metal-organic compounds
Aqua[1-(4-carboxyphenyl)-1H-imidazole-κN3](pyridine-2,6-dicarboxylato-κ3O2,N,O6)copper(II) monohydrate
aSchool of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 330031, People's Republic of China
*Correspondence e-mail: yuzhangyucn@yahoo.com.cn
In the title complex, [Cu(C7H3NO4)(C10H8N2O2)(H2O)]·H2O, the CuII ion is in a slightly distorted square-pyramidal geometry. Two carboxylate O atoms and one pyridine N atom from a pyridine-2,6-dicarboxylate ligand chelate the CuII ion, forming two stable five-membered metalla rings. One imidazole N atom from a 1-(4-carboxyphenyl)imidazole ligand and one water molecule complete the five-coordination. O—H⋯O hydrogen bonds involving the coordinated water molecules and carboxylate groups link the complex molecules into chain-containing dinuclear macrocycles. O—H⋯O hydrogen bonds involving the uncoordinated water molecules link the chains into a layer extending parallel to (10).
Related literature
For the design and synthesis of compounds with metal–organic supramolecular architectures, see: Bradshaw et al. (2005); Tian et al. (2005); Wang et al. (2009). For the use of N-containing heterocyclic carboxylate ligands in metal–organic supramolecular architectures, see: Bentiss et al. (2004); Yang et al. (2008); Zeng et al. (2006). For related structures, see: Li et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811015522/hy2420sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811015522/hy2420Isup2.hkl
A mixture of pyridine-2,6-dicarboxylic acid (0.034 g, 0.2 mmol), HIBA (0.038 g, 0.2 mmol), copper nitrate hydrate (0.036 g, 0.2 mmol) and one drop of KOH aqueous solution (10%) in 15 ml distilled water was heated in a 30 ml Teflon-lined steel bomb at 433 K for 3 d. Blue crystals formed were collected, washed with ethanol and dried in air.
All H atoms were located from difference Fourier maps and refined isotropically, with a distance restraint of O—H = 0.82 (1) Å.
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. View of the dinuclear CuII supramolecular macrocycle. Dashed lines denote hydrogen bonds. [Symmetry code: (i) -x, -y+1, -z+1.] | |
Fig. 3. View of the one-dimensional supramolecular chain. Dashed lines denote hydrogen bonds. |
[Cu(C7H3NO4)(C10H8N2O2)(H2O)]·H2O | Z = 2 |
Mr = 452.87 | F(000) = 462 |
Triclinic, P1 | Dx = 1.744 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1638 (5) Å | Cell parameters from 6749 reflections |
b = 8.2081 (5) Å | θ = 2.9–27.5° |
c = 13.1265 (18) Å | µ = 1.32 mm−1 |
α = 84.353 (16)° | T = 293 K |
β = 85.789 (13)° | Block, blue |
γ = 80.736 (14)° | 0.34 × 0.20 × 0.15 mm |
V = 862.43 (15) Å3 |
Bruker APEX CCD diffractometer | 3920 independent reflections |
Radiation source: fine-focus sealed tube | 3485 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.662, Tmax = 0.826 | k = −10→10 |
6749 measured reflections | l = −14→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0513P)2 + 0.3344P] where P = (Fo2 + 2Fc2)/3 |
3920 reflections | (Δ/σ)max = 0.001 |
322 parameters | Δρmax = 0.37 e Å−3 |
5 restraints | Δρmin = −0.62 e Å−3 |
[Cu(C7H3NO4)(C10H8N2O2)(H2O)]·H2O | γ = 80.736 (14)° |
Mr = 452.87 | V = 862.43 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1638 (5) Å | Mo Kα radiation |
b = 8.2081 (5) Å | µ = 1.32 mm−1 |
c = 13.1265 (18) Å | T = 293 K |
α = 84.353 (16)° | 0.34 × 0.20 × 0.15 mm |
β = 85.789 (13)° |
Bruker APEX CCD diffractometer | 3920 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3485 reflections with I > 2σ(I) |
Tmin = 0.662, Tmax = 0.826 | Rint = 0.020 |
6749 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 5 restraints |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.37 e Å−3 |
3920 reflections | Δρmin = −0.62 e Å−3 |
322 parameters |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.51191 (3) | 0.77853 (3) | 0.81495 (2) | 0.02775 (11) | |
O1 | −0.5172 (2) | 0.7396 (3) | 0.42103 (17) | 0.0516 (5) | |
N1 | 0.3000 (2) | 0.8750 (2) | 0.75900 (14) | 0.0286 (4) | |
C1 | −0.3561 (3) | 0.6898 (3) | 0.40439 (19) | 0.0347 (5) | |
H1 | −0.575 (4) | 0.708 (5) | 0.381 (2) | 0.076 (12)* | |
O2 | −0.2974 (2) | 0.6052 (3) | 0.33628 (16) | 0.0533 (5) | |
N2 | 0.0788 (2) | 0.8924 (2) | 0.67065 (13) | 0.0245 (4) | |
C2 | −0.2492 (3) | 0.7482 (3) | 0.47641 (17) | 0.0283 (5) | |
O3 | 0.7305 (2) | 0.3533 (2) | 0.70285 (15) | 0.0414 (4) | |
N3 | 0.7383 (2) | 0.6954 (2) | 0.84101 (14) | 0.0244 (4) | |
C3 | −0.0783 (3) | 0.6968 (3) | 0.46374 (18) | 0.0312 (5) | |
H3 | −0.036 (4) | 0.627 (4) | 0.408 (2) | 0.046 (8)* | |
O4 | 0.5460 (2) | 0.5751 (2) | 0.73733 (14) | 0.0376 (4) | |
C4 | 0.0295 (3) | 0.7460 (3) | 0.52654 (18) | 0.0300 (5) | |
H4 | 0.135 (4) | 0.714 (3) | 0.515 (2) | 0.038 (7)* | |
O5 | 0.7779 (2) | 1.0466 (2) | 0.96052 (14) | 0.0392 (4) | |
C5 | −0.0332 (3) | 0.8478 (2) | 0.60358 (16) | 0.0237 (4) | |
O6 | 0.57541 (19) | 0.97815 (19) | 0.87486 (13) | 0.0333 (4) | |
C6 | −0.2030 (3) | 0.9038 (3) | 0.61558 (17) | 0.0290 (4) | |
H6 | −0.247 (3) | 0.981 (3) | 0.673 (2) | 0.039 (7)* | |
C7 | −0.3103 (3) | 0.8539 (3) | 0.55223 (18) | 0.0305 (5) | |
H7 | −0.418 (4) | 0.888 (3) | 0.562 (2) | 0.036 (7)* | |
C8 | 0.2294 (3) | 0.8052 (3) | 0.69116 (17) | 0.0282 (4) | |
H8 | 0.265 (3) | 0.706 (3) | 0.6699 (18) | 0.026 (6)* | |
C9 | 0.1899 (3) | 1.0144 (3) | 0.78355 (18) | 0.0290 (5) | |
H9 | 0.213 (3) | 1.084 (3) | 0.830 (2) | 0.030 (6)* | |
C10 | 0.0526 (3) | 1.0255 (3) | 0.72996 (17) | 0.0280 (4) | |
H10 | −0.043 (3) | 1.102 (3) | 0.726 (2) | 0.033 (7)* | |
C11 | 0.6874 (3) | 0.4845 (3) | 0.74368 (17) | 0.0291 (5) | |
C12 | 0.8070 (3) | 0.5506 (3) | 0.80631 (17) | 0.0255 (4) | |
C13 | 0.9705 (3) | 0.4866 (3) | 0.82600 (19) | 0.0309 (5) | |
H13 | 1.023 (4) | 0.383 (4) | 0.803 (2) | 0.052 (8)* | |
C14 | 1.0569 (3) | 0.5759 (3) | 0.88262 (19) | 0.0324 (5) | |
H14 | 1.165 (4) | 0.537 (4) | 0.895 (2) | 0.049 (8)* | |
C15 | 0.9826 (3) | 0.7273 (3) | 0.91638 (18) | 0.0287 (4) | |
H15 | 1.038 (3) | 0.791 (3) | 0.955 (2) | 0.037 (7)* | |
C16 | 0.8205 (3) | 0.7846 (3) | 0.89290 (16) | 0.0240 (4) | |
C17 | 0.7182 (3) | 0.9512 (3) | 0.91352 (17) | 0.0269 (4) | |
O1W | 0.4032 (2) | 0.6744 (2) | 0.96552 (14) | 0.0357 (4) | |
O2W | 0.3880 (2) | 1.2940 (2) | 0.87970 (16) | 0.0427 (4) | |
H1W1 | 0.474 (4) | 0.658 (5) | 1.008 (2) | 0.074 (12)* | |
H2W1 | 0.349 (4) | 0.756 (3) | 0.990 (2) | 0.055 (9)* | |
H1W2 | 0.445 (4) | 1.203 (3) | 0.869 (2) | 0.054 (9)* | |
H2W2 | 0.396 (4) | 1.341 (4) | 0.8208 (17) | 0.061 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02014 (15) | 0.02746 (16) | 0.03696 (18) | 0.00146 (10) | −0.01098 (11) | −0.01095 (11) |
O1 | 0.0321 (10) | 0.0655 (13) | 0.0633 (13) | 0.0001 (9) | −0.0194 (9) | −0.0361 (11) |
N1 | 0.0232 (9) | 0.0299 (9) | 0.0334 (10) | 0.0004 (7) | −0.0105 (7) | −0.0080 (7) |
C1 | 0.0339 (12) | 0.0319 (12) | 0.0404 (13) | −0.0037 (9) | −0.0120 (10) | −0.0084 (10) |
O2 | 0.0403 (10) | 0.0672 (13) | 0.0592 (13) | −0.0047 (9) | −0.0134 (9) | −0.0379 (11) |
N2 | 0.0224 (8) | 0.0254 (9) | 0.0266 (9) | −0.0013 (7) | −0.0083 (7) | −0.0049 (7) |
C2 | 0.0292 (11) | 0.0288 (11) | 0.0283 (11) | −0.0037 (9) | −0.0113 (9) | −0.0029 (8) |
O3 | 0.0322 (9) | 0.0394 (9) | 0.0561 (11) | 0.0020 (7) | −0.0108 (8) | −0.0277 (8) |
N3 | 0.0204 (8) | 0.0244 (8) | 0.0293 (9) | −0.0010 (7) | −0.0051 (7) | −0.0077 (7) |
C3 | 0.0335 (12) | 0.0317 (11) | 0.0290 (11) | −0.0005 (9) | −0.0074 (9) | −0.0092 (9) |
O4 | 0.0268 (8) | 0.0371 (9) | 0.0522 (10) | 0.0015 (7) | −0.0155 (7) | −0.0211 (8) |
C4 | 0.0224 (10) | 0.0351 (12) | 0.0325 (11) | 0.0003 (9) | −0.0063 (9) | −0.0073 (9) |
O5 | 0.0319 (9) | 0.0365 (9) | 0.0534 (11) | −0.0019 (7) | −0.0107 (8) | −0.0240 (8) |
C5 | 0.0238 (10) | 0.0247 (10) | 0.0232 (10) | −0.0031 (8) | −0.0087 (8) | −0.0012 (8) |
O6 | 0.0265 (8) | 0.0262 (8) | 0.0488 (10) | 0.0031 (6) | −0.0151 (7) | −0.0131 (7) |
C6 | 0.0258 (10) | 0.0341 (11) | 0.0273 (11) | 0.0003 (9) | −0.0065 (8) | −0.0074 (9) |
C7 | 0.0214 (10) | 0.0391 (12) | 0.0318 (11) | −0.0018 (9) | −0.0070 (9) | −0.0074 (9) |
C8 | 0.0238 (10) | 0.0287 (11) | 0.0326 (11) | 0.0021 (8) | −0.0104 (8) | −0.0084 (9) |
C9 | 0.0278 (11) | 0.0257 (10) | 0.0340 (12) | 0.0001 (8) | −0.0097 (9) | −0.0073 (9) |
C10 | 0.0264 (11) | 0.0259 (10) | 0.0321 (11) | 0.0006 (9) | −0.0083 (9) | −0.0075 (8) |
C11 | 0.0248 (10) | 0.0319 (11) | 0.0327 (11) | −0.0037 (9) | −0.0055 (9) | −0.0120 (9) |
C12 | 0.0224 (10) | 0.0255 (10) | 0.0294 (11) | −0.0021 (8) | −0.0038 (8) | −0.0077 (8) |
C13 | 0.0244 (11) | 0.0280 (11) | 0.0397 (13) | 0.0038 (9) | −0.0053 (9) | −0.0097 (9) |
C14 | 0.0202 (10) | 0.0355 (12) | 0.0413 (13) | 0.0017 (9) | −0.0085 (9) | −0.0071 (10) |
C15 | 0.0250 (10) | 0.0328 (11) | 0.0303 (11) | −0.0055 (9) | −0.0074 (9) | −0.0068 (9) |
C16 | 0.0216 (9) | 0.0242 (10) | 0.0272 (10) | −0.0030 (8) | −0.0050 (8) | −0.0060 (8) |
C17 | 0.0229 (10) | 0.0274 (10) | 0.0314 (11) | −0.0019 (8) | −0.0043 (8) | −0.0085 (8) |
O1W | 0.0334 (9) | 0.0336 (9) | 0.0407 (10) | 0.0007 (7) | −0.0077 (8) | −0.0119 (7) |
O2W | 0.0458 (11) | 0.0343 (10) | 0.0467 (11) | 0.0060 (8) | −0.0110 (9) | −0.0103 (8) |
Cu1—N1 | 1.9467 (18) | O5—C17 | 1.222 (3) |
Cu1—N3 | 1.9076 (17) | C5—C6 | 1.391 (3) |
Cu1—O4 | 2.0118 (16) | O6—C17 | 1.283 (3) |
Cu1—O6 | 2.0393 (16) | C6—C7 | 1.385 (3) |
Cu1—O1W | 2.2537 (19) | C6—H6 | 1.04 (3) |
O1—C1 | 1.322 (3) | C7—H7 | 0.88 (3) |
O1—H1 | 0.81 (1) | C8—H8 | 0.89 (3) |
N1—C8 | 1.318 (3) | C9—C10 | 1.353 (3) |
N1—C9 | 1.386 (3) | C9—H9 | 0.92 (3) |
C1—O2 | 1.210 (3) | C10—H10 | 0.92 (3) |
C1—C2 | 1.493 (3) | C11—C12 | 1.517 (3) |
N2—C8 | 1.350 (3) | C12—C13 | 1.386 (3) |
N2—C10 | 1.383 (3) | C13—C14 | 1.392 (3) |
N2—C5 | 1.426 (3) | C13—H13 | 0.95 (3) |
C2—C3 | 1.393 (3) | C14—C15 | 1.391 (3) |
C2—C7 | 1.396 (3) | C14—H14 | 0.91 (3) |
O3—C11 | 1.239 (3) | C15—C16 | 1.378 (3) |
N3—C16 | 1.332 (3) | C15—H15 | 0.95 (3) |
N3—C12 | 1.337 (3) | C16—C17 | 1.521 (3) |
C3—C4 | 1.379 (3) | O1W—H1W1 | 0.82 (2) |
C3—H3 | 0.98 (3) | O1W—H2W1 | 0.82 (2) |
O4—C11 | 1.272 (3) | O2W—H1W2 | 0.83 (2) |
C4—C5 | 1.391 (3) | O2W—H2W2 | 0.83 (2) |
C4—H4 | 0.87 (3) | ||
N3—Cu1—N1 | 167.81 (8) | C5—C6—H6 | 119.4 (16) |
N3—Cu1—O4 | 80.11 (7) | C6—C7—C2 | 120.5 (2) |
N1—Cu1—O4 | 95.85 (7) | C6—C7—H7 | 118.2 (18) |
N3—Cu1—O6 | 80.22 (7) | C2—C7—H7 | 121.3 (18) |
N1—Cu1—O6 | 100.91 (7) | N1—C8—N2 | 110.75 (19) |
O4—Cu1—O6 | 156.95 (7) | N1—C8—H8 | 125.3 (16) |
N3—Cu1—O1W | 96.05 (7) | N2—C8—H8 | 123.1 (16) |
N1—Cu1—O1W | 95.97 (8) | C10—C9—N1 | 109.0 (2) |
O4—Cu1—O1W | 99.71 (7) | C10—C9—H9 | 128.9 (16) |
O6—Cu1—O1W | 94.19 (7) | N1—C9—H9 | 122.2 (16) |
C1—O1—H1 | 114 (3) | C9—C10—N2 | 106.46 (19) |
C8—N1—C9 | 106.55 (18) | C9—C10—H10 | 132.6 (17) |
C8—N1—Cu1 | 123.09 (15) | N2—C10—H10 | 120.9 (17) |
C9—N1—Cu1 | 130.21 (15) | O3—C11—O4 | 125.2 (2) |
O2—C1—O1 | 123.7 (2) | O3—C11—C12 | 120.44 (19) |
O2—C1—C2 | 121.8 (2) | O4—C11—C12 | 114.40 (18) |
O1—C1—C2 | 114.5 (2) | N3—C12—C13 | 119.5 (2) |
C8—N2—C10 | 107.26 (18) | N3—C12—C11 | 111.02 (18) |
C8—N2—C5 | 125.26 (18) | C13—C12—C11 | 129.41 (19) |
C10—N2—C5 | 127.41 (18) | C12—C13—C14 | 118.2 (2) |
C3—C2—C7 | 119.1 (2) | C12—C13—H13 | 122 (2) |
C3—C2—C1 | 117.1 (2) | C14—C13—H13 | 119.8 (19) |
C7—C2—C1 | 123.8 (2) | C15—C14—C13 | 120.9 (2) |
C16—N3—C12 | 123.10 (18) | C15—C14—H14 | 119.7 (19) |
C16—N3—Cu1 | 118.33 (14) | C13—C14—H14 | 119.3 (19) |
C12—N3—Cu1 | 118.58 (15) | C16—C15—C14 | 117.7 (2) |
C4—C3—C2 | 120.8 (2) | C16—C15—H15 | 119.2 (17) |
C4—C3—H3 | 120.8 (18) | C14—C15—H15 | 123.0 (17) |
C2—C3—H3 | 118.4 (18) | N3—C16—C15 | 120.51 (19) |
C11—O4—Cu1 | 115.70 (14) | N3—C16—C17 | 111.96 (18) |
C3—C4—C5 | 119.6 (2) | C15—C16—C17 | 127.41 (19) |
C3—C4—H4 | 117.9 (19) | O5—C17—O6 | 126.6 (2) |
C5—C4—H4 | 122.4 (19) | O5—C17—C16 | 119.27 (19) |
C6—C5—C4 | 120.4 (2) | O6—C17—C16 | 114.11 (18) |
C6—C5—N2 | 120.54 (18) | Cu1—O1W—H1W1 | 110 (3) |
C4—C5—N2 | 119.10 (19) | Cu1—O1W—H2W1 | 104 (2) |
C17—O6—Cu1 | 114.41 (13) | H1W1—O1W—H2W1 | 96 (3) |
C7—C6—C5 | 119.6 (2) | H1W2—O2W—H2W2 | 98 (3) |
C7—C6—H6 | 121.0 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.81 (1) | 1.90 (1) | 2.710 (2) | 173 (4) |
O1W—H1W1···O2Wii | 0.82 (2) | 2.02 (2) | 2.803 (3) | 159 (4) |
O1W—H2W1···O5ii | 0.82 (2) | 1.92 (2) | 2.740 (2) | 177 (3) |
O2W—H1W2···O6 | 0.83 (2) | 1.98 (2) | 2.794 (2) | 168 (3) |
O2W—H2W2···O2iii | 0.83 (2) | 2.25 (2) | 2.986 (3) | 148 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+2; (iii) −x, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H3NO4)(C10H8N2O2)(H2O)]·H2O |
Mr | 452.87 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.1638 (5), 8.2081 (5), 13.1265 (18) |
α, β, γ (°) | 84.353 (16), 85.789 (13), 80.736 (14) |
V (Å3) | 862.43 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.32 |
Crystal size (mm) | 0.34 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Bruker APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.662, 0.826 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6749, 3920, 3485 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.096, 1.06 |
No. of reflections | 3920 |
No. of parameters | 322 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.62 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.81 (1) | 1.90 (1) | 2.710 (2) | 173 (4) |
O1W—H1W1···O2Wii | 0.82 (2) | 2.02 (2) | 2.803 (3) | 159 (4) |
O1W—H2W1···O5ii | 0.82 (2) | 1.92 (2) | 2.740 (2) | 177 (3) |
O2W—H1W2···O6 | 0.83 (2) | 1.98 (2) | 2.794 (2) | 168 (3) |
O2W—H2W2···O2iii | 0.83 (2) | 2.25 (2) | 2.986 (3) | 148 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+2; (iii) −x, −y+2, −z+1. |
Acknowledgements
The authors thank the Foundation of Shandong Province for financial support.
References
Bentiss, F., Roussel, P., Drache, M., Conflant, P., Lagrenee, M. & Wignacourt, J. P. (2004). J. Mol. Struct. 707, 63–68. Web of Science CSD CrossRef CAS Google Scholar
Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Li, Z.-G., Wang, G.-H., Jia, H.-Q., Hu, N.-H., Xu, J.-W. & Batten, S. R. (2008). CrystEngComm, 10, 983–985. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, G., Zhu, G., Yang, X., Fang, Q., Sun, J., Wei, Y. & Qiu, S. (2005). Chem. Commun. pp. 1405–1407. Google Scholar
Wang, N., Yue, S., Liu, Y., Yang, H. & Wu, H. (2009). Cryst. Growth Des. 9, 368–371. Web of Science CSD CrossRef CAS Google Scholar
Yang, A.-H., Zhang, H., Gao, H.-L., Zhan, W.-Q. & Cui, J.-Z. (2008). Cryst. Growth Des. 8, 3354–3359. CrossRef CAS Google Scholar
Zeng, M.-H., Wang, B., Wang, X.-Y., Zhang, W.-X., Chen, X.-M. & Gao, S. (2006). Inorg. Chem. 45, 7069–7076. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The rational design and synthesis of metal–organic supramolecular architectures are of great interest and importance owing to their intriguing structural topologies and potential applications as functional materials (Bradshaw et al., 2005). A successful strategy in building the architectures is the deliberate selection of functional organic ligands and transition metal ions with specific coordination geometry. In the context, the carboxylate ligands are widely employed because they exhibit diverse coordination modes (Tian et al., 2005; Wang et al., 2009). The different coordination modes of carboxylate groups can induce different coordination geometries of transition metal ions and enhance the robustness of the resulting architectures. Moreover, the negative charge of carboxylate groups compensates the positive charge from metal ions and can mitigate the counterion effect in self-assembly processes. With the development of supramolecular chemistry and crystal engineering, the scope of the investigations on carboxylate ligands has been widen by the use of N-containing heterocyclic carboxylate ligands, such as pyrazole- (Bentiss et al., 2004), imidazole- (Zeng et al., 2006) and pyridine-carboxylates (Wang et al., 2009; Yang et al., 2008). The introduction of N atoms can satisfy the coordination requirements of metal ions and they also link metal–carboxylate frameworks into various fascinating extended networks. On the other hand, N atoms are highly accessible to transition metal ions, their stronger coordination ability than carboxylate groups may result in the formation of hydrogen bonding interactions by uncoordinated carboxylate O atoms, which further make the whole framework more stable. Among N–containing carboxylate ligands, we are interested in pyridine-2,6-dicarboxylic acid (2,6-H2pydc) since its N atom and two carboxylate groups may chelate one metal ion, forming two stable five-membered rings (Li et al., 2008). The introduction of the other N-containing carboxylate ligands may lead to interesting structural frameworks. Herein, we report a Cu(II) supramolecular complex from 2,6-H2pydc and 4-(imidazol-1-yl)benzoic acid (HIBA).
As shown in Fig. 1, the CuII ion has a slightly distorted square-pyramidal coordination geometry. Two carboxylate O atoms and one pyridine N atom from a 2,6-pydc ligand and one imidazolyl N atom from HIBA are in the basal plane, with a mean deviation of 0.0222 (2) Å from the plane. Cu1 atom is slightly out of the plane about 0.2221 (3) Å. One water molecule (O1W) occupies the apical position. As expected, two O atoms (O4, O6) from different carboxylate groups and an N atom (N3) chelate Cu1, forming two stable five-membered rings. This results in Cu1—N3 bond distance of 1.9075 (17) Å being much shorter than Cu1—N1 bond distance of 1.9467 (18) Å. Two carboxylate groups (O3, O4, C11 and O5, O6, C17) are almost coplanar with the pyridine ring, with dihedral angles between them of 3.5 (1) and 7.3 (2)°, respectively. HIBA serves as a monodentate ligand through imidazolyl N atom coordinating to Cu1 atom. The twisting angle between the imidazolyl ring and benzene ring is 23.02 (8)°, while the dihedral angle between the benzene ring and the carboxylate group in HIBA is 2.7 (2)°.
Interestingly, carboxylic proton forms a strong hydrogen bond with one uncoordinated carboxylate O atom of the 2,6-pydc ligand (Table 1), which results in a dinuclear supramolecular macrocycle (Fig. 2). The Cu···Cu separation in the cycle is 13.749 (2) Å. O—H···O hydrogen bonds between the other carboxylate group of the 2,6-pydc ligand and the coordinated water molecule link the macrocyles into a one-dimensional supramolecular chain (Fig. 3). The nearest Cu···Cu separation in the chain is 6.322 (1) Å. O—H···O hydrogen bonds involving the uncoordinated water molecules link the chains into a layer.