metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(morpholinium) hexa-μ3-hydroxido-hexa-μ2-oxido-dodeca­oxidohexa­molybdenum(VI)chromate(III) tetra­hydrate

aDepartment of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China, and bDepartment of Animal Science, Jilin Agricultural Science and Technology College, Jilin 132101, People's Republic of China
*Correspondence e-mail: xiaoshuqu@yahoo.com.cn

(Received 3 May 2011; accepted 13 May 2011; online 20 May 2011)

In the title organic–inorganic hybrid compound, (C4H10NO)3[H6CrMo6O24]·4H2O, the Anderson-type [H6CrMo6O24]3− polyoxoanion is centrosymmetric, with the CrIII ion lying on an inversion center. One of the two crystallographiclly independent morpholinium cations is half-occupied. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the cations, polyoxoanions and uncoordinated water mol­ecules.

Related literature

For general background to the properties and applications of polyoxometalates, see: Hill (1998[Hill, C. L. (1998). Chem. Rev. 98, 1-2.]). For related compounds with Anderson-type polyoxometalate anions and organic cations, see: An et al. (2004[An, H.-Y., Lan, Y., Li, Y.-G., Hao, N., Xiao, D.-R., Duan, L.-Y. & Xu, X. (2004). Inorg. Chem. Commun. 7, 356-358.]); Wang et al. (2010[Wang, S.-M., Chen, W.-L. & Wang, E.-B. (2010). J. Clust. Sci. 21, 133-145.]). For synthetic details, see: Perloff (1970[Perloff, A. (1970). Inorg. Chem. 9, 2228-2239.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H10NO)3[H6CrMo6O24]·4H2O

  • Mr = 1354.14

  • Triclinic, [P \overline 1]

  • a = 7.9474 (4) Å

  • b = 9.9654 (5) Å

  • c = 13.7404 (7) Å

  • α = 110.392 (1)°

  • β = 102.921 (1)°

  • γ = 90.635 (1)°

  • V = 989.47 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 296 K

  • 0.53 × 0.50 × 0.44 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.324, Tmax = 0.380

  • 5458 measured reflections

  • 3855 independent reflections

  • 3562 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.082

  • S = 1.09

  • 3855 reflections

  • 297 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.18 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.90 1.86 2.755 (4) 172
N1—H1B⋯O5 0.90 1.94 2.783 (4) 155
N2—H2C⋯O13ii 0.90 2.19 2.976 (8) 145
N2—H2D⋯O2Wiii 0.90 2.53 3.294 (9) 144
O1—H1⋯O1Wiv 0.84 (1) 1.87 (1) 2.709 (4) 173 (5)
O2—H2⋯O2Wiii 0.85 (1) 1.80 (1) 2.640 (4) 172 (4)
O3—H3⋯O9v 0.84 (1) 2.02 (1) 2.853 (4) 171 (5)
O1W—H7⋯O8vi 0.84 (1) 2.08 (3) 2.837 (4) 148 (5)
O1W—H8⋯O10vi 0.85 (1) 2.01 (2) 2.807 (5) 157 (5)
O2W—H4⋯O7 0.85 (1) 2.03 (2) 2.851 (4) 165 (5)
O2W—H5⋯O1Wvii 0.85 (1) 2.00 (2) 2.801 (5) 157 (4)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y-1, z-1; (iii) x-1, y, z; (iv) x-1, y, z-1; (v) -x+1, -y, -z; (vi) -x+1, -y+1, -z+1; (vii) x, y, z-1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is known that the compounds containing molybdenum atoms, especially containing polyoxometalates and organic molecules, are good catalysts for oxidation reactions, because they can be applied as models for the interactions between organic substrates and catalytic metal oxide surfaces in heterogeneous catalysis employing solid molybdenum oxides (Hill, 1998). Herein, we report the structure of the title compound containning Anderson-type [H6CrMo6O24]3- polyoxoanion, morpholinium cations and water molecules.

The title compound consists of one Anderson-type [H6CrMo6O24]3- polyoxoanion (An et al., 2004; Wang et al., 2010), three morpholinium cations and four uncoordinated water molecules. The [H6CrMo6O24]3- cluster with four different types of O atoms shows a classical B-type Anderson structure (Fig. 1), which made up of seven edge-sharing octahedra. Six [MoO6] octahedra are arranged hexagonally around one central [Cr(OH)6] octahedron. The Cr—O and Mo—O distances are normal. The molecules are linked into a three-dimensional network by a combination of intermolecular N—H···O and O—H···O hydrogen bonds (Table 1).

Related literature top

For general background to the properties and applications of polyoxometalates, see: Hill (1998). For related compounds with Anderson-type polyoxometalate anions and organic cations, see: An et al. (2004); Wang et al. (2010). For synthetic details, see: Perloff (1970).

Experimental top

The title compound was synthesized by mixing CrCl3.6H2O (0.266 g, 1 mmol), Na2MoO4.2H2O (1.464 g, 6 mmol) and morpholine (1.80 g, 1.2 mmol) in H2O (50 ml) and boiling the mixture (Perloff, 1970). The pH value of the solution was adjusted to 1.0 by addition of 1 M hydrochloric acid. The mixture was refluxed for 2 h, and then the solution was cooled to room temperature. After two days, pink block crystals were formed by evaporation of the filtrate at room temperature.

Refinement top

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97, N—H = 0.90 Å and Uiso(H) = 1.2Ueq(C, N). Water H atoms were located in a difference Fourier map and refined isotropically, with O—H distance restraints of 0.85 (1) Å. The highest residual electron density was found at 0.65 Å from H6A atom and the deepest hole at 0.88 Å from Mo3 atom.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The morpholinium cation containing N2 is half-occupied. H atoms have been omitted for clarity. [Symmetry code: (i) -x, -y, -z.]
Tris(morpholinium) hexa-µ3-hydroxido-hexa-µ2-oxido- dodecaoxidohexamolybdenum(VI)chromate(III) tetrahydrate top
Crystal data top
(C4H10NO)3[H6CrMo6O24]·4H2OZ = 1
Mr = 1354.14F(000) = 661
Triclinic, P1Dx = 2.273 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9474 (4) ÅCell parameters from 3855 reflections
b = 9.9654 (5) Åθ = 2.8–26.1°
c = 13.7404 (7) ŵ = 2.20 mm1
α = 110.392 (1)°T = 296 K
β = 102.921 (1)°Block, pink
γ = 90.635 (1)°0.53 × 0.50 × 0.44 mm
V = 989.47 (9) Å3
Data collection top
Bruker APEX CCD
diffractometer
3855 independent reflections
Radiation source: sealed tube3562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 26.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.324, Tmax = 0.380k = 1012
5458 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0428P)2 + 2.0824P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3855 reflectionsΔρmax = 1.18 e Å3
297 parametersΔρmin = 0.55 e Å3
10 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0147 (6)
Crystal data top
(C4H10NO)3[H6CrMo6O24]·4H2Oγ = 90.635 (1)°
Mr = 1354.14V = 989.47 (9) Å3
Triclinic, P1Z = 1
a = 7.9474 (4) ÅMo Kα radiation
b = 9.9654 (5) ŵ = 2.20 mm1
c = 13.7404 (7) ÅT = 296 K
α = 110.392 (1)°0.53 × 0.50 × 0.44 mm
β = 102.921 (1)°
Data collection top
Bruker APEX CCD
diffractometer
3855 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3562 reflections with I > 2σ(I)
Tmin = 0.324, Tmax = 0.380Rint = 0.014
5458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02610 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.18 e Å3
3855 reflectionsΔρmin = 0.55 e Å3
297 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0340 (3)0.2032 (3)0.0153 (2)0.0204 (5)
O130.7910 (5)0.7096 (3)0.3943 (3)0.0447 (8)
O20.0919 (3)0.0753 (3)0.1564 (2)0.0205 (5)
O1W0.8003 (5)0.3343 (3)0.9120 (3)0.0412 (7)
O30.2284 (3)0.0122 (3)0.0349 (2)0.0198 (5)
O2W0.6478 (4)0.0583 (4)0.2236 (3)0.0446 (8)
O40.1684 (3)0.1183 (3)0.1629 (2)0.0248 (6)
O50.3302 (3)0.2637 (3)0.1333 (2)0.0243 (5)
O60.0971 (3)0.2717 (3)0.2074 (2)0.0252 (6)
O70.3543 (4)0.1184 (3)0.2346 (3)0.0344 (7)
O80.2897 (4)0.3888 (3)0.0229 (2)0.0336 (7)
O90.5077 (4)0.1801 (3)0.0249 (2)0.0328 (6)
O100.1025 (4)0.4800 (3)0.1838 (3)0.0393 (7)
O110.0268 (4)0.1150 (3)0.3466 (2)0.0366 (7)
O120.2504 (4)0.3553 (4)0.3249 (2)0.0416 (8)
N10.6350 (4)0.4279 (3)0.2668 (3)0.0283 (7)
H1A0.72510.38300.24530.034*
H1B0.54040.36370.23890.034*
C10.6718 (7)0.4811 (5)0.3856 (4)0.0393 (10)
H1C0.69710.40190.41050.047*
H1D0.57120.52220.40900.047*
C20.8249 (7)0.5935 (5)0.4315 (4)0.0448 (11)
H2A0.84900.62950.50900.054*
H2B0.92640.55060.41060.054*
C30.7596 (7)0.6595 (5)0.2798 (4)0.0411 (11)
H3A0.86140.61800.25830.049*
H3B0.73940.74020.25610.049*
C40.6052 (6)0.5484 (5)0.2269 (4)0.0389 (10)
H4A0.50120.59120.24350.047*
H4B0.58950.51300.14990.047*
C50.2731 (15)0.2565 (11)0.3890 (8)0.054 (3)0.50
H5A0.34280.25300.34020.064*0.50
H5B0.19830.34600.35670.064*0.50
C60.1584 (11)0.1245 (9)0.4092 (8)0.040 (2)0.50
H6A0.08300.12970.45470.048*0.50
H6B0.08750.12390.34210.048*0.50
C70.468 (2)0.1422 (11)0.5420 (8)0.080 (5)0.50
H7A0.51410.14910.61140.095*0.50
H7B0.56670.13950.51150.095*0.50
C80.4008 (15)0.0005 (11)0.5624 (8)0.048 (2)0.50
H8A0.33680.01830.61740.057*0.50
H8B0.49710.07460.58830.057*0.50
N20.2850 (10)0.0078 (8)0.4633 (6)0.0391 (17)0.50
H2C0.22700.08650.47990.047*0.50
H2D0.34900.01460.41850.047*0.50
O140.3839 (10)0.2508 (8)0.4885 (6)0.0518 (19)0.50
H50.671 (5)0.141 (2)0.174 (3)0.059 (18)*
H40.563 (5)0.015 (5)0.215 (4)0.07 (2)*
H80.853 (7)0.376 (5)0.881 (4)0.054 (17)*
H70.759 (8)0.397 (4)0.957 (4)0.08 (2)*
H10.035 (5)0.242 (5)0.021 (4)0.045 (15)*
H20.173 (4)0.035 (4)0.183 (3)0.031 (12)*
H30.308 (5)0.055 (5)0.010 (4)0.039 (14)*
Cr10.00000.00000.00000.01611 (17)
Mo10.30066 (4)0.22031 (3)0.01793 (2)0.02057 (11)
Mo20.14776 (4)0.08727 (3)0.22125 (2)0.02130 (11)
Mo30.13429 (4)0.31724 (3)0.19717 (3)0.02276 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0201 (12)0.0182 (12)0.0251 (13)0.0049 (10)0.0060 (10)0.0102 (11)
O130.065 (2)0.0260 (15)0.0362 (17)0.0043 (15)0.0085 (16)0.0054 (13)
O20.0194 (12)0.0202 (12)0.0214 (13)0.0032 (10)0.0029 (10)0.0079 (10)
O1W0.051 (2)0.0317 (16)0.049 (2)0.0146 (15)0.0166 (16)0.0209 (16)
O30.0171 (12)0.0195 (12)0.0259 (13)0.0052 (10)0.0059 (10)0.0114 (10)
O2W0.0327 (17)0.043 (2)0.061 (2)0.0049 (15)0.0136 (16)0.0219 (19)
O40.0311 (14)0.0210 (13)0.0245 (13)0.0018 (11)0.0070 (11)0.0107 (11)
O50.0199 (12)0.0282 (14)0.0225 (13)0.0010 (10)0.0049 (10)0.0065 (11)
O60.0253 (13)0.0177 (12)0.0335 (14)0.0020 (10)0.0123 (11)0.0071 (11)
O70.0316 (15)0.0301 (15)0.0453 (17)0.0041 (12)0.0194 (13)0.0121 (13)
O80.0441 (17)0.0230 (14)0.0371 (16)0.0033 (12)0.0132 (14)0.0127 (12)
O90.0245 (14)0.0360 (16)0.0393 (16)0.0023 (12)0.0114 (12)0.0129 (13)
O100.0471 (19)0.0217 (14)0.054 (2)0.0064 (13)0.0241 (16)0.0113 (14)
O110.0443 (18)0.0374 (17)0.0263 (15)0.0009 (14)0.0069 (13)0.0104 (13)
O120.0386 (17)0.052 (2)0.0251 (15)0.0105 (15)0.0043 (13)0.0051 (14)
N10.0234 (16)0.0205 (16)0.0365 (18)0.0029 (12)0.0053 (14)0.0060 (14)
C10.052 (3)0.034 (2)0.038 (2)0.003 (2)0.015 (2)0.017 (2)
C20.059 (3)0.039 (3)0.029 (2)0.003 (2)0.001 (2)0.010 (2)
C30.057 (3)0.030 (2)0.038 (2)0.000 (2)0.011 (2)0.0153 (19)
C40.040 (2)0.035 (2)0.038 (2)0.0034 (19)0.0001 (19)0.014 (2)
C50.058 (7)0.037 (5)0.040 (5)0.007 (5)0.005 (5)0.008 (4)
C60.029 (4)0.025 (4)0.060 (6)0.010 (3)0.023 (4)0.029 (4)
C70.123 (11)0.030 (5)0.030 (5)0.040 (6)0.042 (6)0.020 (4)
C80.062 (7)0.040 (5)0.031 (5)0.007 (5)0.003 (4)0.005 (4)
N20.045 (4)0.030 (4)0.042 (4)0.009 (3)0.011 (3)0.011 (3)
O140.060 (4)0.048 (4)0.072 (5)0.026 (4)0.021 (4)0.048 (4)
Cr10.0156 (4)0.0152 (4)0.0185 (4)0.0027 (3)0.0045 (3)0.0070 (3)
Mo10.02050 (17)0.01772 (17)0.02474 (18)0.00128 (12)0.00787 (12)0.00772 (13)
Mo20.02274 (18)0.02019 (18)0.02183 (18)0.00160 (12)0.00814 (12)0.00695 (13)
Mo30.02303 (18)0.01904 (18)0.02415 (18)0.00106 (12)0.00799 (13)0.00396 (13)
Geometric parameters (Å, º) top
O1—Cr11.971 (2)N1—H1B0.9000
O1—Mo12.282 (2)C1—C21.506 (7)
O1—Mo32.298 (3)C1—H1C0.9700
O1—H10.84 (1)C1—H1D0.9700
O13—C21.425 (6)C2—H2A0.9700
O13—C31.435 (5)C2—H2B0.9700
O2—Cr11.969 (2)C3—C41.506 (6)
O2—Mo22.264 (3)C3—H3A0.9700
O2—Mo3i2.280 (3)C3—H3B0.9700
O2—H20.85 (1)C4—H4A0.9700
O1W—H80.85 (1)C4—H4B0.9700
O1W—H70.84 (1)C5—O141.432 (12)
O3—Cr11.973 (2)C5—C61.589 (14)
O3—Mo12.300 (2)C5—H5A0.9700
O3—Mo22.334 (3)C5—H5B0.9700
O3—H30.84 (1)C6—N21.502 (10)
O2W—H50.85 (1)C6—H6A0.9700
O2W—H40.85 (1)C6—H6B0.9700
O4—Mo21.912 (3)C7—O141.171 (13)
O4—Mo11.932 (3)C7—C81.481 (13)
O5—Mo11.927 (3)C7—H7A0.9700
O5—Mo31.944 (3)C7—H7B0.9700
O6—Mo31.936 (3)C8—N21.489 (12)
O6—Mo2i1.959 (3)C8—H8A0.9700
O7—Mo21.712 (3)C8—H8B0.9700
O8—Mo11.707 (3)N2—H2C0.9000
O9—Mo11.713 (3)N2—H2D0.9000
O10—Mo31.710 (3)Cr1—O2i1.969 (2)
O11—Mo21.700 (3)Cr1—O1i1.971 (2)
O12—Mo31.697 (3)Cr1—O3i1.973 (2)
N1—C41.486 (5)Mo2—O6i1.959 (3)
N1—C11.486 (5)Mo3—O2i2.280 (3)
N1—H1A0.9000
Cr1—O1—Mo1102.97 (10)C7—C8—H8A109.4
Cr1—O1—Mo3102.58 (11)N2—C8—H8A109.4
Mo1—O1—Mo393.90 (9)C7—C8—H8B109.4
Cr1—O1—H1123 (4)N2—C8—H8B109.4
Mo1—O1—H1108 (4)H8A—C8—H8B108.0
Mo3—O1—H1121 (4)C8—N2—C6109.9 (7)
C2—O13—C3110.5 (3)C8—N2—H2C109.7
Cr1—O2—Mo2103.98 (11)C6—N2—H2C109.7
Cr1—O2—Mo3i103.28 (11)C8—N2—H2D109.7
Mo2—O2—Mo3i94.50 (9)C6—N2—H2D109.7
Cr1—O2—H2118 (3)H2C—N2—H2D108.2
Mo2—O2—H2115 (3)C7—O14—C5117.2 (8)
Mo3i—O2—H2118 (3)O2—Cr1—O2i180.00 (8)
H8—O1W—H7109 (3)O2—Cr1—O196.14 (11)
Cr1—O3—Mo1102.31 (10)O2i—Cr1—O183.86 (11)
Cr1—O3—Mo2101.36 (10)O2—Cr1—O1i83.86 (11)
Mo1—O3—Mo291.99 (9)O2i—Cr1—O1i96.14 (11)
Cr1—O3—H3123 (3)O1—Cr1—O1i180.0 (2)
Mo1—O3—H3117 (3)O2—Cr1—O3i95.74 (11)
Mo2—O3—H3115 (3)O2i—Cr1—O3i84.26 (11)
H5—O2W—H4108 (2)O1—Cr1—O3i95.80 (10)
Mo2—O4—Mo1120.21 (13)O1i—Cr1—O3i84.20 (10)
Mo1—O5—Mo3119.65 (13)O2—Cr1—O384.26 (11)
Mo3—O6—Mo2i117.85 (13)O2i—Cr1—O395.74 (11)
C4—N1—C1110.9 (3)O1—Cr1—O384.20 (10)
C4—N1—H1A109.4O1i—Cr1—O395.80 (10)
C1—N1—H1A109.4O3i—Cr1—O3180.00 (14)
C4—N1—H1B109.4O8—Mo1—O9105.30 (14)
C1—N1—H1B109.4O8—Mo1—O5100.53 (13)
H1A—N1—H1B108.0O9—Mo1—O597.80 (13)
N1—C1—C2109.0 (4)O8—Mo1—O496.53 (13)
N1—C1—H1C109.9O9—Mo1—O4102.55 (13)
C2—C1—H1C109.9O5—Mo1—O4148.89 (11)
N1—C1—H1D109.9O8—Mo1—O195.70 (12)
C2—C1—H1D109.9O9—Mo1—O1157.96 (12)
H1C—C1—H1D108.3O5—Mo1—O171.37 (10)
O13—C2—C1110.6 (4)O4—Mo1—O181.24 (10)
O13—C2—H2A109.5O8—Mo1—O3162.78 (12)
C1—C2—H2A109.5O9—Mo1—O389.88 (12)
O13—C2—H2B109.5O5—Mo1—O385.08 (10)
C1—C2—H2B109.5O4—Mo1—O371.79 (10)
H2A—C2—H2B108.1O1—Mo1—O370.48 (9)
O13—C3—C4111.3 (4)O11—Mo2—O7105.69 (15)
O13—C3—H3A109.4O11—Mo2—O499.59 (13)
C4—C3—H3A109.4O7—Mo2—O4100.91 (13)
O13—C3—H3B109.4O11—Mo2—O6i101.27 (13)
C4—C3—H3B109.4O7—Mo2—O6i94.73 (12)
H3A—C3—H3B108.0O4—Mo2—O6i149.40 (11)
N1—C4—C3108.9 (4)O11—Mo2—O291.86 (13)
N1—C4—H4A109.9O7—Mo2—O2159.77 (12)
C3—C4—H4A109.9O4—Mo2—O285.64 (10)
N1—C4—H4B109.9O6i—Mo2—O271.57 (10)
C3—C4—H4B109.9O11—Mo2—O3160.09 (12)
H4A—C4—H4B108.3O7—Mo2—O393.59 (12)
O14—C5—C6109.7 (8)O4—Mo2—O371.32 (10)
O14—C5—H5A109.7O6i—Mo2—O381.66 (10)
C6—C5—H5A109.7O2—Mo2—O370.19 (9)
O14—C5—H5B109.7O12—Mo3—O10105.71 (17)
C6—C5—H5B109.7O12—Mo3—O6101.54 (14)
H5A—C5—H5B108.2O10—Mo3—O697.65 (13)
N2—C6—C5105.6 (7)O12—Mo3—O595.12 (13)
N2—C6—H6A110.6O10—Mo3—O5101.30 (13)
C5—C6—H6A110.6O6—Mo3—O5150.28 (11)
N2—C6—H6B110.6O12—Mo3—O2i95.74 (14)
C5—C6—H6B110.6O10—Mo3—O2i157.68 (13)
H6A—C6—H6B108.7O6—Mo3—O2i71.59 (10)
O14—C7—C8123.5 (11)O5—Mo3—O2i82.47 (10)
O14—C7—H7A106.5O12—Mo3—O1160.85 (13)
C8—C7—H7A106.5O10—Mo3—O190.09 (13)
O14—C7—H7B106.5O6—Mo3—O186.65 (10)
C8—C7—H7B106.5O5—Mo3—O170.75 (10)
H7A—C7—H7B106.5O2i—Mo3—O170.22 (9)
C7—C8—N2111.0 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6ii0.901.862.755 (4)172
N1—H1B···O50.901.942.783 (4)155
N2—H2C···O13iii0.902.192.976 (8)145
N2—H2D···O2Wiv0.902.533.294 (9)144
O1—H1···O1Wv0.84 (1)1.87 (1)2.709 (4)173 (5)
O2—H2···O2Wiv0.85 (1)1.80 (1)2.640 (4)172 (4)
O3—H3···O9vi0.84 (1)2.02 (1)2.853 (4)171 (5)
O1W—H7···O8vii0.84 (1)2.08 (3)2.837 (4)148 (5)
O1W—H8···O10vii0.85 (1)2.01 (2)2.807 (5)157 (5)
O2W—H4···O70.85 (1)2.03 (2)2.851 (4)165 (5)
O2W—H5···O1Wviii0.85 (1)2.00 (2)2.801 (5)157 (4)
Symmetry codes: (ii) x+1, y, z; (iii) x1, y1, z1; (iv) x1, y, z; (v) x1, y, z1; (vi) x+1, y, z; (vii) x+1, y+1, z+1; (viii) x, y, z1.

Experimental details

Crystal data
Chemical formula(C4H10NO)3[H6CrMo6O24]·4H2O
Mr1354.14
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9474 (4), 9.9654 (5), 13.7404 (7)
α, β, γ (°)110.392 (1), 102.921 (1), 90.635 (1)
V3)989.47 (9)
Z1
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.53 × 0.50 × 0.44
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.324, 0.380
No. of measured, independent and
observed [I > 2σ(I)] reflections
5458, 3855, 3562
Rint0.014
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.082, 1.09
No. of reflections3855
No. of parameters297
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.18, 0.55

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.901.862.755 (4)172
N1—H1B···O50.901.942.783 (4)155
N2—H2C···O13ii0.902.192.976 (8)145
N2—H2D···O2Wiii0.902.533.294 (9)144
O1—H1···O1Wiv0.84 (1)1.87 (1)2.709 (4)173 (5)
O2—H2···O2Wiii0.85 (1)1.80 (1)2.640 (4)172 (4)
O3—H3···O9v0.84 (1)2.02 (1)2.853 (4)171 (5)
O1W—H7···O8vi0.84 (1)2.08 (3)2.837 (4)148 (5)
O1W—H8···O10vi0.85 (1)2.01 (2)2.807 (5)157 (5)
O2W—H4···O70.85 (1)2.03 (2)2.851 (4)165 (5)
O2W—H5···O1Wvii0.85 (1)2.00 (2)2.801 (5)157 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y1, z1; (iii) x1, y, z; (iv) x1, y, z1; (v) x+1, y, z; (vi) x+1, y+1, z+1; (vii) x, y, z1.
 

References

First citationAn, H.-Y., Lan, Y., Li, Y.-G., Hao, N., Xiao, D.-R., Duan, L.-Y. & Xu, X. (2004). Inorg. Chem. Commun. 7, 356–358.  CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHill, C. L. (1998). Chem. Rev. 98, 1–2.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationPerloff, A. (1970). Inorg. Chem. 9, 2228–2239.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-M., Chen, W.-L. & Wang, E.-B. (2010). J. Clust. Sci. 21, 133–145.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds