiation source: fine-focus sealed tube3380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1952 pixels mm-1θmax = 71.4°, θmin = 3.9°
ω/2θ scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2223
Tmin = 0.820, Tmax = 0.924l = 1010
33884 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.5891P]
where P = (Fo2 + 2Fc2)/3
3631 reflections(Δ/σ)max = 0.002
222 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C20H24N2S2V = 1873.34 (4) Å3
Mr = 356.53Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.3345 (1) ŵ = 2.58 mm1
b = 19.1439 (3) ÅT = 150 K
c = 8.6779 (1) Å0.18 × 0.14 × 0.06 mm
β = 95.802 (1)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
3631 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3380 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.924Rint = 0.023
33884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
3631 reflectionsΔρmin = 0.18 e Å3
222 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02007 (3)0.442478 (17)0.29961 (4)0.02821 (11)
S20.18648 (3)0.521432 (17)0.10978 (4)0.02677 (11)
N10.08701 (10)0.57396 (6)0.33862 (13)0.0265 (3)
H1N0.0476 (14)0.5734 (9)0.4199 (15)0.032*
N20.15725 (10)0.62898 (6)0.29997 (13)0.0257 (2)
C10.09447 (11)0.51415 (7)0.25919 (15)0.0233 (3)
C20.13749 (12)0.69067 (7)0.35107 (15)0.0239 (3)
C30.21717 (12)0.74591 (7)0.29942 (15)0.0245 (3)
C40.19755 (13)0.81656 (8)0.32641 (17)0.0298 (3)
H40.13420.83010.38370.036*
C50.26964 (14)0.86719 (8)0.27053 (19)0.0357 (3)
H50.25480.91520.28880.043*
C60.36287 (14)0.84832 (9)0.18845 (19)0.0368 (3)
H60.41200.88320.15030.044*
C70.38448 (13)0.77831 (9)0.16191 (19)0.0362 (3)
H70.44890.76510.10620.043*
C80.31210 (13)0.72760 (8)0.21670 (17)0.0306 (3)
H80.32720.67970.19780.037*
C90.03642 (12)0.70935 (7)0.44343 (15)0.0253 (3)
H9A0.05780.75110.50750.030*
H9B0.02150.67030.51370.030*
C100.07651 (12)0.72428 (7)0.33483 (15)0.0265 (3)
H10A0.06350.76640.27240.032*
H10B0.09180.68450.26270.032*
C110.18508 (13)0.73576 (8)0.42165 (17)0.0308 (3)
H11A0.19810.69360.48390.037*
H11B0.16960.77540.49410.037*
C120.29719 (13)0.75075 (9)0.3150 (2)0.0372 (3)
H12A0.28650.79370.25670.056*
H12B0.36420.75650.37700.056*
H12C0.31310.71170.24280.056*
C130.17797 (13)0.43434 (7)0.02445 (18)0.0296 (3)
H13A0.18420.39820.10640.035*
H13B0.10180.42810.04070.035*
C140.28092 (12)0.42893 (7)0.07279 (16)0.0260 (3)
C150.26557 (12)0.44105 (7)0.23135 (17)0.0269 (3)
H150.18860.45150.27970.032*
C160.36119 (13)0.43818 (7)0.32117 (17)0.0285 (3)
C170.47312 (13)0.42296 (8)0.24810 (17)0.0310 (3)
H170.53920.42090.30720.037*
C180.48925 (13)0.41079 (8)0.08963 (18)0.0333 (3)
H180.56610.40040.04110.040*
C190.39395 (13)0.41375 (8)0.00206 (17)0.0309 (3)
H190.40550.40540.10630.037*
C200.34264 (15)0.45187 (10)0.49302 (19)0.0431 (4)
H20A0.32380.50130.51120.065*
H20B0.27700.42310.53950.065*
H20C0.41510.44010.54010.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0308 (2)0.02422 (19)0.03141 (19)0.00527 (12)0.01214 (14)0.00176 (13)
S20.03181 (19)0.02038 (18)0.03037 (19)0.00134 (12)0.01409 (14)0.00156 (12)
N10.0300 (6)0.0232 (6)0.0281 (6)0.0013 (4)0.0118 (5)0.0015 (4)
N20.0273 (6)0.0215 (6)0.0290 (6)0.0007 (4)0.0066 (4)0.0008 (4)
C10.0221 (6)0.0231 (6)0.0252 (6)0.0019 (5)0.0049 (5)0.0017 (5)
C20.0262 (6)0.0242 (7)0.0211 (6)0.0035 (5)0.0008 (5)0.0000 (5)
C30.0254 (6)0.0239 (7)0.0233 (6)0.0009 (5)0.0019 (5)0.0007 (5)
C40.0299 (7)0.0257 (7)0.0334 (7)0.0020 (5)0.0019 (6)0.0028 (6)
C50.0381 (8)0.0242 (7)0.0438 (8)0.0020 (6)0.0003 (7)0.0010 (6)
C60.0346 (8)0.0354 (8)0.0400 (8)0.0110 (6)0.0016 (6)0.0045 (6)
C70.0295 (7)0.0403 (9)0.0399 (8)0.0018 (6)0.0088 (6)0.0002 (7)
C80.0296 (7)0.0273 (7)0.0353 (7)0.0017 (6)0.0052 (6)0.0011 (6)
C90.0304 (7)0.0224 (6)0.0237 (6)0.0014 (5)0.0052 (5)0.0014 (5)
C100.0275 (7)0.0265 (7)0.0260 (6)0.0003 (5)0.0050 (5)0.0018 (5)
C110.0312 (7)0.0293 (7)0.0332 (7)0.0011 (6)0.0092 (6)0.0005 (6)
C120.0287 (7)0.0371 (8)0.0466 (9)0.0038 (6)0.0077 (6)0.0051 (7)
C130.0322 (7)0.0217 (7)0.0370 (7)0.0021 (5)0.0137 (6)0.0064 (6)
C140.0288 (7)0.0184 (6)0.0323 (7)0.0002 (5)0.0107 (5)0.0039 (5)
C150.0249 (7)0.0216 (7)0.0346 (7)0.0012 (5)0.0050 (5)0.0001 (5)
C160.0298 (7)0.0259 (7)0.0306 (7)0.0002 (5)0.0069 (6)0.0012 (5)
C170.0266 (7)0.0327 (7)0.0353 (7)0.0032 (6)0.0116 (6)0.0011 (6)
C180.0256 (7)0.0369 (8)0.0374 (8)0.0052 (6)0.0035 (6)0.0026 (6)
C190.0340 (7)0.0311 (8)0.0282 (7)0.0014 (6)0.0065 (6)0.0000 (6)
C200.0372 (9)0.0600 (11)0.0326 (8)0.0027 (8)0.0063 (7)0.0077 (7)
Geometric parameters (Å, º) top
S1—C11.6663 (13)C10—H10B0.9900
S2—C11.7497 (13)C11—C121.522 (2)
S2—C131.8229 (14)C11—H11A0.9900
N1—C11.3434 (18)C11—H11B0.9900
N1—N21.3820 (16)C12—H12A0.9800
N1—H1N0.872 (9)C12—H12B0.9800
N2—C21.2888 (18)C12—H12C0.9800
C2—C31.4889 (19)C13—C141.5111 (18)
C2—C91.5061 (18)C13—H13A0.9900
C3—C41.394 (2)C13—H13B0.9900
C3—C81.397 (2)C14—C151.389 (2)
C4—C51.387 (2)C14—C191.394 (2)
C4—H40.9500C15—C161.399 (2)
C5—C61.381 (2)C15—H150.9500
C5—H50.9500C16—C171.391 (2)
C6—C71.386 (2)C16—C201.508 (2)
C6—H60.9500C17—C181.388 (2)
C7—C81.386 (2)C17—H170.9500
C7—H70.9500C18—C191.383 (2)
C8—H80.9500C18—H180.9500
C9—C101.5377 (19)C19—H190.9500
C9—H9A0.9900C20—H20A0.9800
C9—H9B0.9900C20—H20B0.9800
C10—C111.5224 (19)C20—H20C0.9800
C10—H10A0.9900
C1—S2—C13102.54 (6)C12—C11—H11A108.9
C1—N1—N2117.22 (11)C10—C11—H11A108.9
C1—N1—H1N118.0 (12)C12—C11—H11B108.9
N2—N1—H1N124.0 (12)C10—C11—H11B108.9
C2—N2—N1119.37 (11)H11A—C11—H11B107.8
N1—C1—S1122.30 (10)C11—C12—H12A109.5
N1—C1—S2112.67 (10)C11—C12—H12B109.5
S1—C1—S2125.01 (8)H12A—C12—H12B109.5
N2—C2—C3114.55 (12)C11—C12—H12C109.5
N2—C2—C9124.65 (12)H12A—C12—H12C109.5
C3—C2—C9120.57 (11)H12B—C12—H12C109.5
C4—C3—C8118.29 (13)C14—C13—S2106.10 (9)
C4—C3—C2121.77 (12)C14—C13—H13A110.5
C8—C3—C2119.90 (12)S2—C13—H13A110.5
C5—C4—C3120.64 (14)C14—C13—H13B110.5
C5—C4—H4119.7S2—C13—H13B110.5
C3—C4—H4119.7H13A—C13—H13B108.7
C6—C5—C4120.42 (14)C15—C14—C19119.24 (13)
C6—C5—H5119.8C15—C14—C13121.02 (13)
C4—C5—H5119.8C19—C14—C13119.71 (13)
C5—C6—C7119.73 (14)C14—C15—C16121.27 (13)
C5—C6—H6120.1C14—C15—H15119.4
C7—C6—H6120.1C16—C15—H15119.4
C8—C7—C6119.99 (14)C17—C16—C15118.48 (13)
C8—C7—H7120.0C17—C16—C20121.12 (13)
C6—C7—H7120.0C15—C16—C20120.40 (14)
C7—C8—C3120.92 (14)C18—C17—C16120.63 (13)
C7—C8—H8119.5C18—C17—H17119.7
C3—C8—H8119.5C16—C17—H17119.7
C2—C9—C10110.42 (11)C19—C18—C17120.35 (14)
C2—C9—H9A109.6C19—C18—H18119.8
C10—C9—H9A109.6C17—C18—H18119.8
C2—C9—H9B109.6C18—C19—C14120.03 (13)
C10—C9—H9B109.6C18—C19—H19120.0
H9A—C9—H9B108.1C14—C19—H19120.0
C11—C10—C9112.83 (11)C16—C20—H20A109.5
C11—C10—H10A109.0C16—C20—H20B109.5
C9—C10—H10A109.0H20A—C20—H20B109.5
C11—C10—H10B109.0C16—C20—H20C109.5
C9—C10—H10B109.0H20A—C20—H20C109.5
H10A—C10—H10B107.8H20B—C20—H20C109.5
C12—C11—C10113.17 (12)
C1—N1—N2—C2167.00 (12)C2—C3—C8—C7177.31 (13)
N2—N1—C1—S1176.84 (10)N2—C2—C9—C1084.33 (16)
N2—N1—C1—S24.54 (15)C3—C2—C9—C1089.91 (14)
C13—S2—C1—N1179.56 (10)C2—C9—C10—C11173.76 (11)
C13—S2—C1—S10.98 (11)C9—C10—C11—C12179.86 (12)
N1—N2—C2—C3178.88 (11)C1—S2—C13—C14163.64 (10)
N1—N2—C2—C94.3 (2)S2—C13—C14—C1597.18 (14)
N2—C2—C3—C4171.08 (12)S2—C13—C14—C1980.75 (14)
C9—C2—C3—C43.72 (19)C19—C14—C15—C160.1 (2)
N2—C2—C3—C86.59 (18)C13—C14—C15—C16178.05 (12)
C9—C2—C3—C8178.62 (12)C14—C15—C16—C170.1 (2)
C8—C3—C4—C50.9 (2)C14—C15—C16—C20179.68 (14)
C2—C3—C4—C5176.83 (13)C15—C16—C17—C180.1 (2)
C3—C4—C5—C60.6 (2)C20—C16—C17—C18179.67 (15)
C4—C5—C6—C70.0 (2)C16—C17—C18—C190.1 (2)
C5—C6—C7—C80.5 (2)C17—C18—C19—C140.1 (2)
C6—C7—C8—C30.2 (2)C15—C14—C19—C180.1 (2)
C4—C3—C8—C70.4 (2)C13—C14—C19—C18178.05 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.87 (1)2.64 (1)3.4926 (12)165 (1)
C9—H9B···S1i0.992.773.7576 (14)178
C12—H12C···Cg1ii0.982.813.7162 (14)155
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H24N2S2
Mr356.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)11.3345 (1), 19.1439 (3), 8.6779 (1)
β (°) 95.802 (1)
V3)1873.34 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.58
Crystal size (mm)0.18 × 0.14 × 0.06
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.820, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
33884, 3631, 3380
Rint0.023
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.03
No. of reflections3631
No. of parameters222
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.872 (14)2.643 (14)3.4926 (12)165.1 (14)
C9—H9B···S1i0.992.773.7576 (14)178
C12—H12C···Cg1ii0.982.813.7162 (14)155
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: kacrouse@gmail.com.

Acknowledgements

Support for the project came from Universiti Putra Malaysia under their Research University Grant Scheme (grant No. 9174000) and from the Malaysian Ministry of Science, Technology and Innovation (grant No. 09-02-04-0752-EA001).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHow, F. N.-F., Watkin, D. J., Crouse, K. A. & Tahir, M. I. M. (2007). Acta Cryst. E63, o3023–o3024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441–o2443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1370-o1371
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds