metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­[1-(4-carb­­oxy­phen­yl)-1H-imidazole-κN3](pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)copper(II) monohydrate

aSchool of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 330031, People's Republic of China
*Correspondence e-mail: yuzhangyucn@yahoo.com.cn

(Received 9 April 2011; accepted 25 April 2011; online 20 May 2011)

In the title complex, [Cu(C7H3NO4)(C10H8N2O2)(H2O)]·H2O, the CuII ion is in a slightly distorted square-pyramidal geometry. Two carboxyl­ate O atoms and one pyridine N atom from a pyridine-2,6-dicarboxyl­ate ligand chelate the CuII ion, forming two stable five-membered metalla rings. One imidazole N atom from a 1-(4-carb­oxy­phen­yl)imidazole ligand and one water mol­ecule complete the five-coordination. O—H⋯O hydrogen bonds involving the coordinated water mol­ecules and carboxyl­ate groups link the complex mol­ecules into chain-containing dinuclear macrocycles. O—H⋯O hydrogen bonds involving the uncoordinated water mol­ecules link the chains into a layer extending parallel to (10[\overline1]).

Related literature

For the design and synthesis of compounds with metal–organic supra­molecular architectures, see: Bradshaw et al. (2005[Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273-282.]); Tian et al. (2005[Tian, G., Zhu, G., Yang, X., Fang, Q., Sun, J., Wei, Y. & Qiu, S. (2005). Chem. Commun. pp. 1405-1407.]); Wang et al. (2009[Wang, N., Yue, S., Liu, Y., Yang, H. & Wu, H. (2009). Cryst. Growth Des. 9, 368-371.]). For the use of N-containing heterocyclic carboxyl­ate ligands in metal–organic supra­molecular architectures, see: Bentiss et al. (2004[Bentiss, F., Roussel, P., Drache, M., Conflant, P., Lagrenee, M. & Wignacourt, J. P. (2004). J. Mol. Struct. 707, 63-68.]); Yang et al. (2008[Yang, A.-H., Zhang, H., Gao, H.-L., Zhan, W.-Q. & Cui, J.-Z. (2008). Cryst. Growth Des. 8, 3354-3359.]); Zeng et al. (2006[Zeng, M.-H., Wang, B., Wang, X.-Y., Zhang, W.-X., Chen, X.-M. & Gao, S. (2006). Inorg. Chem. 45, 7069-7076.]). For related structures, see: Li et al. (2008[Li, Z.-G., Wang, G.-H., Jia, H.-Q., Hu, N.-H., Xu, J.-W. & Batten, S. R. (2008). CrystEngComm, 10, 983-985.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3NO4)(C10H8N2O2)(H2O)]·H2O

  • Mr = 452.87

  • Triclinic, [P \overline 1]

  • a = 8.1638 (5) Å

  • b = 8.2081 (5) Å

  • c = 13.1265 (18) Å

  • α = 84.353 (16)°

  • β = 85.789 (13)°

  • γ = 80.736 (14)°

  • V = 862.43 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 293 K

  • 0.34 × 0.20 × 0.15 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.662, Tmax = 0.826

  • 6749 measured reflections

  • 3920 independent reflections

  • 3485 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.06

  • 3920 reflections

  • 322 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.81 (1) 1.90 (1) 2.710 (2) 173 (4)
O1W—H1W1⋯O2Wii 0.82 (2) 2.02 (2) 2.803 (3) 159 (4)
O1W—H2W1⋯O5ii 0.82 (2) 1.92 (2) 2.740 (2) 177 (3)
O2W—H1W2⋯O6 0.83 (2) 1.98 (2) 2.794 (2) 168 (3)
O2W—H2W2⋯O2iii 0.83 (2) 2.25 (2) 2.986 (3) 148 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+2; (iii) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and synthesis of metal–organic supramolecular architectures are of great interest and importance owing to their intriguing structural topologies and potential applications as functional materials (Bradshaw et al., 2005). A successful strategy in building the architectures is the deliberate selection of functional organic ligands and transition metal ions with specific coordination geometry. In the context, the carboxylate ligands are widely employed because they exhibit diverse coordination modes (Tian et al., 2005; Wang et al., 2009). The different coordination modes of carboxylate groups can induce different coordination geometries of transition metal ions and enhance the robustness of the resulting architectures. Moreover, the negative charge of carboxylate groups compensates the positive charge from metal ions and can mitigate the counterion effect in self-assembly processes. With the development of supramolecular chemistry and crystal engineering, the scope of the investigations on carboxylate ligands has been widen by the use of N-containing heterocyclic carboxylate ligands, such as pyrazole- (Bentiss et al., 2004), imidazole- (Zeng et al., 2006) and pyridine-carboxylates (Wang et al., 2009; Yang et al., 2008). The introduction of N atoms can satisfy the coordination requirements of metal ions and they also link metal–carboxylate frameworks into various fascinating extended networks. On the other hand, N atoms are highly accessible to transition metal ions, their stronger coordination ability than carboxylate groups may result in the formation of hydrogen bonding interactions by uncoordinated carboxylate O atoms, which further make the whole framework more stable. Among N–containing carboxylate ligands, we are interested in pyridine-2,6-dicarboxylic acid (2,6-H2pydc) since its N atom and two carboxylate groups may chelate one metal ion, forming two stable five-membered rings (Li et al., 2008). The introduction of the other N-containing carboxylate ligands may lead to interesting structural frameworks. Herein, we report a Cu(II) supramolecular complex from 2,6-H2pydc and 4-(imidazol-1-yl)benzoic acid (HIBA).

As shown in Fig. 1, the CuII ion has a slightly distorted square-pyramidal coordination geometry. Two carboxylate O atoms and one pyridine N atom from a 2,6-pydc ligand and one imidazolyl N atom from HIBA are in the basal plane, with a mean deviation of 0.0222 (2) Å from the plane. Cu1 atom is slightly out of the plane about 0.2221 (3) Å. One water molecule (O1W) occupies the apical position. As expected, two O atoms (O4, O6) from different carboxylate groups and an N atom (N3) chelate Cu1, forming two stable five-membered rings. This results in Cu1—N3 bond distance of 1.9075 (17) Å being much shorter than Cu1—N1 bond distance of 1.9467 (18) Å. Two carboxylate groups (O3, O4, C11 and O5, O6, C17) are almost coplanar with the pyridine ring, with dihedral angles between them of 3.5 (1) and 7.3 (2)°, respectively. HIBA serves as a monodentate ligand through imidazolyl N atom coordinating to Cu1 atom. The twisting angle between the imidazolyl ring and benzene ring is 23.02 (8)°, while the dihedral angle between the benzene ring and the carboxylate group in HIBA is 2.7 (2)°.

Interestingly, carboxylic proton forms a strong hydrogen bond with one uncoordinated carboxylate O atom of the 2,6-pydc ligand (Table 1), which results in a dinuclear supramolecular macrocycle (Fig. 2). The Cu···Cu separation in the cycle is 13.749 (2) Å. O—H···O hydrogen bonds between the other carboxylate group of the 2,6-pydc ligand and the coordinated water molecule link the macrocyles into a one-dimensional supramolecular chain (Fig. 3). The nearest Cu···Cu separation in the chain is 6.322 (1) Å. O—H···O hydrogen bonds involving the uncoordinated water molecules link the chains into a layer.

Related literature top

For the design and synthesis of metal–organic supramolecular architectures, see: Bradshaw et al. (2005); Tian et al. (2005); Wang et al. (2009). For the use of N-containing heterocyclic carboxylate ligands in metal–organic supramolecular architectures, see: Bentiss et al. (2004); Yang et al. (2008); Zeng et al. (2006). For related structures, see: Li et al. (2008).

Experimental top

A mixture of pyridine-2,6-dicarboxylic acid (0.034 g, 0.2 mmol), HIBA (0.038 g, 0.2 mmol), copper nitrate hydrate (0.036 g, 0.2 mmol) and one drop of KOH aqueous solution (10%) in 15 ml distilled water was heated in a 30 ml Teflon-lined steel bomb at 433 K for 3 d. Blue crystals formed were collected, washed with ethanol and dried in air.

Refinement top

All H atoms were located from difference Fourier maps and refined isotropically, with a distance restraint of O—H = 0.82 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the dinuclear CuII supramolecular macrocycle. Dashed lines denote hydrogen bonds. [Symmetry code: (i) -x, -y+1, -z+1.]
[Figure 3] Fig. 3. View of the one-dimensional supramolecular chain. Dashed lines denote hydrogen bonds.
Aqua[1-(4-carboxyphenyl)-1H-imidazole-κN3](pyridine- 2,6-dicarboxylato-κ3O2,N,O6)copper(II) monohydrate top
Crystal data top
[Cu(C7H3NO4)(C10H8N2O2)(H2O)]·H2OZ = 2
Mr = 452.87F(000) = 462
Triclinic, P1Dx = 1.744 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1638 (5) ÅCell parameters from 6749 reflections
b = 8.2081 (5) Åθ = 2.9–27.5°
c = 13.1265 (18) ŵ = 1.32 mm1
α = 84.353 (16)°T = 293 K
β = 85.789 (13)°Block, blue
γ = 80.736 (14)°0.34 × 0.20 × 0.15 mm
V = 862.43 (15) Å3
Data collection top
Bruker APEX CCD
diffractometer
3920 independent reflections
Radiation source: fine-focus sealed tube3485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.662, Tmax = 0.826k = 1010
6749 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.3344P]
where P = (Fo2 + 2Fc2)/3
3920 reflections(Δ/σ)max = 0.001
322 parametersΔρmax = 0.37 e Å3
5 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cu(C7H3NO4)(C10H8N2O2)(H2O)]·H2Oγ = 80.736 (14)°
Mr = 452.87V = 862.43 (15) Å3
Triclinic, P1Z = 2
a = 8.1638 (5) ÅMo Kα radiation
b = 8.2081 (5) ŵ = 1.32 mm1
c = 13.1265 (18) ÅT = 293 K
α = 84.353 (16)°0.34 × 0.20 × 0.15 mm
β = 85.789 (13)°
Data collection top
Bruker APEX CCD
diffractometer
3920 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3485 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.826Rint = 0.020
6749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0365 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
3920 reflectionsΔρmin = 0.62 e Å3
322 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.51191 (3)0.77853 (3)0.81495 (2)0.02775 (11)
O10.5172 (2)0.7396 (3)0.42103 (17)0.0516 (5)
N10.3000 (2)0.8750 (2)0.75900 (14)0.0286 (4)
C10.3561 (3)0.6898 (3)0.40439 (19)0.0347 (5)
H10.575 (4)0.708 (5)0.381 (2)0.076 (12)*
O20.2974 (2)0.6052 (3)0.33628 (16)0.0533 (5)
N20.0788 (2)0.8924 (2)0.67065 (13)0.0245 (4)
C20.2492 (3)0.7482 (3)0.47641 (17)0.0283 (5)
O30.7305 (2)0.3533 (2)0.70285 (15)0.0414 (4)
N30.7383 (2)0.6954 (2)0.84101 (14)0.0244 (4)
C30.0783 (3)0.6968 (3)0.46374 (18)0.0312 (5)
H30.036 (4)0.627 (4)0.408 (2)0.046 (8)*
O40.5460 (2)0.5751 (2)0.73733 (14)0.0376 (4)
C40.0295 (3)0.7460 (3)0.52654 (18)0.0300 (5)
H40.135 (4)0.714 (3)0.515 (2)0.038 (7)*
O50.7779 (2)1.0466 (2)0.96052 (14)0.0392 (4)
C50.0332 (3)0.8478 (2)0.60358 (16)0.0237 (4)
O60.57541 (19)0.97815 (19)0.87486 (13)0.0333 (4)
C60.2030 (3)0.9038 (3)0.61558 (17)0.0290 (4)
H60.247 (3)0.981 (3)0.673 (2)0.039 (7)*
C70.3103 (3)0.8539 (3)0.55223 (18)0.0305 (5)
H70.418 (4)0.888 (3)0.562 (2)0.036 (7)*
C80.2294 (3)0.8052 (3)0.69116 (17)0.0282 (4)
H80.265 (3)0.706 (3)0.6699 (18)0.026 (6)*
C90.1899 (3)1.0144 (3)0.78355 (18)0.0290 (5)
H90.213 (3)1.084 (3)0.830 (2)0.030 (6)*
C100.0526 (3)1.0255 (3)0.72996 (17)0.0280 (4)
H100.043 (3)1.102 (3)0.726 (2)0.033 (7)*
C110.6874 (3)0.4845 (3)0.74368 (17)0.0291 (5)
C120.8070 (3)0.5506 (3)0.80631 (17)0.0255 (4)
C130.9705 (3)0.4866 (3)0.82600 (19)0.0309 (5)
H131.023 (4)0.383 (4)0.803 (2)0.052 (8)*
C141.0569 (3)0.5759 (3)0.88262 (19)0.0324 (5)
H141.165 (4)0.537 (4)0.895 (2)0.049 (8)*
C150.9826 (3)0.7273 (3)0.91638 (18)0.0287 (4)
H151.038 (3)0.791 (3)0.955 (2)0.037 (7)*
C160.8205 (3)0.7846 (3)0.89290 (16)0.0240 (4)
C170.7182 (3)0.9512 (3)0.91352 (17)0.0269 (4)
O1W0.4032 (2)0.6744 (2)0.96552 (14)0.0357 (4)
O2W0.3880 (2)1.2940 (2)0.87970 (16)0.0427 (4)
H1W10.474 (4)0.658 (5)1.008 (2)0.074 (12)*
H2W10.349 (4)0.756 (3)0.990 (2)0.055 (9)*
H1W20.445 (4)1.203 (3)0.869 (2)0.054 (9)*
H2W20.396 (4)1.341 (4)0.8208 (17)0.061 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02014 (15)0.02746 (16)0.03696 (18)0.00146 (10)0.01098 (11)0.01095 (11)
O10.0321 (10)0.0655 (13)0.0633 (13)0.0001 (9)0.0194 (9)0.0361 (11)
N10.0232 (9)0.0299 (9)0.0334 (10)0.0004 (7)0.0105 (7)0.0080 (7)
C10.0339 (12)0.0319 (12)0.0404 (13)0.0037 (9)0.0120 (10)0.0084 (10)
O20.0403 (10)0.0672 (13)0.0592 (13)0.0047 (9)0.0134 (9)0.0379 (11)
N20.0224 (8)0.0254 (9)0.0266 (9)0.0013 (7)0.0083 (7)0.0049 (7)
C20.0292 (11)0.0288 (11)0.0283 (11)0.0037 (9)0.0113 (9)0.0029 (8)
O30.0322 (9)0.0394 (9)0.0561 (11)0.0020 (7)0.0108 (8)0.0277 (8)
N30.0204 (8)0.0244 (8)0.0293 (9)0.0010 (7)0.0051 (7)0.0077 (7)
C30.0335 (12)0.0317 (11)0.0290 (11)0.0005 (9)0.0074 (9)0.0092 (9)
O40.0268 (8)0.0371 (9)0.0522 (10)0.0015 (7)0.0155 (7)0.0211 (8)
C40.0224 (10)0.0351 (12)0.0325 (11)0.0003 (9)0.0063 (9)0.0073 (9)
O50.0319 (9)0.0365 (9)0.0534 (11)0.0019 (7)0.0107 (8)0.0240 (8)
C50.0238 (10)0.0247 (10)0.0232 (10)0.0031 (8)0.0087 (8)0.0012 (8)
O60.0265 (8)0.0262 (8)0.0488 (10)0.0031 (6)0.0151 (7)0.0131 (7)
C60.0258 (10)0.0341 (11)0.0273 (11)0.0003 (9)0.0065 (8)0.0074 (9)
C70.0214 (10)0.0391 (12)0.0318 (11)0.0018 (9)0.0070 (9)0.0074 (9)
C80.0238 (10)0.0287 (11)0.0326 (11)0.0021 (8)0.0104 (8)0.0084 (9)
C90.0278 (11)0.0257 (10)0.0340 (12)0.0001 (8)0.0097 (9)0.0073 (9)
C100.0264 (11)0.0259 (10)0.0321 (11)0.0006 (9)0.0083 (9)0.0075 (8)
C110.0248 (10)0.0319 (11)0.0327 (11)0.0037 (9)0.0055 (9)0.0120 (9)
C120.0224 (10)0.0255 (10)0.0294 (11)0.0021 (8)0.0038 (8)0.0077 (8)
C130.0244 (11)0.0280 (11)0.0397 (13)0.0038 (9)0.0053 (9)0.0097 (9)
C140.0202 (10)0.0355 (12)0.0413 (13)0.0017 (9)0.0085 (9)0.0071 (10)
C150.0250 (10)0.0328 (11)0.0303 (11)0.0055 (9)0.0074 (9)0.0068 (9)
C160.0216 (9)0.0242 (10)0.0272 (10)0.0030 (8)0.0050 (8)0.0060 (8)
C170.0229 (10)0.0274 (10)0.0314 (11)0.0019 (8)0.0043 (8)0.0085 (8)
O1W0.0334 (9)0.0336 (9)0.0407 (10)0.0007 (7)0.0077 (8)0.0119 (7)
O2W0.0458 (11)0.0343 (10)0.0467 (11)0.0060 (8)0.0110 (9)0.0103 (8)
Geometric parameters (Å, º) top
Cu1—N11.9467 (18)O5—C171.222 (3)
Cu1—N31.9076 (17)C5—C61.391 (3)
Cu1—O42.0118 (16)O6—C171.283 (3)
Cu1—O62.0393 (16)C6—C71.385 (3)
Cu1—O1W2.2537 (19)C6—H61.04 (3)
O1—C11.322 (3)C7—H70.88 (3)
O1—H10.81 (1)C8—H80.89 (3)
N1—C81.318 (3)C9—C101.353 (3)
N1—C91.386 (3)C9—H90.92 (3)
C1—O21.210 (3)C10—H100.92 (3)
C1—C21.493 (3)C11—C121.517 (3)
N2—C81.350 (3)C12—C131.386 (3)
N2—C101.383 (3)C13—C141.392 (3)
N2—C51.426 (3)C13—H130.95 (3)
C2—C31.393 (3)C14—C151.391 (3)
C2—C71.396 (3)C14—H140.91 (3)
O3—C111.239 (3)C15—C161.378 (3)
N3—C161.332 (3)C15—H150.95 (3)
N3—C121.337 (3)C16—C171.521 (3)
C3—C41.379 (3)O1W—H1W10.82 (2)
C3—H30.98 (3)O1W—H2W10.82 (2)
O4—C111.272 (3)O2W—H1W20.83 (2)
C4—C51.391 (3)O2W—H2W20.83 (2)
C4—H40.87 (3)
N3—Cu1—N1167.81 (8)C5—C6—H6119.4 (16)
N3—Cu1—O480.11 (7)C6—C7—C2120.5 (2)
N1—Cu1—O495.85 (7)C6—C7—H7118.2 (18)
N3—Cu1—O680.22 (7)C2—C7—H7121.3 (18)
N1—Cu1—O6100.91 (7)N1—C8—N2110.75 (19)
O4—Cu1—O6156.95 (7)N1—C8—H8125.3 (16)
N3—Cu1—O1W96.05 (7)N2—C8—H8123.1 (16)
N1—Cu1—O1W95.97 (8)C10—C9—N1109.0 (2)
O4—Cu1—O1W99.71 (7)C10—C9—H9128.9 (16)
O6—Cu1—O1W94.19 (7)N1—C9—H9122.2 (16)
C1—O1—H1114 (3)C9—C10—N2106.46 (19)
C8—N1—C9106.55 (18)C9—C10—H10132.6 (17)
C8—N1—Cu1123.09 (15)N2—C10—H10120.9 (17)
C9—N1—Cu1130.21 (15)O3—C11—O4125.2 (2)
O2—C1—O1123.7 (2)O3—C11—C12120.44 (19)
O2—C1—C2121.8 (2)O4—C11—C12114.40 (18)
O1—C1—C2114.5 (2)N3—C12—C13119.5 (2)
C8—N2—C10107.26 (18)N3—C12—C11111.02 (18)
C8—N2—C5125.26 (18)C13—C12—C11129.41 (19)
C10—N2—C5127.41 (18)C12—C13—C14118.2 (2)
C3—C2—C7119.1 (2)C12—C13—H13122 (2)
C3—C2—C1117.1 (2)C14—C13—H13119.8 (19)
C7—C2—C1123.8 (2)C15—C14—C13120.9 (2)
C16—N3—C12123.10 (18)C15—C14—H14119.7 (19)
C16—N3—Cu1118.33 (14)C13—C14—H14119.3 (19)
C12—N3—Cu1118.58 (15)C16—C15—C14117.7 (2)
C4—C3—C2120.8 (2)C16—C15—H15119.2 (17)
C4—C3—H3120.8 (18)C14—C15—H15123.0 (17)
C2—C3—H3118.4 (18)N3—C16—C15120.51 (19)
C11—O4—Cu1115.70 (14)N3—C16—C17111.96 (18)
C3—C4—C5119.6 (2)C15—C16—C17127.41 (19)
C3—C4—H4117.9 (19)O5—C17—O6126.6 (2)
C5—C4—H4122.4 (19)O5—C17—C16119.27 (19)
C6—C5—C4120.4 (2)O6—C17—C16114.11 (18)
C6—C5—N2120.54 (18)Cu1—O1W—H1W1110 (3)
C4—C5—N2119.10 (19)Cu1—O1W—H2W1104 (2)
C17—O6—Cu1114.41 (13)H1W1—O1W—H2W196 (3)
C7—C6—C5119.6 (2)H1W2—O2W—H2W298 (3)
C7—C6—H6121.0 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.81 (1)1.90 (1)2.710 (2)173 (4)
O1W—H1W1···O2Wii0.82 (2)2.02 (2)2.803 (3)159 (4)
O1W—H2W1···O5ii0.82 (2)1.92 (2)2.740 (2)177 (3)
O2W—H1W2···O60.83 (2)1.98 (2)2.794 (2)168 (3)
O2W—H2W2···O2iii0.83 (2)2.25 (2)2.986 (3)148 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO4)(C10H8N2O2)(H2O)]·H2O
Mr452.87
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1638 (5), 8.2081 (5), 13.1265 (18)
α, β, γ (°)84.353 (16), 85.789 (13), 80.736 (14)
V3)862.43 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.34 × 0.20 × 0.15
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.662, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
6749, 3920, 3485
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.06
No. of reflections3920
No. of parameters322
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.62

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.81 (1)1.90 (1)2.710 (2)173 (4)
O1W—H1W1···O2Wii0.82 (2)2.02 (2)2.803 (3)159 (4)
O1W—H2W1···O5ii0.82 (2)1.92 (2)2.740 (2)177 (3)
O2W—H1W2···O60.83 (2)1.98 (2)2.794 (2)168 (3)
O2W—H2W2···O2iii0.83 (2)2.25 (2)2.986 (3)148 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x, y+2, z+1.
 

Acknowledgements

The authors thank the Foundation of Shandong Province for financial support.

References

First citationBentiss, F., Roussel, P., Drache, M., Conflant, P., Lagrenee, M. & Wignacourt, J. P. (2004). J. Mol. Struct. 707, 63–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationBradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Z.-G., Wang, G.-H., Jia, H.-Q., Hu, N.-H., Xu, J.-W. & Batten, S. R. (2008). CrystEngComm, 10, 983–985.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, G., Zhu, G., Yang, X., Fang, Q., Sun, J., Wei, Y. & Qiu, S. (2005). Chem. Commun. pp. 1405–1407.  Google Scholar
First citationWang, N., Yue, S., Liu, Y., Yang, H. & Wu, H. (2009). Cryst. Growth Des. 9, 368–371.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, A.-H., Zhang, H., Gao, H.-L., Zhan, W.-Q. & Cui, J.-Z. (2008). Cryst. Growth Des. 8, 3354–3359.  CrossRef CAS Google Scholar
First citationZeng, M.-H., Wang, B., Wang, X.-Y., Zhang, W.-X., Chen, X.-M. & Gao, S. (2006). Inorg. Chem. 45, 7069–7076.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds