metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[4-(4H-1,2,4-triazol-4-yl)benzoato-κ2O,O′]nickel(II)

aJilin Business and Technology College, Changchun 130062, People's Republic of China
*Correspondence e-mail: chemxusz@yahoo.cn

(Received 27 April 2011; accepted 3 May 2011; online 7 May 2011)

In the title compound, [Ni(C9H6N3O2)2(H2O)2], the NiII atom lies on a twofold rotation axis and is six-coordinated by two bidentate chelating 4-(1,2,4-triazol-4-yl)benzoate ligands and two water mol­ecules in a distorted octa­hedral geometry. Inter­molecular O—H⋯N hydrogen bonds link the complex mol­ecules into a two-dimensional network parallel to (010).

Related literature

For general background to the structures and applications of metal complexes, see: Mahata et al. (2009[Mahata, P., Ramya, K. V. & Natarajan, S. (2009). Inorg. Chem. 48, 4921-4951.]); Perry et al. (2004[Perry, J. J., McManus, G. J. & Zaworotko, M. J. (2004). Chem. Commun. pp. 2534-2535.]); Qin et al. (2005[Qin, C., Wang, X.-L., Wang, E.-B. & Su, Z.-M. (2005). Inorg. Chem. 44, 7122-7129.]); Shi et al. (2009[Shi, F. N., Luis, C. S., Trindade, T., Filipe, A. & Rocha, J. (2009). Cryst. Growth Des. 9, 2098-2109.]). For a related structure, see: Zhu (2010[Zhu, H. (2010). Acta Cryst. E66, m1537.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H6N3O2)2(H2O)2]

  • Mr = 471.06

  • Monoclinic, C 2/c

  • a = 13.5194 (6) Å

  • b = 9.8480 (5) Å

  • c = 14.3234 (7) Å

  • β = 112.293 (1)°

  • V = 1764.47 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 296 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.72, Tmax = 0.82

  • 4732 measured reflections

  • 1744 independent reflections

  • 1662 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.084

  • S = 1.13

  • 1744 reflections

  • 147 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.1507 (14)
Ni1—O2 2.1240 (14)
Ni1—O3 2.0453 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯N2i 0.78 (2) 2.06 (2) 2.836 (2) 172 (3)
O3—H3A⋯N3ii 0.79 (2) 1.99 (2) 2.768 (2) 169 (3)
Symmetry codes: (i) [-x, y, -z+{\script{3\over 2}}]; (ii) [x+1, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of novel coordination complexes is the current interest in the field of supramolecular chemistry and crystal engineering stemming from their potential applications as functional materials, as well as their intriguing variety of architectures and topologies (Perry et al., 2004; Qin et al., 2005). Heterocyclic carboxylates have often been used as mono-, bi- or multi-dentate ligands to bind transition metal centers, leading to the formation of moderately robust metal–organic coordination frameworks (Mahata et al., 2009; Shi et al., 2009). In this contribution, we selected 4-(1,2,4-triazol-4-yl)benzoic acid (Htyb) as an organic carboxylate ligand, generating the title compound, which is reported here.

In the title compound, the NiII atom lies on a twofold rotation axis and adopts a distorted octahedral coordination geometry, being coordinated by four carboxylate O atoms from two tyb ligands and two water molecules (Fig. 1, Table 1). The Ni—O bond lengths and the O—Ni—O bond angles are in the normal range (Zhu, 2010). Intermolecular O—H···N hydrogen bonds (Table 2) stabilize the structure and give a two-dimensional network (Fig. 2).

Related literature top

For general background to the structures and applications of metal complexes, see: Mahata et al. (2009); Perry et al. (2004); Qin et al. (2005); Shi et al. (2009). For a related structure, see: Zhu (2010).

Experimental top

The synthesis was performed under hydrothermal conditions. A mixture of Ni(CH3COO)2.4H2O (0.2 mmol, 0.05 g), 4-(1,2,4-triazol-4-yl)benzoic acid (0.4 mmol, 0.075 g), NaOH (0.4 mmol, 0.016 g) and H2O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h. After the mixture was cooled to 298 K, green crystals of the title compound were obtained.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms bonded to water O atom were located in a difference Fourier map and refined with a restraint of O—H = 0.85 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1-x, y, 3/2-z.]
[Figure 2] Fig. 2. View of the layer structure in the title compound, built by O—H···N hydrogen bonds (dashed lines).
Diaquabis[4-(4H-1,2,4-triazol-4-yl)benzoato- κ2O,O']nickel(II) top
Crystal data top
[Ni(C9H6N3O2)2(H2O)2]F(000) = 968
Mr = 471.06Dx = 1.773 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1744 reflections
a = 13.5194 (6) Åθ = 1.0–26.0°
b = 9.8480 (5) ŵ = 1.16 mm1
c = 14.3234 (7) ÅT = 296 K
β = 112.293 (1)°Block, green
V = 1764.47 (15) Å30.28 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1744 independent reflections
Radiation source: fine-focus sealed tube1662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1616
Tmin = 0.72, Tmax = 0.82k = 129
4732 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0345P)2 + 4.2534P]
where P = (Fo2 + 2Fc2)/3
1744 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Ni(C9H6N3O2)2(H2O)2]V = 1764.47 (15) Å3
Mr = 471.06Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.5194 (6) ŵ = 1.16 mm1
b = 9.8480 (5) ÅT = 296 K
c = 14.3234 (7) Å0.28 × 0.24 × 0.22 mm
β = 112.293 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1744 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1662 reflections with I > 2σ(I)
Tmin = 0.72, Tmax = 0.82Rint = 0.021
4732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0302 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.31 e Å3
1744 reflectionsΔρmin = 0.45 e Å3
147 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30391 (16)0.07262 (19)0.68990 (15)0.0139 (4)
C20.18541 (15)0.0695 (2)0.66363 (15)0.0144 (4)
C30.12703 (16)0.1900 (2)0.64420 (15)0.0164 (4)
H30.16160.27230.64650.020*
C40.01757 (15)0.1882 (2)0.62145 (15)0.0164 (4)
H40.02170.26840.60740.020*
C50.03212 (15)0.0645 (2)0.62014 (15)0.0132 (4)
C60.02504 (16)0.0562 (2)0.64143 (16)0.0167 (4)
H60.00920.13810.64160.020*
C70.13424 (16)0.0531 (2)0.66248 (16)0.0163 (4)
H70.17320.13360.67590.020*
C80.21097 (15)0.1595 (2)0.60494 (15)0.0157 (4)
H80.18900.24660.62900.019*
C90.21064 (16)0.0489 (2)0.55868 (16)0.0178 (4)
H90.18830.13320.54500.021*
N10.14499 (13)0.05953 (17)0.59661 (12)0.0136 (4)
N20.30914 (13)0.11583 (19)0.57442 (13)0.0176 (4)
N30.30856 (13)0.01823 (19)0.54433 (13)0.0188 (4)
O10.35080 (11)0.18546 (14)0.69937 (11)0.0162 (3)
O20.35618 (11)0.03741 (15)0.70360 (11)0.0184 (3)
O30.50303 (12)0.10080 (19)0.89291 (12)0.0248 (4)
Ni10.50000.07701 (4)0.75000.01674 (14)
H3A0.5529 (17)0.080 (3)0.9416 (16)0.025*
H3B0.4511 (17)0.113 (3)0.903 (2)0.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0112 (10)0.0169 (10)0.0139 (9)0.0001 (7)0.0050 (8)0.0002 (7)
C20.0097 (10)0.0186 (10)0.0148 (9)0.0000 (7)0.0045 (8)0.0001 (7)
C30.0125 (9)0.0150 (10)0.0218 (10)0.0022 (8)0.0066 (8)0.0014 (8)
C40.0114 (9)0.0149 (10)0.0221 (10)0.0024 (7)0.0056 (8)0.0033 (8)
C50.0073 (9)0.0189 (10)0.0132 (9)0.0003 (7)0.0038 (7)0.0006 (7)
C60.0122 (10)0.0153 (10)0.0229 (11)0.0022 (8)0.0069 (8)0.0005 (8)
C70.0124 (10)0.0142 (9)0.0229 (10)0.0018 (8)0.0075 (8)0.0003 (8)
C80.0104 (9)0.0193 (10)0.0174 (10)0.0019 (8)0.0053 (8)0.0006 (8)
C90.0135 (10)0.0188 (10)0.0204 (10)0.0034 (8)0.0056 (8)0.0026 (8)
N10.0087 (8)0.0164 (8)0.0156 (8)0.0013 (6)0.0045 (7)0.0001 (6)
N20.0110 (8)0.0230 (9)0.0183 (9)0.0001 (7)0.0049 (7)0.0005 (7)
N30.0118 (8)0.0232 (9)0.0203 (9)0.0025 (7)0.0047 (7)0.0003 (7)
O10.0089 (6)0.0161 (7)0.0231 (7)0.0010 (5)0.0054 (6)0.0001 (6)
O20.0091 (6)0.0164 (7)0.0293 (8)0.0008 (6)0.0070 (6)0.0005 (6)
O30.0090 (7)0.0468 (10)0.0188 (8)0.0075 (7)0.0054 (6)0.0057 (7)
Ni10.0100 (2)0.0175 (2)0.0222 (2)0.0000.00558 (16)0.000
Geometric parameters (Å, º) top
C1—O11.261 (2)C7—H70.9300
C1—O21.268 (2)C8—N21.303 (3)
C1—C21.501 (3)C8—N11.364 (3)
C1—Ni12.458 (2)C8—H80.9300
C2—C71.388 (3)C9—N31.296 (3)
C2—C31.394 (3)C9—N11.363 (3)
C3—C41.389 (3)C9—H90.9300
C3—H30.9300N2—N31.390 (3)
C4—C51.388 (3)O3—H3A0.79 (2)
C4—H40.9300O3—H3B0.78 (2)
C5—C61.387 (3)Ni1—O12.1507 (14)
C5—N11.433 (2)Ni1—O22.1240 (14)
C6—C71.391 (3)Ni1—O32.0453 (16)
C6—H60.9300
O1—C1—O2120.58 (18)C9—N3—N2107.32 (17)
O1—C1—C2119.38 (17)C1—O1—Ni188.14 (11)
O2—C1—C2120.03 (17)C1—O2—Ni189.16 (12)
O1—C1—Ni161.01 (10)Ni1—O3—H3A123 (2)
O2—C1—Ni159.79 (10)Ni1—O3—H3B122 (2)
C2—C1—Ni1174.50 (14)H3A—O3—H3B114 (3)
C7—C2—C3119.77 (18)O3—Ni1—O3i166.84 (11)
C7—C2—C1120.05 (18)O3—Ni1—O292.43 (6)
C3—C2—C1120.14 (17)O3i—Ni1—O294.54 (6)
C4—C3—C2120.52 (18)O3—Ni1—O2i94.54 (6)
C4—C3—H3119.7O3i—Ni1—O2i92.43 (6)
C2—C3—H3119.7O2—Ni1—O2i115.92 (8)
C5—C4—C3118.77 (18)O3—Ni1—O1i86.88 (6)
C5—C4—H4120.6O3i—Ni1—O1i86.60 (6)
C3—C4—H4120.6O2—Ni1—O1i177.55 (6)
C6—C5—C4121.53 (18)O2i—Ni1—O1i61.82 (6)
C6—C5—N1118.50 (17)O3—Ni1—O186.60 (6)
C4—C5—N1119.97 (17)O3i—Ni1—O186.88 (6)
C5—C6—C7119.07 (18)O2—Ni1—O161.82 (6)
C5—C6—H6120.5O2i—Ni1—O1177.55 (6)
C7—C6—H6120.5O1i—Ni1—O1120.45 (8)
C2—C7—C6120.32 (19)O3—Ni1—C187.82 (6)
C2—C7—H7119.8O3i—Ni1—C192.41 (6)
C6—C7—H7119.8O2—Ni1—C131.05 (6)
N2—C8—N1110.45 (18)O2i—Ni1—C1146.94 (6)
N2—C8—H8124.8O1i—Ni1—C1151.16 (6)
N1—C8—H8124.8O1—Ni1—C130.85 (6)
N3—C9—N1110.64 (19)O3—Ni1—C1i92.41 (6)
N3—C9—H9124.7O3i—Ni1—C1i87.82 (6)
N1—C9—H9124.7O2—Ni1—C1i146.94 (6)
C9—N1—C8104.57 (17)O2i—Ni1—C1i31.05 (6)
C9—N1—C5126.49 (17)O1i—Ni1—C1i30.85 (6)
C8—N1—C5128.93 (17)O1—Ni1—C1i151.16 (6)
C8—N2—N3107.02 (16)C1—Ni1—C1i177.99 (9)
O1—C1—C2—C7173.79 (19)N1—C9—N3—N20.5 (2)
O2—C1—C2—C75.3 (3)C8—N2—N3—C90.4 (2)
O1—C1—C2—C33.7 (3)O2—C1—O1—Ni15.41 (19)
O2—C1—C2—C3177.18 (18)C2—C1—O1—Ni1173.72 (16)
C7—C2—C3—C41.4 (3)O1—C1—O2—Ni15.47 (19)
C1—C2—C3—C4178.94 (18)C2—C1—O2—Ni1173.65 (16)
C2—C3—C4—C51.1 (3)C1—O2—Ni1—O381.70 (12)
C3—C4—C5—C60.3 (3)C1—O2—Ni1—O3i87.13 (12)
C3—C4—C5—N1179.81 (17)C1—O2—Ni1—O2i177.95 (13)
C4—C5—C6—C71.4 (3)C1—O1—Ni1—O391.44 (12)
N1—C5—C6—C7178.78 (18)C1—O1—Ni1—O3i100.00 (12)
C3—C2—C7—C60.4 (3)C1—O1—Ni1—O23.15 (11)
C1—C2—C7—C6177.89 (18)C1—O1—Ni1—O1i175.80 (12)
C5—C6—C7—C21.0 (3)O1—C1—Ni1—O387.02 (12)
N3—C9—N1—C80.4 (2)O2—C1—Ni1—O398.36 (12)
N3—C9—N1—C5178.76 (17)O1—C1—Ni1—O3i79.81 (12)
N2—C8—N1—C90.1 (2)O2—C1—Ni1—O3i94.80 (12)
N2—C8—N1—C5178.99 (18)O1—C1—Ni1—O2174.61 (19)
C6—C5—N1—C924.4 (3)O1—C1—Ni1—O2i178.00 (10)
C4—C5—N1—C9155.7 (2)O2—C1—Ni1—O2i3.4 (2)
C6—C5—N1—C8156.7 (2)O1—C1—Ni1—O1i7.5 (2)
C4—C5—N1—C823.2 (3)O2—C1—Ni1—O1i177.86 (11)
N1—C8—N2—N30.2 (2)O2—C1—Ni1—O1174.61 (19)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···N2ii0.78 (2)2.06 (2)2.836 (2)172 (3)
O3—H3A···N3iii0.79 (2)1.99 (2)2.768 (2)169 (3)
Symmetry codes: (ii) x, y, z+3/2; (iii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C9H6N3O2)2(H2O)2]
Mr471.06
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)13.5194 (6), 9.8480 (5), 14.3234 (7)
β (°) 112.293 (1)
V3)1764.47 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.72, 0.82
No. of measured, independent and
observed [I > 2σ(I)] reflections
4732, 1744, 1662
Rint0.021
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.13
No. of reflections1744
No. of parameters147
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.45

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Selected bond lengths (Å) top
Ni1—O12.1507 (14)Ni1—O32.0453 (16)
Ni1—O22.1240 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···N2i0.78 (2)2.06 (2)2.836 (2)172 (3)
O3—H3A···N3ii0.79 (2)1.99 (2)2.768 (2)169 (3)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+1/2.
 

Acknowledgements

We thank Jilin Business and Technology College for supporting this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahata, P., Ramya, K. V. & Natarajan, S. (2009). Inorg. Chem. 48, 4921–4951.  CrossRef Google Scholar
First citationPerry, J. J., McManus, G. J. & Zaworotko, M. J. (2004). Chem. Commun. pp. 2534–2535.  CrossRef Google Scholar
First citationQin, C., Wang, X.-L., Wang, E.-B. & Su, Z.-M. (2005). Inorg. Chem. 44, 7122–7129.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F. N., Luis, C. S., Trindade, T., Filipe, A. & Rocha, J. (2009). Cryst. Growth Des. 9, 2098–2109.  CrossRef CAS Google Scholar
First citationZhu, H. (2010). Acta Cryst. E66, m1537.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds