metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­[4-(4H-1,2,4-triazol-4-yl)benzoato-κN1]copper(II) dihydrate

aJilin Business and Technology College, Changchun 130062, People's Republic of China
*Correspondence e-mail: chemxusz@yahoo.cn

(Received 5 May 2011; accepted 14 May 2011; online 20 May 2011)

In the title compound, [Cu(C9H6N3O2)2(H2O)4]·2H2O, the CuII atom lies on an inversion center and is six-coordinated by two N atoms from two 4-(1,2,4-triazol-4-yl)benzoate ligands and four water mol­ecules in a distorted octa­hedral geometry. In the crystal, inter­molecular O—H⋯O hydrogen bonds lead to a three-dimensional supra­molecular network. Intra­molecular O—H⋯N hydrogen bonds and ππ inter­actions between the benzene rings and between the benzene and triazole rings [centroid–centroid distances = 3.657 (1) and 3.752 (1) Å] are observed.

Related literature

For general background to the structures and applications of inorganic–organic hybrid materials, see: Shi et al. (2009[Shi, F. N., Luis, C. S., Trindade, T., Filipe, A. & Rocha, J. (2009). Cryst. Growth Des. 9, 2098-2109.]); Xiao et al. (2006[Xiao, D.-R., Wang, E.-B., An, H.-Y., Li, Y.-G., Su, Z.-M. & Sun, C.-Y. (2006). Chem. Eur. J. 12, 6528-6541.]); Zhang et al. (2004[Zhang, J., Li, Z.-J., Kang, Y., Cheng, J.-K. & Yao, Y.-G. (2004). Inorg. Chem. 43, 8085-8091.]). For a related structure, see: Wang et al. (2009[Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568-m1569.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H6N3O2)2(H2O)4]·2H2O

  • Mr = 547.97

  • Triclinic, [P \overline 1]

  • a = 7.3001 (4) Å

  • b = 7.9904 (5) Å

  • c = 9.8995 (6) Å

  • α = 85.343 (1)°

  • β = 73.243 (1)°

  • γ = 79.032 (1)°

  • V = 542.61 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.75, Tmax = 0.83

  • 3001 measured reflections

  • 2102 independent reflections

  • 2025 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.12

  • 2102 reflections

  • 178 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1W 1.9937 (19)
Cu1—O2W 2.4932 (16)
Cu1—N2 2.0535 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2i 0.87 (2) 2.12 (2) 2.948 (3) 158 (2)
O1W—H1B⋯N3ii 0.87 (2) 2.27 (3) 2.873 (3) 126 (3)
O2W—H2A⋯O1iii 0.82 (3) 1.98 (3) 2.794 (2) 172 (3)
O2W—H2B⋯O2iv 0.82 (3) 1.91 (3) 2.711 (2) 167 (3)
O3W—H3A⋯O2i 0.84 (3) 1.97 (3) 2.789 (2) 167 (3)
O3W—H3B⋯O2Wv 0.82 (3) 1.94 (3) 2.758 (2) 170 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+2; (iii) x-1, y-1, z+1; (iv) -x, -y+1, -z+1; (v) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Materials­Studio (Accelrys, 2006[Accelrys (2006). MaterialsStudio. Accelrys Inc., San Diego, California, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been considerable interest in inorganic–organic hybrid materials with variable dimensionality and different coordination frameworks (Shi et al., 2009; Xiao et al., 2006). The studies on these inorganic–organic hybrid pillared structures focus on aspects concerning materials science and structural chemistry because of their potential applications in catalysis, sorption processes, photochemistry and magnetism (Zhang et al., 2004). In this contribution, we selected 4-(1,2,4-triazol-4-yl)benzoic acid (Htyb) as an organic carboxylate ligand, generating the title coordination compound, which is reported here.

In the title compound, the CuII ion, lying on an inversion center, is six-coordinated by two N atoms from two tyb ligands and four water molecules and shows a distorted octahedral coordination geometry (Fig. 1). Two uncoordinated water molecules exist in the structure, stabilized by hydrogen bonds (Table 1). The Cu—N and Cu—O bond lengths and the O—Cu—O and N—Cu—O bond angles are comparable to those found in other Cu(II) complexes (Wang et al., 2009). In the crystal, intermolecular O—H···O hydrogen bonds (Table 2) lead to a three-dimensional supramolecular network (Fig. 2). Intramolecular O—H···N hydrogen bonds, as well as ππ interactions, Cg1···Cg1ii = 3.657 (1) and Cg1···Cg2iv = 3.752 (1) Å [Cg1 and Cg2 are the centroids of C2–C7 ring and N1–N3, C8, C9 ring. Symmetry codes: (ii) 1-x, 1-y, 1-z; (iv) -x, 1-y, 1-z], are observed.

Related literature top

For general background to the structures and applications of inorganic–organic hybrid materials, see: Shi et al. (2009); Xiao et al. (2006); Zhang et al. (2004). For a related structure, see: Wang et al. (2009).

Experimental top

A mixture of 4-(1,2,4-triazol-4-yl)benzoic acid (0.4 mmol, 0.075 g) and NaOH (0.4 mmol, 0.016 g) in water (15 ml) was added with CuCl2.2H2O (0.2 mmol, 0.034 g), giving a blue precipitate. The precipitate was dissolved by dropwise addition of diluted ammonia. Blue crystals were obtained from the filtrate by slow evaporation after standing for several days.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located in a difference Fourier map and refined with O—H distance restraints of 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and MaterialsStudio (Accelrys, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, -y, 2-z.]
[Figure 2] Fig. 2. View of the three-dimensional network of the title compound, built by hydrogen bonds (dashed lines).
Tetraaquabis[4-(4H-1,2,4-triazol-4-yl)benzoato-κN1]copper(II) dihydrate top
Crystal data top
[Cu(C9H6N3O2)2(H2O)4]·2H2OZ = 1
Mr = 547.97F(000) = 283
Triclinic, P1Dx = 1.677 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3001 (4) ÅCell parameters from 2131 reflections
b = 7.9904 (5) Åθ = 1.0–26.0°
c = 9.8995 (6) ŵ = 1.08 mm1
α = 85.343 (1)°T = 293 K
β = 73.243 (1)°Block, blue
γ = 79.032 (1)°0.24 × 0.22 × 0.19 mm
V = 542.61 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2102 independent reflections
Radiation source: fine-focus sealed tube2025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 79
Tmin = 0.75, Tmax = 0.83k = 99
3001 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.048P)2 + 0.4256P]
where P = (Fo2 + 2Fc2)/3
2102 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.81 e Å3
7 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cu(C9H6N3O2)2(H2O)4]·2H2Oγ = 79.032 (1)°
Mr = 547.97V = 542.61 (6) Å3
Triclinic, P1Z = 1
a = 7.3001 (4) ÅMo Kα radiation
b = 7.9904 (5) ŵ = 1.08 mm1
c = 9.8995 (6) ÅT = 293 K
α = 85.343 (1)°0.24 × 0.22 × 0.19 mm
β = 73.243 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2102 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2025 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.83Rint = 0.033
3001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0347 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.81 e Å3
2102 reflectionsΔρmin = 0.69 e Å3
178 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00001.00000.01356 (14)
C10.4338 (3)0.8158 (3)0.2433 (2)0.0171 (4)
C20.3525 (3)0.6774 (3)0.3431 (2)0.0159 (4)
C30.3242 (3)0.5307 (3)0.2906 (2)0.0173 (4)
H30.35000.52080.19370.021*
C40.2582 (3)0.3996 (3)0.3803 (2)0.0177 (4)
H40.23970.30210.34420.021*
C50.2198 (3)0.4155 (3)0.5251 (2)0.0144 (4)
C60.2448 (3)0.5605 (3)0.5801 (2)0.0170 (4)
H60.21770.57040.67710.020*
C70.3109 (3)0.6909 (3)0.4887 (2)0.0169 (4)
H70.32770.78890.52510.020*
C80.0901 (3)0.2734 (3)0.7605 (2)0.0158 (4)
H80.07760.36390.81780.019*
C90.1476 (4)0.1191 (3)0.5795 (2)0.0239 (5)
H90.18390.08380.48680.029*
N10.1555 (3)0.2774 (2)0.61779 (19)0.0150 (4)
N20.0469 (3)0.1231 (2)0.80595 (18)0.0157 (4)
N30.0828 (3)0.0245 (2)0.6893 (2)0.0242 (4)
O10.4190 (3)0.9593 (2)0.29038 (18)0.0286 (4)
O20.5161 (2)0.7736 (2)0.11668 (16)0.0189 (3)
O1W0.1051 (3)0.1744 (3)1.0745 (2)0.0310 (4)
H1A0.2286 (18)0.1646 (15)1.030 (3)0.047*
H1B0.107 (5)0.146 (5)1.1613 (17)0.047*
O2W0.3408 (2)0.1514 (2)1.09311 (17)0.0201 (3)
H2A0.402 (4)0.089 (4)1.152 (3)0.030*
H2B0.384 (4)0.159 (4)1.025 (3)0.030*
O3W0.2262 (3)0.5346 (2)0.94116 (19)0.0244 (4)
H3A0.316 (4)0.450 (3)0.927 (4)0.037*
H3B0.270 (5)0.624 (3)0.922 (3)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0179 (2)0.0127 (2)0.0086 (2)0.00537 (14)0.00024 (14)0.00153 (13)
C10.0141 (10)0.0192 (11)0.0151 (10)0.0029 (8)0.0005 (8)0.0039 (8)
C20.0125 (10)0.0170 (10)0.0152 (10)0.0019 (8)0.0004 (8)0.0036 (8)
C30.0167 (10)0.0232 (11)0.0106 (10)0.0043 (8)0.0016 (8)0.0008 (8)
C40.0188 (11)0.0197 (11)0.0147 (10)0.0074 (9)0.0025 (8)0.0009 (8)
C50.0122 (10)0.0158 (10)0.0124 (10)0.0023 (8)0.0006 (8)0.0046 (8)
C60.0183 (10)0.0174 (10)0.0114 (10)0.0007 (8)0.0000 (8)0.0005 (8)
C70.0177 (10)0.0148 (10)0.0151 (10)0.0018 (8)0.0006 (8)0.0005 (8)
C80.0183 (10)0.0159 (10)0.0113 (10)0.0039 (8)0.0012 (8)0.0017 (8)
C90.0384 (14)0.0164 (11)0.0125 (11)0.0065 (10)0.0009 (9)0.0004 (8)
N10.0163 (9)0.0143 (9)0.0115 (8)0.0034 (7)0.0005 (7)0.0018 (7)
N20.0180 (9)0.0156 (9)0.0112 (8)0.0039 (7)0.0002 (7)0.0001 (7)
N30.0397 (12)0.0175 (10)0.0119 (9)0.0086 (9)0.0009 (8)0.0015 (7)
O10.0405 (10)0.0178 (9)0.0202 (9)0.0109 (7)0.0064 (7)0.0005 (7)
O20.0203 (8)0.0193 (8)0.0139 (8)0.0057 (6)0.0007 (6)0.0030 (6)
O1W0.0343 (10)0.0347 (10)0.0231 (9)0.0126 (8)0.0029 (8)0.0019 (8)
O2W0.0225 (9)0.0205 (8)0.0166 (8)0.0076 (7)0.0032 (7)0.0045 (6)
O3W0.0219 (9)0.0178 (8)0.0303 (9)0.0047 (7)0.0005 (7)0.0028 (7)
Geometric parameters (Å, º) top
Cu1—O1W1.9937 (19)C6—H60.9300
Cu1—O2W2.4932 (16)C7—H70.9300
Cu1—N22.0535 (18)C8—N21.311 (3)
C1—O11.246 (3)C8—N11.354 (3)
C1—O21.266 (3)C8—H80.9300
C1—C21.512 (3)C9—N31.297 (3)
C2—C31.393 (3)C9—N11.366 (3)
C2—C71.393 (3)C9—H90.9300
C3—C41.383 (3)N2—N31.385 (3)
C3—H30.9300O1W—H1A0.87 (2)
C4—C51.391 (3)O1W—H1B0.87 (2)
C4—H40.9300O2W—H2A0.82 (3)
C5—C61.383 (3)O2W—H2B0.82 (3)
C5—N11.437 (3)O3W—H3A0.84 (3)
C6—C71.388 (3)O3W—H3B0.82 (3)
O1Wi—Cu1—O1W180.00 (7)C5—C6—H6120.4
O1Wi—Cu1—N289.17 (8)C7—C6—H6120.4
O1W—Cu1—N290.83 (8)C6—C7—C2121.0 (2)
O1Wi—Cu1—N2i90.83 (8)C6—C7—H7119.5
O2W—Cu1—N295.22 (7)C2—C7—H7119.5
O2W—Cu1—O1Wi87.99 (7)N2—C8—N1109.97 (19)
O2W—Cu1—N2i84.78 (7)N2—C8—H8125.0
N2—Cu1—N2i180.0N1—C8—H8125.0
O1—C1—O2125.1 (2)N3—C9—N1111.1 (2)
O1—C1—C2118.90 (19)N3—C9—H9124.4
O2—C1—C2115.97 (19)N1—C9—H9124.4
C3—C2—C7118.7 (2)C8—N1—C9104.65 (18)
C3—C2—C1120.38 (19)C8—N1—C5128.54 (18)
C7—C2—C1120.9 (2)C9—N1—C5126.81 (18)
C4—C3—C2121.1 (2)C8—N2—N3107.78 (17)
C4—C3—H3119.4C8—N2—Cu1133.37 (15)
C2—C3—H3119.4N3—N2—Cu1117.25 (13)
C3—C4—C5119.1 (2)C9—N3—N2106.47 (18)
C3—C4—H4120.5Cu1—O1W—H1A107.7 (19)
C5—C4—H4120.5Cu1—O1W—H1B109 (2)
C6—C5—C4121.0 (2)H1A—O1W—H1B102 (3)
C6—C5—N1120.03 (19)H2A—O2W—H2B107 (3)
C4—C5—N1118.95 (19)H3A—O3W—H3B111 (3)
C5—C6—C7119.2 (2)
O1—C1—C2—C3164.7 (2)N3—C9—N1—C80.0 (3)
O2—C1—C2—C316.6 (3)N3—C9—N1—C5179.9 (2)
O1—C1—C2—C717.6 (3)C6—C5—N1—C88.8 (3)
O2—C1—C2—C7161.1 (2)C4—C5—N1—C8171.9 (2)
C7—C2—C3—C40.7 (3)C6—C5—N1—C9171.1 (2)
C1—C2—C3—C4177.1 (2)C4—C5—N1—C98.1 (3)
C2—C3—C4—C50.0 (3)N1—C8—N2—N30.7 (3)
C3—C4—C5—C60.6 (3)N1—C8—N2—Cu1163.97 (15)
C3—C4—C5—N1178.58 (19)O1Wi—Cu1—N2—C8167.8 (2)
C4—C5—C6—C70.6 (3)O1W—Cu1—N2—C812.2 (2)
N1—C5—C6—C7178.65 (19)O1Wi—Cu1—N2—N328.63 (17)
C5—C6—C7—C20.2 (3)O1W—Cu1—N2—N3151.37 (17)
C3—C2—C7—C60.8 (3)N1—C9—N3—N20.4 (3)
C1—C2—C7—C6177.00 (19)C8—N2—N3—C90.7 (3)
N2—C8—N1—C90.5 (3)Cu1—N2—N3—C9166.87 (17)
N2—C8—N1—C5179.47 (19)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2ii0.87 (2)2.12 (2)2.948 (3)158 (2)
O1W—H1B···N3i0.87 (2)2.27 (3)2.873 (3)126 (3)
O2W—H2A···O1iii0.82 (3)1.98 (3)2.794 (2)172 (3)
O2W—H2B···O2iv0.82 (3)1.91 (3)2.711 (2)167 (3)
O3W—H3A···O2ii0.84 (3)1.97 (3)2.789 (2)167 (3)
O3W—H3B···O2Wv0.82 (3)1.94 (3)2.758 (2)170 (3)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y+1, z+1; (iii) x1, y1, z+1; (iv) x, y+1, z+1; (v) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C9H6N3O2)2(H2O)4]·2H2O
Mr547.97
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3001 (4), 7.9904 (5), 9.8995 (6)
α, β, γ (°)85.343 (1), 73.243 (1), 79.032 (1)
V3)542.61 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.24 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.75, 0.83
No. of measured, independent and
observed [I > 2σ(I)] reflections
3001, 2102, 2025
Rint0.033
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.12
No. of reflections2102
No. of parameters178
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.69

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and MaterialsStudio (Accelrys, 2006).

Selected bond lengths (Å) top
Cu1—O1W1.9937 (19)Cu1—N22.0535 (18)
Cu1—O2W2.4932 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2i0.87 (2)2.12 (2)2.948 (3)158 (2)
O1W—H1B···N3ii0.87 (2)2.27 (3)2.873 (3)126 (3)
O2W—H2A···O1iii0.82 (3)1.98 (3)2.794 (2)172 (3)
O2W—H2B···O2iv0.82 (3)1.91 (3)2.711 (2)167 (3)
O3W—H3A···O2i0.84 (3)1.97 (3)2.789 (2)167 (3)
O3W—H3B···O2Wv0.82 (3)1.94 (3)2.758 (2)170 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2; (iii) x1, y1, z+1; (iv) x, y+1, z+1; (v) x, y+1, z+2.
 

Acknowledgements

We thank Jilin Business and Technology College for supporting this work.

References

First citationAccelrys (2006). MaterialsStudio. Accelrys Inc., San Diego, California, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F. N., Luis, C. S., Trindade, T., Filipe, A. & Rocha, J. (2009). Cryst. Growth Des. 9, 2098–2109.  CrossRef CAS Google Scholar
First citationWang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, D.-R., Wang, E.-B., An, H.-Y., Li, Y.-G., Su, Z.-M. & Sun, C.-Y. (2006). Chem. Eur. J. 12, 6528–6541.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, J., Li, Z.-J., Kang, Y., Cheng, J.-K. & Yao, Y.-G. (2004). Inorg. Chem. 43, 8085–8091.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds